Accéder directement au contenu Accéder directement à la navigation
Pré-publication, Document de travail

Frequency-explicit a posteriori error estimates for discontinuous Galerkin discretizations of Maxwell's equations

Abstract : We propose a new residual-based a posteriori error estimator for discontinuous Galerkin discretizations of time-harmonic Maxwell's equations in first-order form. We establish that the estimator is reliable and efficient, and the dependency of the reliability and efficiency constants on the frequency is analyzed and discussed. The proposed estimates generalize similar results previously obtained for the Helmholtz equation and conforming finite element discretization of Maxwell's equations. In addition, for the discontinuous Galerkin scheme considered here, we also show that the proposed estimator is asymptotically constantfree for smooth solutions. We also present two-dimensional numerical examples that highlight our key theoretical findings and suggest that the proposed estimator is suited to drive h and hp-adaptive iterative refinements.
Liste complète des métadonnées

https://hal.inria.fr/hal-03744230
Contributeur : Théophile Chaumont-Frelet Connectez-vous pour contacter le contributeur
Soumis le : mardi 2 août 2022 - 15:59:19
Dernière modification le : jeudi 4 août 2022 - 17:00:05

Fichier

chaumontfrelet_vega_2022a.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-03744230, version 1

Citation

Théophile Chaumont-Frelet, Patrick Vega. Frequency-explicit a posteriori error estimates for discontinuous Galerkin discretizations of Maxwell's equations. 2022. ⟨hal-03744230⟩

Partager

Métriques

Consultations de la notice

18

Téléchargements de fichiers

2