Assessing Unchecked Factors for Certification: An Experimental approach for GPU Cache Parameters
Abstract
The certification objectives for airborne electronic hardware defined in AMC20-152A and in AMC20-193 capture some of the activities required for an applicant to embed a hardware platform in a safety-critical avionic system. For COTS (Commercially available Off-The-Shelf) platforms in particular, these objectives require applicants to identify functions, configuration settings, and resources present on the platform, and assess their use by the system. AMC20-152A however recognizes that documentation regarding the behaviour of a COTS may be incomplete. There is thus a strong push for applicants to the certification of a COTS to demonstrate their mastery of the platform, to highlight relevant factors (functions, settings, resources, etc.), and their use in their system. We outline in the following a standard approach to the exploration of unchecked factors of a platform, considering existing approaches in the literature, to build such a mastery. Our approach incrementally incorporates and validates knowledge of various factors by including them in micro-simulations compared to experimental ground truth.
There is thus a strong push for applicants to the certification of a COTS to demonstrate their mastery of the platform, to highlight relevant factors (functions, settings, resources, etc.), and their use in their system. We outline in the following a standard approach to the exploration of unchecked factors of a platform, considering existing approaches in the literature, to build such a mastery. Our approach incrementally incorporates and validates knowledge of various factors by including them in micro-simulations compared to experimental ground truth.
Origin | Publisher files allowed on an open archive |
---|---|
licence |