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Abstract Ionic electro-active polymers (E.A.P.) is an active material consist-
ing in a polyelectrolyte (for example Nafion). Such material is usually used as
thin film sandwiched between two platinum electrodes. The polymer under-
goes large bending motions when an electric field is applied across the thick-
ness. Conversely, a voltage can be detected between both electrodes when the
polymer is suddenly bent. The solvent-saturated polymer is fully dissociated,
releasing cations of small size. We used a continuous medium approach. The
material is modelled by the coexistence of two phases; it can be considered as
a porous medium where the deformable solid phase is the polymer backbone
with fixed anions; the electrolyte phase is made of a solvent (usually water)
with free cations.

The microscale conservation laws of mass, linear momentum and energy
and the Maxwell’s equations are first written for each phase. The physical
quantities linked to the interfaces are deduced. The use of an average tech-
nique applied to the two-phase medium finally leads to an Eulerian formulation
of the conservation laws of the complete material. Macroscale equations rela-
tive to each phase provides exchanges through the interfaces. An analysis of
the balance equations of kinetic, potential and internal energy highlights the
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phenomena responsible of the conversion of one kind of energy into another,
especially the dissipative ones : viscous frictions and Joule effect.

Keywords Electro-active polymers · balance laws · conservation laws ·
multiphysics coupling · deformable porous media

PACS PACS 47.10.ab · PACS 47.56.+r · PACS 61.41.+e · PACS 83.60.Np

1 Introduction

Electro-active polymers (EAP) have attracted much attention from scientists
and engineers of various disciplines. In particular, researches in the field of
biomimetics (for instance, in robotic mechanisms are based on biologically-
inspired models) and for the use as artificial muscles (see, for instance, the
review of Shahinpoor [1] and [2] or [3]) and more recently EAPs are excellent
candidates for energy harvesting devices [4], [5] and [6]. Roughly speaking,
such polymers have responses to external electric stimulation by displaying
a significant shape and size variations. This interesting property offers many
promising applications in advanced technologies. In addition, they can be used
as actuators or sensors. As actuators the EAPs are characterized by the fact
they undergo a large amount of deformation while sustaining large forces. They
are often called artificial muscles [7], [8] and [9].
Electro-active polymers can be divided in several categories according to their
process of activation and chemical compositions. Nevertheless, they can be
placed in two major categories : electronic and ionic categories. These both
categories come in several families [3] (among them, ferroelectric polymers, di-
electric EAP, electrostrictive paper, electro-viscoelastic elastomers, ionic poly-
mer gels, conductive polymers, etc.). The first category of EAP is the electronic
type. Concerning their advantages the E.A.P. can operate in room conditions
with rapid response in time; in addition they induce relatively large actuation
forces. One of the main disadvantage is that they require high voltage (150
MV/m). The second category, the ionic EAPs, with which the present work
is concerned, operates with low voltage (few volts) producing large bending
displacements. Their drawbacks are more or less slow response and low actu-
ation force. They operate best in humid environment and they can be made
as self-contained encapsulated actuators to be used in dry environment.

In the present study the emphasis is placed especially on the ionic poly-
mer metal composite (IPMC) [10]. The structure consists of thin ion-exchange
membrane of Nafion, Flemion or Aciplex (polyelectrolyte) plated on both faces
by conductive electrodes (generally platinum or gold). In short, to explain the
mechanism of deformation of an EAP, a thin trip of polymers is placed be-
tween thin conductive electrodes. Upon the application of an electric field
across a slightly humid EAP, the positive counter ions move towards the neg-
ative electrode (cathode), whole negative ions that are fixed (or immobile) to
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the polymer backbone experience an attractive force from the positive elec-
trode (anode). At the same time, water molecules in the EAP backbone diffuse
towards the region of high positive ion concentration (near the negative elec-
trode) to equalize the charge distribution. As a result, the water or solvent
concentration in the region near the anode increases and the concentration in
the region near the cathode decreases, leading to strain with linear distribu-
tion along the step thickness which causes the bending towards the positive
anode. Conversely, if the strip of electro-active polymers is suddenly bent, a
difference of electric voltage is produced between electrodes [11] and [12].

The theories or models to explain the mechanism of deformation in EAP
are yet to emerge. Nevertheless, some heuristic or empiric models are avail-
able in the literature. One of the most interesting and comprehensive accounts
for chemical mechano-electric effect of the ionic transport coupled to electric
field and elastic deformation of the polymer. A micro mechanical model has
been developped by Nemat-Nasser [10] and [13] accounting for coupled ion
transport, electric field and elastic deformation to predict the response of the
IPMC. The model presented is mostly governed by Gauss equation for the con-
servation of electric charge, a constitutive equation for ion flux vector and a
so-called generalized Darcy’s law for the water molecule velocity. Other models
based on linear irreversible thermodynamics have been proposed by Shahin-
poor et al. [8] and [14]. The model considers standard Onsager formulation for
the simple description of ion transport (current density) and the flux of the
solvent transport. The conjugate forces are the electric field and the gradient
of pressure. In different way, Shahinpoor and co-workers propose models for
micro-electro-mechanics of ions polymeric gels based on continuum electrome-
chanics [7].

The present work focus on a novel approach for electro-active polymers
based on thermodynamics of continua. More precisely, we present a detailed
approach for such polymer material using the concepts of non-equilibrium
thermodynamical processes. The material is then modeled by the coexistence
of two phases. The first one is the backbone polymer or the solid phase with
fixed anion while the second phase is the solvent containing the free cations.
The method consists of computing an average of the different phases over a
representative elementary volume containing the phases at the micro scale.
The statistical average leads to macro scale quantities defined all over the
material. The main difficulty of the method is that we must account for the
interfaces which exist between phases for which interfacial quantities must be
defined. On using this procedure for different conservation laws of the present
multiphase material, we deduce the equation of mass conservation, the electric
charge conservation, the conservation of the momentum, the different energy
balance equations at the macroscopic scale of the whole material.

The paper is organized as follows. The description of the model and the
definition of phases are presented with underlying physics in the next Section.
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Section 3 is devoted to the equations of conservation of mass. Since the poly-
mer contains electric charges, the electric charge conservation and interface
equations are presented in Section 4. The following Section places the empha-
sis on the linear momentum balance equation where the macroscopic stress
tensor is defined. Moreover, the Maxwell’s tensor is placed in evidence due
to the action of the electric field on the moving electric charges. The Section
6 presents the energy balance laws, that is, the potential energy, the kinetic
energy, the total energy and internal energy balance equations. At last, the
discussion is reported in Section 7 and finally conclusions are drawn in Section
8.

2 Modelling

As mentioned in the introduction, the system under study is made of a thin
membrane of an ionic electro-active polymer saturated with water and coated
on both sides with thin metal layers used as electrodes. Water, even in small
quantity, causes a quasi-complete dissociation of the polymer and the release
of positive ions (cations) in water; negative ions (anions) remain bound to the
polymer backbone [15]. When an electric field perpendicular to the electrodes
is applied, cations move towards the negative side, carrying solvent away by an
osmosis phenomenon. This solvent displacement leads to a polymer swelling on
the negative electrode side and to a compression on the opposite side, resulting
in a bending of the strip.

To model this system, we describe the polymer chains as a deformable
porous medium; this solid is saturated by an ionic solution composed by water
and cations. The whole material is considered as a continuum, which is the
superposition of three systems whose velocity fields are different : a deformable
solid component made up of polymer backbone negatively charged and fluid
trapped in the unconnected porosity (the ”solid component”), and a liquid
composed of water and cations located in the connected porosity. Anions are
bound to the solid component. Quantities relative to the different components
will be respectively identified by subscripts 1, 2 and 3 for cations, solvent and
solid. Subscript 4 will refer to the solution, i.e. both components 1 and 2.
Quantities without subscript refer to the whole material. Solid and solution
are separated by an interface (subscript i) whose thickness is supposed to be
negligible. Components 2, 3 and 4 as well as the global material are assimilated
to continua. Modelling of the interface is detailled in the appendix.

Solid and solution are supposed to be incompressible phases. We assume
the gravity and the magnetic field are negligible; the only external force acting
on the system is the electric force.

To describe this complex dispersed medium, we use a coarse-grained model
developed by Nigmatulin [16], [17], Drew [18], Drew and Passman [19] and Ishii
and Hibiki [20] for two-phase mixtures [21]. We use two scales. The microscopic
scale must be small enough so that the corresponding volume only contains a
single phase (3 or 4), but large enough to use a continuous medium model. For
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Nafion completely saturated with water, it is about hundred Angstroms. At
the macroscopic scale, the representative elementary volume (R.E.V.) contains
phases 3 and 4. It must be large enough so that average quantities relative to
the whole material make sense, and small enough so that these quantities can
be considered as local. Its characteristic length is about micron [22], [23] and
[15]. For each phase 3 and 4, we define a microscale Heaviside-like function of
presence χk (−→r , t) by

χk = 1 when phase k occupies point −→r at time t, χk = 0 otherwise (1)

χk remains unchanged in case of displacement following the interface velocity
−→
V 0

i . We obtain

−−→
gradχk = −−→nkχi

∂χk

∂t
=
−→
V 0

i ·
−→nkχi for k = 3, 4 (2)

where the Dirac-like function χi = −
−−→
gradχk ·−→nk (in m−1) denotes the function

of presence of the interface and −→nk the outward-pointing unit normal to the
interface in the phase k.

The quantities related to each phase have significant variation over space
and time, as well as the positions of each phase. In order to define macroscale
quantities relative to the whole material, we consider a representative elemen-
tary volume (R.E.V.) containing the three components and the microscale
quantities are statistically averaged over the R.E.V.. This statistical average,
denoted by 〈〉 and obtained by repeating many times the same experiment
with the same boundary and initial conditions, is supposed to be equivalent
to a volume average (ergodic hypothesis). The average thus defined commutes
with the space and time derivatives (Leibniz’ and Gauss’ rules, Drew [18];
Lhuillier [21]). On denoting by 〈〉k the average over the phase k of a quantity
relative to the phase k only, a microscale quantity g0k satisfies

gk =
〈
χkg

0

k

〉
= φk

〈
g0k
〉
k

(3)

where φk = 〈χk〉 is the volume fraction of the phase k. The macroscale quantity
gk is defined all over the material. In the following, superscript 0 denotes
the microscale quantities of each phase. The macroscale quantities, which are
averages defined everywhere, are written without superscript.

3 Equation of conservation of mass

In the following, we assume that the polymer is enough hydrated to be com-
pletely dissociated. For the water, solution and solid phases, the microscale
mass continuity equation can be written as

∂ρ0k
∂t

+ div
(
ρ0k
−→
V 0

k

)
= 0 (4)
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where
−→
V 0

k is the local velocity of the phase k and ρ0k its mass density. Phases
2 and 3 are incompressible, so we obtain

div
(−→
V 0

k

)
= 0 (5)

The different phases do not interpenetrate, thus we can write

−→
V 0

1
χi =

−→
V 0

2
χi =

−→
V 0

3
χi =

−→
V 0

4
χi =

−→
V 0

i χi (6)

Using (4) and (2) we deduce

∂χkρ
0

k

∂t
+ div

(
χkρ

0

k

−→
V 0

k

)
= ρ0k

−→
V 0

i ·
−→nkχi − ρ0k

−→
V 0

k ·
−→nkχi (7)

For the phase k, the mass density relative to the whole material volume
and the barycentric velocity are defined respectively by

ρk =
〈
χkρ

0

k

〉
= φkρ

0

k

−→
Vk =

〈
χkρ

0

k

−→
V 0

k

〉

〈χkρ
0

k〉
=
−→
V 0

k (8)

neglecting the velocities fluctuations on the R.E.V. scale.

ρ0
4
= ρ0

2

φ2

φ4

+ CM1 (9)

where Mk is the molar mass of the component k and C the cations molar
concentration relative to the solution volume. It follows

ρ4 = ρ1 + ρ2 with ρ1 = φ4CM1 (10)

assuming that the concentration fluctuations are negligible and that the so-
lution is diluted. In the same way the velocity of the solution can be written
as

ρ0
4

−→
V 0

4
= CM1

−→
V 0

1
+ ρ0

2

φ2

φ4

−→
V 0

2
ρ4
−→
V4 = ρ1

−→
V1 + ρ2

−→
V2 (11)

Averaging over the material R.E.V., we finally obtain

∂ρk

∂t
+ div

(
ρk
−→
Vk

)
= 0 k = 1, 2, 3, 4 (12)

The interfaces have no mass. Consequently, we deduce for the complete
material

∂ρ

∂t
+ div

(
ρ
−→
V
)
= 0 (13)

where ρ and
−→
V denote the mass density and the barycentric velocity of the

whole material

ρ =
∑

k=3,4

ρk ρ
−→
V =

∑

k=3,4

ρk
−→
Vk (14)
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4 Electric equations

4.1 Electric charge conservation

The microscale electric charge conservation of the phase k can be written

div
−→
I0k +

∂
(
ρ0kZ

0

k

)

∂t
= 0 (15)

where
−→
I0k denotes the current density vector and Z0

k the electric charge per
unit of mass (Z0

2 and Z0
3 are constants).

−→
I0
3
= ρ0

3
Z0

3

−→
V 0

3

−→
I0
4
= M1CZ0

1

−→
V 0

1
(16)

Z0

k =
zkF

Mk

for k = 1, 3 Z0

2 = 0 Z0

4 =
CM1Z

0

1

ρ0
4

(17)

where zk is the number of elementary charges of an ion and F the Faraday’s
constant.

Averaging over the R.E.V., we obtain

div
−→
Ik +

∂ρkZk

∂t
=
〈
−
−→
i0k ·
−→nkχi

〉
(18)

in which the macroscale mass charge and current density vector are defined as

ρkZk =
〈
χkρ

0

kZ
0

k

〉 −→
Ik =

〈
χk

−→
I0k

〉
(19)

with
−→
I3 =

〈
χ3

−→
I03

〉
= ρ3Z3

−→
V3

−→
I4 =

〈
χ4

−→
I04

〉
= ρ1Z1

−→
V1 (20)

−→
i0k =

−→
I0k −ρ0kZ

0

k

−→
V 0

k denotes the microscale diffusion current in phase k. Quanti-
ties relative to the interfaces are defined in the appendix. The interface electric
charge density per unit surface Zi and the current density vector

−→
Ii satisfy

the following mean condition

∂Zi

∂t
+ div

−→
Ii =

〈−→
i0
3
· −→n3χi +

−→
i0
4
· −→n4χi

〉
(21)

Adding up equations (18) for the solid, the solution and (21) for the inter-
faces, it follows for the whole material

div
−→
I +

∂ρZ

∂t
= 0 (22)

where

ρZ =
∑

3,4

ρkZk + Zi
−→
I = ρ1Z1

−→
V1 + ρ3Z3

−→
V3 +

−→
Ii (23)



8 Mireille Tixier, Joël Pouget

4.2 Maxwell’s equations

One can reasonably neglect the effects of the magnetic field. The electric fields
−→
E0

k and the electric displacements
−→
D0

k of the solid and the solution are governed
by the Maxwell’s equations

−→
rot
−→
E0

k =
−→
0 div

−→
D0

k = ρ0kZ
0

k (24)

The associated boundary conditions can be presented as

−→n3 ∧
−→
E0

3
χi = −−→n4 ∧

−→
E0

4
χi

−→
D0

3
· −→n3χi +

−→
D0

4
· −→n4χi + Z0

i χi = 0 (25)

Averaging equations (24) over the R.E.V., we derive the following macroscale
equations for the solid and the solution

−→
rot
−→
Ek =

−→
0 div

−→
Dk = ρkZk −

〈−→
D0

k ·
−→nkχi

〉
(26)

in which the macroscale electric fields and displacements are defined as

−→
Ek =

〈
χk

−→
E0

k

〉

〈χk〉

−→
Dk =

〈
χk

−→
D0

k

〉
(27)

Electric field is an intensive thermodynamic variable. In principle, it dis-
plays spatial and time fluctuations within the R.E.V.. Considering this volume
is tiny, we assume that the fluctuations are not relevant; we venture the same
hypothesis for the concentration and the velocities of the phases. Further-
more, we suppose that macroscale electric fields are identical in all the phases.
Adding up equations (26) for the solid and the solution, it follows for the whole
material

−→
rot
−→
E =

−→
0 div

−→
D = ρZ (28)

using (25). Parameters of the complete material are defined by

−→
E =

∑

3,4

φk
−→
Ek =

−→
Ek

−→
D =

∑

3,4

−→
Dk (29)

We conclude that the E.A.P. verifies the same Maxwell’s equations and
the same law of conservation of charge as an isotropic homogeneous linear
dielectric.

4.3 Constitutive relations

A reasonable approximation is that solid and solution can be regarded as
isotropic linear dielectrics

−→
D0

k = ε0k
−→
E0

k (30)
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where ε0k denotes the permittivity of the phase k. Average over the R.E.V.
gives

−→
Dk = εk

−→
Ek (31)

in which :

εk =
〈
χkε

0

k

〉
(32)

is the mean permeability of the phase k relative to the total volume.
The constitutive relation of the E.A.P. takes on the following form

−→
D = ε

−→
E (33)

where the whole material permittivity is defined by

ε =
∑

k=3,4

εk (34)

On considering our assumptions, the E.A.P. is equivalent to an isotropic
linear dielectric. We however point out that its permittivity a priori varies over
time and space because of variations of the volume fractions φ3 and φ4.

5 Linear momentum conservation law

5.1 Particle derivatives and material derivative

In order to write the remaining balance equations, it is necessary to calculate
the variations of the extensive quantities following the material motion. This
raises a problem because the different phases do not move with the same
velocity : velocities of the solid and the solution are a priori different. For a
quantity g, we can define particle derivatives following the motion of the solid
(d3

dt
), the solution (d4

dt
) or the interface (di

dt
)

dkg

dt
=

∂g

∂t
+
−−→
gradg ·

−→
Vk (35)

Let us consider an extensive quantity of density g (−→r , t) relative to the
whole material. According to the theory developped by O. Coussy [24] and
implicitly used in [25] and [26], we are able to define a derivative following the
motion of the different phases of the medium. We will call it the ”material
derivative”

D

Dt

(
g

ρ

)
=

∑

k=3,4,i

ρk

ρ

dk

(
gk
ρk

)

dt
(36)

where g3, g4 and gi are the densities relative to the total actual volume attached
to the solid, the solution and the interface, respectively (for example, if g is
the volume density, we set g3 = 1− φ and g4 = φ where φ is the porosity)
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g = g3 + g4 + gi (37)

dk

dt

(
gk
ρk

)
is the derivative following the motion of the phase k of the mass

density associated with the quantity gk. Using (12), we derive

ρ
D
(

g
ρ

)

Dt
=

∑

k=3,4,i

∂gk

∂t
+ div

(
gk
−→
Vk

)
(38)

for a scalar quantity and

ρ
D
(−→g

ρ

)

Dt
=

∑

k=3,4,i

∂−→gk
∂t

+
−→
div
(
−→gk ⊗

−→
Vk

)
(39)

for a vector quantity. This derivative must not be confused with the derivative
d
dt

following the barycentric velocity
−→
V .

5.2 Linear momentum balance equation

On assuming that the gravity and the magnetic field are negligible, the only
applied volume force is the electric one. The microscale momentum balance
equation of the phase k is then written as

∂ρ0k
−→
V 0

k

∂t
+
−→
div
(
ρ0k
−→
V 0

k ⊗
−→
V 0

k

)
=
−→
divσ
˜
0

k + ρ0kZ
0

k

−→
E0

k (40)

where σ
˜
0

k, the microscale stress tensor of the phase k, is symmetric. The
linear momentum of the interfaces per surface unit is zero (see appendix). On
accounting for the assumptions concerning the local velocities, it follows that
at the macroscopic scale

∂ρk
−→
Vk

∂t
+
−→
div
(
ρk
−→
Vk ⊗

−→
Vk

)
=
−→
divσ
˜k

+ ρkZk
−→
Ek +

−→
Fk (41)

where

σ
˜k

=
〈
χkσ˜

0

k

〉 −→
Fk =

〈
σ
˜
0

k ·
−→nkχi

〉
(42)

We verify that the macroscale stress tensor of the phase k, σ
˜k

, is symmetric.
−→
Fk represents the resultant of the mechanical stresses exerted on the phase k by
the other phase; it is an interaction force. Concerning the interfaces, we obtain
the following mean condition (cf § 9), which expresses the linear momentum
conservation law for the interfaces

−→
F3 +

−→
F4 = Zi

−→
Ei (43)
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The interface momentum is zero, then the volume linear momentum of the
whole material is ρ

−→
V = ρ3

−→
V3 + ρ4

−→
V4. On using the definition of the material

derivative (39), we obtain

ρ
D
−→
V

Dt
=
−→
divσ
˜
+ ρZ

−→
E (44)

in which

σ
˜
=
∑

k=3,4

σ
˜k

(45)

We check that σ
˜

is a symmetric tensor and that in the absence of any

external force (
−→
E =

−→
0 ), the total linear momentum is conserved.

Using Maxwell’s equations (28) and (33), (44) becomes

ρ
D
−→
V

Dt
=
−→
div

[
σ
˜
+ ε

(
−→
E ⊗

−→
E −

E2

2
I
˜

)]
+

E2

2

−−→
gradε (46)

ε
(
−→
E ⊗

−→
E − E2

2
I
˜

)
is the Maxwell’s tensor, which is here symmetric. The ad-

ditional term E2

2

−−→
gradε is produced by the non homogeneous material permit-

tivity.

6 Energy balance laws

6.1 Potential energy balance equation

Solid and solution are supposed to be non-dissipative isotropic linear media.
As a consequence the balance equation for the potential energy or Poynting’s
theorem can be written in the integral form [27], [28]

d

dt

∫

Ω

1

2

(
−→
E ·
−→
D +

−→
B ·
−→
H
)
dv = −

∮

∂Ω

(
−→
E ∧

−→
H
)
· −→n ds−

∫

Ω

−→
E ·
−→
I dv (47)

assuming that no charge goes out of the volume Ω. The left hand side repre-
sents the variation of the potential energy attached to the volume Ω following
the charge motion. If the charges are mobile, the associated local equation
writes for the phase k, neglecting the magnetic field

∂E0

pk

∂t
+ div

(
E0

pk

−→
V 0

k

)
= −
−→
E0

k ·
−→
I0k k = 3, 4 (48)

in which

E0

pk =
1

2

−→
D0

k ·
−→
E0

k k = 3, 4 (49)

is the potential energy per unit of volume of the phase k. On taking the
statistical average of (48) over the R.E.V., we obtain
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∂Epk

∂t
+ div

(
Epk
−→
Vk

)
= −
−→
Ek ·
−→
Ik (50)

where

Epk =
〈
χkE

0

pk

〉
=

1

2

−→
Dk ·

−→
Ek (51)

The mean volume potential energy associated to the interfaces satisfies (see
appendix)

∂Epi

∂t
+ div

(
Epi
−→
Vi

)
= −
−→
Ei ·
−→
Ii (52)

The potential energy balance equation for the whole material is then

ρ
D

Dt

(
Ep

ρ

)
= −
−→
E ·
−→
I (53)

where

Ep =
∑

3,4,i

Epi =
1

2

−→
D ·
−→
E (54)

The production of potential energy in the R.E.V. is equal to the volume
power −

−→
E ·
−→
I of the force due to the action of the electric field on the density

of electric charges.

6.2 Kinetic energy balance equation

The microscale kinetic energy balance equation derives from (40)

∂E0

ck

∂t
+ div

(
E0

ck

−→
V 0

k

)
= div

(
σ
˜
0

k

−→
V 0

k

)
− σ
˜
0

k : grad
˜
−→
V 0

k + ρ0kZ
0

k

−→
E0

k ·
−→
V 0

k (55)

where the microscale volume kinetic energy of the phase k is

E0

ck =
1

2
ρ0kV

02

k (56)

In the same way, (41) is transformed into

∂Eck

∂t
+ div

(
Eck
−→
Vk

)
=
−→
Vk ·
−→
divσ
˜k

+ ρkZk
−→
Vk ·
−→
Ek +

−→
Fk ·
−→
Vk (57)

where

Eck =
1

2
ρkV

2

k (58)

is the macroscale volume kinetic energy of the phase k. The interface kinetic
energy is zero (see appendix).
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On summing up the equations (57) for phases 3 and 4, we arrive at

ρ D
Dt

(
EcΣ

ρ

)
=
∑
3,4

[
∂Eck

∂t
+ div

(
Eck
−→
Vk

)]

=
∑
3,4

[
div
(
σ˜k ·
−→
Vk

)
− σ˜k : grad

˜
−→
Vk

]
+

[
∑
3,4

ρkZk
−→
Vk + Zi

−→
Vi

]
·
−→
E

(59)
where EcΣ is the sum of the volume kinetic energies of the different phases
with respect to the laboratory reference frame

EcΣ = Ec3 + Ec4 (60)

EcΣ is distinct from the kinetic energy of the whole material because the
phase velocities are different. The total volume kinetic energy Ec is defined as

Ec =
1

2
ρV 2 =

∑

3,4

1

2
ρkV

2 (61)

From (38), we deduce

ρ
D

Dt

(
Ec

ρ

)
=

∂Ec

∂t
+ div

(
Ec
−→
V
)

(62)

Using (59), it follows

ρ D
Dt

(
Ec

ρ

)
= ∂

∂t

(
Ec −

∑
3,4

Eck

)
+ div

[
∑
3,4

(
σ˜k ·
−→
Vk − Eck

−→
Vk

)
+ Ec

−→
V

]

−
∑
3,4

σ˜k : grad
˜
−→
Vk +

(
∑
3,4

ρkZk
−→
Vk + Zi

−→
Vi

)
·
−→
E

(63)
The last two terms of this equation are source terms. The penultimate one
represents the viscous dissipation, that is to say kinetic energy conversion into
internal energy. The last term is the electric force volume power, which cor-
responds to a potential energy conversion into kinetic energy. As for the first
two terms, they correspond to the kinetic energy flux, which is both due to

the contact forces work
∑
3,4

div
(
σ
˜k
·
−→
Vk

)
and to the relative velocity of the two

phases: the kinetic energy of the phases with respect to the barycentric refer-
ence frame becomes indeed part of the internal energy of the whole material.

6.3 Total energy conservation law

The total energy of the present system is the sum of its internal, potential and
kinetic energies. The energy fluxes come from contact forces work and heat
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conduction. The microscale energy conservation law for the phase k can be
written as

∂E0

k

∂t
+ div

[
E0

k

−→
V 0

k − σ
˜
0

k ·
−→
V 0

k +
−→
Q0

k

]
= 0 (64)

where

E0

k = U0

k +
1

2
ρ0kV

02

k +
1

2

−→
E0

k ·
−→
D0

k (65)

is the total microscale energy of the phase k.
−→
Q0

k denotes the microscale heat
flux of the phase k and U0

k its microscale internal energy. Average over the
R.E.V. leads to

∂Ek

∂t
+ div

(
Ek
−→
Vk

)
− div

(
σ
˜k
·
−→
Vk

)
+ div

−→
Qk =

−→
Fk ·
−→
Vk + Pk (66)

where

Ek =
〈
χkE

0

k

〉
= Uk + Eck + Epk Uk =

〈
χkU

0

k

〉 −→
Qk =

〈
χk

−→
Q0

k

〉

(67)
and

Pk =
〈
−
−→
Q0

k ·
−→nkχi

〉
(68)

−→
Fk ·
−→
Vk + Pk represents the energy exchanges between the different phases

through the interfaces : contact forces work and heat fluxes. We obtain the
following condition for the interfaces (see appendix)

∂Ei

∂t
+ div

(
Ei
−→
Vi

)
= −P3 − P4 −

−→
F3 ·
−→
V3 −

−→
F4 ·
−→
V4 (69)

where Ei is the total energy density of the interfaces averaged over the R.E.V..
On summing equations (66) for k = 3, 4 and (69), we obtain the conservation
law of the total volume energy of the whole material E

ρ
D

Dt

(
E

ρ

)
= div


∑

k=3,4

σ
˜k
·
−→
Vk


− div

−→
Q (70)

where

E =
∑

3,4,i

Ek = U + Ec + Ep
−→
Q =

∑

k=3,4

−→
Qk (71)

The source term of this equation is zero, which is the expression of the
conservation law of the energy.

∑
3,4

σ
˜k
·
−→
Vk and

−→
Q represent the volume power

of the contact forces and the heat fluxes of the complete medium, respectively.
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6.4 Internal energy balance equation

The internal energy equation is obtained by subtracting kinetic and potential
energy equations (55) and (48) from the total energy conservation law (64)

∂U0

k

∂t
+ div

(
U0

k

−→
V 0

k +
−→
Q0

k

)
= σ
˜
0

k : grad
˜
−→
V 0

k +
(−→
I0k − ρ0kZ

0

k

−→
V 0

k

)
·
−→
E0

k (72)

Algebraic manipulations of (66), (57) and (50) lead to

∂Uk

∂t
+ div

(
Uk
−→
Vk +

−→
Qk

)
= σ
˜k

: grad
˜
−→
Vk +

−→
ik ·
−→
Ek −

〈−→
Q0

k ·
−→nkχi

〉
(73)

and for the interfaces (see appendix)

∂Ui

∂t
+ div

(
Ui
−→
Vi

)
=
〈−→
Q0

3 ·
−→n3χi +

−→
Q0

4 ·
−→n4χi

〉
−
−→
ii ·
−→
Ei (74)

where Ui denotes the volume internal energy of interfaces included in the
R.E.V..

Let us define UΣ as the sum of the volume internal energies of the different
phases

UΣ = U3 + U4 + Ui (75)

From (38), we derive

ρ
D

Dt

(
UΣ

ρ

)
=
∑

3,4

(
σ
˜k

: grad
˜
−→
Vk

)
+
−→
i ·
−→
E − div

−→
Q (76)

where
−→
i represents the diffusion current, consisting of the diffusion currents

of the interfaces and of the cations in the solution

−→
i =
−→
I −

∑

k=3,4

(
ρkZk

−→
Vk

)
− Zi

−→
Vi = ρ1Z1

(
−→
V1 −

−→
V4

)
+
−→
ii (77)

UΣ represents only a part of the internal energy of the whole material;
another part comes from the motion of the different phases in the barycentric
reference frame. The internal energy of the whole material is defined by

U = E − Ec − Ep = UΣ + EcΣ − Ec (78)

One deduces

ρ D
Dt

(
U
ρ

)
= div

(
∑
3,4

Eck
−→
Vk − Ec

−→
V

)
+ ∂

∂t

(
∑
3,4

Eck − Ec

)
− div

−→
Q

+
∑
3,4

(
σ˜k : grad

˜
−→
Vk

)
+
−→
i ·
−→
E

(79)
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The first two terms in the right-hand side represent the volume internal
energy flux due to the relative velocities of the phases. The fourth one is the
volume kinetic energy converted into heat by viscous dissipation. And the last
term is the volume heat source by Joule effect in the solution.

7 Discussion

The conservation laws obtained for the global material include simplest cases.
Assuming that the material is not electrically charged or removing the electric
field, we obtain the equations governing a single-phase flow in porous medium
[24]. In case that the stress tensor is zero and that the velocities of the two
phases are identical and uniform, we find the equations of a charged rigid solid
subjected to an electric field.

The balance equations of the kinetic, potential, internal and total energies
all have the same structure : the energy variation following the motion of
one constituent, which is a particle derivative, is the sum of a flux and of
source terms. The equations we write are relative to a thermodynamic closed
system because of the use of the material derivative. Source terms correspond
to conversion of one kind of energy into another one. At the microscopic scale,
we obtain the following tables for the phase k

flux
E0

pk

E0

ck div
(
σ˜
0

k ·
−→
V 0

k

)

U0

k −div
−→
Q0

k

E0

k div
(
σ˜
0

k ·
−→
V 0

k −
−→
Q0

k

)
(80)

and

Ec ←→ Ep U ←→ Ep Ec ←→ U

E0

pk −ρ0kZ
0

k

−→
E0

k ·
−→
V 0

k −
(−→
I0k − ρ0kZ

0

k

−→
V 0

k

)
·
−→
E0

k

E0

ck +ρ0kZ
0

k

−→
E0

k ·
−→
V 0

k −σ˜
0

k : grad
˜
−→
V 0

k

U0

k +
(−→
I0k − ρ0kZ

0

k

−→
V 0

k

)
·
−→
E0

k +σ˜
0

k : grad
˜
−→
V 0

k

E0

k

(81)

Fluxes can be considered as the rate of variation of the quantity associated
with the conduction phenomenon. The flux of kinetic energy is due to the
contact force work, and the flux of internal energy to the heat conduction. The
total energy flux is then the sum of the two previous ones. We point out that

there is no flux for the potential energy. The viscous dissipation σ
˜
0

k : grad
˜
−→
V 0

k

transforms the kinetic energy into heat, that is to say into internal energy. The
work of the electric forces produces two source terms : the first one is the scalar
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product of the electric field
−→
E0

k and of the diffusion current
−→
I0k−ρ

0

kZ
0

k

−→
V 0

k , which
is the electric current measured in the barycentric reference frame. It can be
seen as Joule heating, that is as a conversion of potential energy into internal

energy. The other part ρ0kZ
0

k

−→
V 0

k ·
−→
E0

k results in a motion of the electric charges
subject to the electric field; potential energy is thus transformed into kinetic
energy. Furthermore, the energy conservation law is consequently satisfied.
Accordingly, there is no source term in the balance equation of the total energy.

We can examine in the same way the balance equations for one phase
averaged over the R.E.V. That highlights the source terms

Ec ←→ Ep U ←→ Ep Ec ←→ U

Epk −ρkZk
−→
Vk ·
−→
Ek −

−→
ik ·
−→
Ek

Eck +ρkZk
−→
Vk ·
−→
Ek −σ˜k : grad

˜
−→
Vk

Uk +
−→
ik ·
−→
Ek +σ˜k : grad

˜
−→
Vk

(82)

Viscous dissipation and Joule heating transform kinetic energy and po-
tential energy into internal energy, respectively. And conversion of potential
energy into kinetic energy is due once more to electric charges motion sub-
ject to the effect of the electric field. The other terms of the equations can be
presented in the form

flux interfacial exchanges
Epk

Eck div
(
σ˜k
−→
Vk

)
+
−→
Fk ·
−→
Vk

Uk −div
−→
Qk −

〈−→
Q0

k ·
−→nkχi

〉

Ek div
(
σ˜k ·
−→
Vk −

−→
Qk

)
+
−→
Fk ·
−→
Vk + Pk

(83)

where

−→
Fk ·
−→
Vk =

〈(
σ˜
0

k ·
−→nk

)
·
−→
V 0

k χi

〉

Pk =
〈
−
−→
Q0

k ·
−→nkχi

〉 (84)

As before, the flux of internal energy is the heat transfer by conduction,
and the flux of kinetic energy is the volume power of the contact forces within
the phase. Additional terms arise from this analysis; they represent exchanges
between the phases through the interfaces.

−→
Fk ·
−→
Vk is thus the volume power of

the interaction forces acting on the phase k and corresponds to a kinetic energy

input. −
〈−→
Q0

k ·
−→nkχi

〉
results from the heat transfer through the interface and

modifies the internal energy. The sum of these two terms modifies the total
energy of the considered phase.

Concerning the whole E.A.P., we obtain the following decomposition
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flux
Ep

Ec div

[
∑
3,4

(
σ˜k ·
−→
Vk − Eck

−→
Vk

)
+ Ec

−→
V

]
+ ∂

∂t

(
Ec −

∑
3,4

Eck

)

U div

[
∑
3,4

Eck
−→
Vk − Ec

−→
V −

−→
Q

]
+ ∂

∂t

(
∑
3,4

Eck − Ec

)

E div

(
∑
3,4

σ˜k ·
−→
Vk −

−→
Q

)

(85)

and

Ec ←→ Ep U ←→ Ep Ec ←→ U

Ep −

(
∑

k=3,4

(
ρkZk

−→
Vk

)
+ Zi

−→
Vi

)
·
−→
E −

−→
i ·
−→
E

Ec +

(
∑
3,4

ρkZk
−→
Vk + Zi

−→
Vi

)
·
−→
E −

∑
3,4

σ˜k : grad
˜
−→
Vk

U +
−→
i ·
−→
E +

∑
3,4

(
σ˜k : grad

˜
−→
Vk

)

(86)
The energy flux comes from the work of the contact forces in the different

phases and from the heat transfer by conduction; the first one is a flux of kinetic
energy, the second one is the flux of internal energy. The flux of potential
energy is still zero. An additional flux term appears : the kinetic energy of the
different phases measured in a barycentric reference frame; this kinetic energy
is indeed a part of the internal energy of the global material. The source terms
include viscous dissipation, which transforms kinetic energy into heat, and
Joule heating, which transforms potential energy into internal energy. This
last term is linked to the diffusion current created by the interfacial charges
motion and by the cations motion in the solution reference frame. The global
motion of the charges under the influence of the electric field turns potential
energy on kinetic energy.

8 Conclusion

We have modelled an electroactive, ionic, water-saturated polymer placed in
an electric field. The polymer is fully dissociated, releasing cations of small
size. This system is depicted as the superposition of two continuous media :
a deformable porous medium constituted by the polymer backbone embedded
with anions, in which flows an ionic solution composed by water and released
cations. We have deduced the microscale conservation laws of each phase : mass
continuity equation, linear momentum conservation law, Maxwell’s equations
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and energy balance laws. Then we derived the physical quantities attached
to the interfaces. An average over the R.E.V. of the material has provided
one with macroscale conservation laws for each phase first and for the global
E.A.P., next. Having the three constituents of the material (solid, solvent and
cations) different velocities, we have used for this last step, the material deriva-
tive concept in order to obtain an Eulerian formulation of the conservation
laws.

We have examined the balance equations of the different energies (kinetic,
potential and internal ones), and we have put the emphasis on the phenomena
responsible for the conversion of one kind of energy into another : viscous
frictions, Joule effect and charge motion under the effect of the electric field.
The first two results in dissipation. Moreover, the macroscale equations relative
to each phase allow an evaluation of energy exchanges through the interfaces.

Using the linear thermodynamics of the irreversible processes we should
now be able to determine the potential of dissipation and to derive the phe-
nomenological equations governing this system. This will be the subject of a
forthcoming work.

9 Appendix : interface modelling

In practice, contact area between phases 3 and 4 has a certain thickness; ex-
tensive physical quantities like mass density, linear momentum and energy
continuously vary from one bulk phase to the other one. This complicated
reality can be modelled by two uniform bulk phases separated by a disconti-
nuity surface Σ whose localization is arbitrary. Let Ω be a cylinder crossing
Σ, whose bases are parallel to Σ. We denote by Ω3 and Ω4 the parts of Σ
respectively included in phases 3 and 4.

The continuous quantities relative to the contact zone are identified by
a superscript 0 and no subscript. A microscale quantity per surface unit g0i
related to the interface is defined by

g0i = lim
Σ−→0

1

Σ

{∫

Ω

g0dv −

∫

Ω3

g03dv −

∫

Ω4

g04dv

}
(87)

where Ω3 and Ω4 are small enough so that g03 and g04 are constant. Its average
over the R.E.V. is the volume quantity gi defined by

gi =
〈
g0i χi

〉
(88)

The balance equation of the interfacial quantity g0i is written as (Ishii, [20])

∂g0i
∂t

+ divs

(
g0i
−→
V 0

i

)
=
∑

3,4

[
g0k

(
−→
Vk −

−→
V 0

i

)
· −→nk +

−→
J0

k ·
−→nk

]
− divs

−→
J0

i + φ0

i

where divs denotes the surface divergence operator.
−→
J0

i is the surface flux of

g0i ,
−→
J0

k the flux of g0k and φ0

i the surface source term.
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We arbitrarily fix the interface position in such a way that it has no mass
density

ρ0i = lim
Σ−→0

1

Σ

{∫

Ω

ρ0dv −

∫

Ω3

ρ0
3
dv −

∫

Ω4

ρ0
4
dv

}
= 0 (89)

From (6), we deduce that the linear momentum and the kinetic energy per

surface unit of the interface, respectively denoted
−→
P 0

i and E0

ci, are zero

−→
P 0

i =
−→
0 E0

ci = 0 (90)

In the same way, we define the charge per unit surface Z0

i , the surface

current vector
−→
I0i , the surface diffusion current

−→
i0i , the surface potential energy

E0

pi, the surface internal energy U0

i and the surface total energy E0

i .
The balance equations of these quantities write

∂Z0

i

∂t
+ divs

(
Z0

i

−→
V 0

i

)
=
−→
i03 ·
−→n3 +

−→
i04 ·
−→n4 − divs

−→
i0i (91)

∂
−→
P 0

i

∂t
+
−−→
divs

(−→
P 0

i ⊗
−→
V 0

i

)
= −σ

˜
0

3
· −→n3 − σ

˜
0

4
· −→n4 + Z0

i

−→
E0

i (92)

∂E0

pi

∂t
+ divs

(
E0

pi

−→
V 0

i

)
= −
−→
I0i ·
−→
E0

i (93)

∂E0

i

∂t
+divs

(
E0

i

−→
V 0

i

)
= −

(
σ
˜
0

3 ·
−→n3

)
·
−→
V 0

3 −
(
σ
˜
0

4 ·
−→n4

)
·
−→
V 0

4 +
−→
Q0

3 ·
−→n3+

−→
Q0

4 ·
−→n4 (94)

∂U0

i

∂t
+ divs

(
U0

i

−→
V 0

i

)
=
−→
Q0

3
· −→n3 +

−→
Q0

4
· −→n4 +

−→
i0i ·
−→
E0

i (95)

Averaging over the R.E.V., this leads to the boundary conditions below

∂Zi

∂t
+ div

−→
Ii =

〈−→
i03 ·
−→n3χi

〉
+
〈−→
i04 ·
−→n4χi

〉
(96)

−→
F3 +

−→
F4 = Zi

−→
Ei (97)

∂Epi

∂t
+ div

(
Epi
−→
Vi

)
= −
−→
Ii ·
−→
Ei (98)

∂Ei

∂t
+ divs

(
Ei
−→
Vi

)
= −P3 − P4 −

−→
F3 ·
−→
V3 −

−→
F4 ·
−→
V4 (99)

∂Ui

∂t
+ div

(
Ui
−→
Vi

)
=
〈−→
Q0

3 ·
−→n3χi +

−→
Q0

4 ·
−→n4χi

〉
+
−→
ii ·
−→
Ei (100)

Moreover, we have
−→
Ii = Zi

−→
Vi +

−→
ii
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10 Notations

k = 1, 2, 3, 4, i subscripts respectively represent cations, solvent, solid, solution
(water and cations) and interface; quantities without subscript refer to the
whole material. Superscript 0 denotes a local quantity; the lack of superscript
indicates average quantity at the macroscopic scale. Microscale volume quan-
tities are relative to the volume of the phase, average quantities to the volume
of the whole material.

C : cations molar concentration (relative to the liquid phase);
−→
D (
−→
Dk,
−→
D0

k) : electric displacement field;
E (Ek,E

0

k) : total energy density (internal, kinetic and potential);
−→
E (
−→
Ek,
−→
E0

k) : electric field;
Ec (EcΣ ,Eck,E

0

ck) : kinetic energy density;
Ep (Epk,E

0

pk) : potential energy density;

F = 96487 C mol−1 : Faraday’s constant ;
−→
Fk : resultant of the mechanical stresses exerted on the phase k by the other
phase;
−→
I (
−→
Ik ,
−→
I0k ) : current density vector;

−→
i (
−→
ik ,
−→
i0k ) : diffusion current;

Mk : molar mass of component k;
−→nk : outward-pointing unit normal of phase k;
Pk : heat flux through interfaces;
−→
P 0

i : local surface linear momentum of interface;
−→
Q (
−→
Qk,
−→
Q0

k) : heat flux;
U (UΣ ,Uk,U

0

k ) : internal energy density;
−→
V (
−→
Vk,
−→
V 0

k ) : velocity;
zk : number of elementary charges of a ion k;
Z (Zk,Z

0

k) : total electric charge per unit of mass;
Zi (Z

0

i ) : electric charge density per unit surface;
ε (εk,ε

0

k) : permittivity;
ρ (ρk,ρ

0

k) : mass density;
σ
˜
(σ
˜k

,σ
˜
0

k) : stress tensor;
φk : volume fraction of phase k;
χk : function of presence of phase k ;

Acknowledgements The authors would like to thank D. Lhuillier and O. Kavian for their
fruitful and stimulating discussions.

References

1. Shahinpoor M. Bar-Cohen Y., Simpson J., Smith J., Ionic polymer-metal composites
(IPMC’s) as biomimetic sensors, actuators and artificial muscles - a review. Smart
Materials and Structures Vol 7, R15-R30(1998).



22 Mireille Tixier, Joël Pouget
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