Accéder directement au contenu Accéder directement à la navigation
Pré-publication, Document de travail

Integrating factor techniques applied to the Schrödinger-like equations. Comparison with Split-Step methods

Martino Lovisetto 1, 2 Didier Clamond 1, 2 Bruno Marcos 1, 2 
2 LJAD
JAD - Laboratoire Jean Alexandre Dieudonné
Abstract : The nonlinear Schrödinger and the Schrödinger-Newton equations model many phenomena in various fields. Here, we perform an extensive numerical comparison between splitting methods (often employed to numerically solve these equations) and the integrating factor technique, also called Lawson method. Indeed, the latter is known to perform very well for the nonlinear Schrödinger equation, but has not been thoroughly investigated for the Schrödinger-Newton equation. Comparisons are made in one and two spatial dimensions, exploring different boundary conditions and parameters values. We show that for the short range potential of the nonlinear Schrödinger equation, the integrating factor technique performs better than splitting algorithms, while, for the long range potential of the Schrödinger-Newton equation, it depends on the particular system considered.
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-03736408
Contributeur : Martino Lovisetto Connectez-vous pour contacter le contributeur
Soumis le : vendredi 22 juillet 2022 - 13:04:54
Dernière modification le : jeudi 4 août 2022 - 16:58:50

Fichiers

Paper_Comp.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-03736408, version 1

Citation

Martino Lovisetto, Didier Clamond, Bruno Marcos. Integrating factor techniques applied to the Schrödinger-like equations. Comparison with Split-Step methods. 2022. ⟨hal-03736408⟩

Partager

Métriques

Consultations de la notice

13

Téléchargements de fichiers

3