Regularization estimates and hydrodynamical limit for the Landau equation - Archive ouverte HAL Access content directly
Journal Articles Journal de Mathématiques Pures et Appliquées Year : 2022

Regularization estimates and hydrodynamical limit for the Landau equation

(1) , (2) , (3)
1
2
3

Abstract

In this paper, we study the Landau equation under the Navier-Stokes scaling in the torus for hard and moderately soft potentials. More precisely, we investigate the Cauchy theory in a perturbative framework and establish some new short time regularization estimates for our rescaled nonlinear Landau equation. These estimates are quantified in time and optimal, indeed, we obtain the instantaneous expected anisotropic gain of regularity (see [53] for the corresponding hypoelliptic estimates on the linearized Landau collision operator). Moreover, the estimates giving the gain of regularity in the velocity variable are uniform in the Knudsen number. Intertwining these new estimates on the Landau equation with estimates on the Navier-Stokes-Fourier system, we are then able to obtain a result of strong convergence towards this fluid system.
Fichier principal
Vignette du fichier
LNSfinal.pdf (901.33 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03299125 , version 1 (26-07-2021)
hal-03299125 , version 2 (19-05-2022)

Identifiers

Cite

Kleber Carrapatoso, Mohamad Rachid, Isabelle Tristani. Regularization estimates and hydrodynamical limit for the Landau equation. Journal de Mathématiques Pures et Appliquées, inPress, ⟨10.1016/j.matpur.2022.05.009⟩. ⟨hal-03299125v2⟩
97 View
34 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More