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Received: date / Accepted: date

Abstract Ionic electro-active polymers (E.A.P.) can be used as sensors or
actuators. For this purpose, a thin film of polyelectrolyte is saturated with a
solvent and sandwiched between two platinum electrodes. The solvent causes
a complete dissociation of the polymer and the release of small cations. The
application of an electric field across the thickness results in the bending of
the strip and vice versa. The material is modelled by a two-phase continuous
medium. The solid phase, constituted by the polymer backbone inlaid with
anions, is depicted as a deformable porous media. The liquid phase is com-
posed of the free cations and the solvent (usually water). We used a coarse
grain model. The conservation laws of this system have been established in
a previous work. The entropy balance law and the thermodynamic relations
are first written for each phase, then for the complete material using a sta-
tistical average technique and the material derivative concept. One deduces
the entropy production. Identifying generalized forces and fluxes provides the
constitutive equations of the whole system : the stress-strain relations which
satisfy a Kelvin-Voigt model, generalized Fourier’s and Darcy’s laws and the
Nernst-Planck equation.
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1 Introduction

In a previous work presented by the authors [1], conservation laws for an
electro-active polymer have been established and discussed. Especially, the
equations of mass conservation, of the electric charge conservation, the con-
servation of the momentum and different energy balance equations at the
macroscale of the material have been deduced using an average technique for
the different phases (solid and liquid). The present work attempts the con-
struction of constitutive equations. The latter are deduced from the entropy
balance law and thermodynamic relations. The interest of such a formula-
tion is that we arrive at tensorial and vectorial constitutive equations for the
macroscopic quantities for which the constitutive coefficients can be expressed
in terms of the microscopic components of the electro-active polymers.

More precisely, electro-active polymers can be classified in two essential cate-
gories depending on their process of activation. The first class is the electronic
EAP and their actuation uses the electromechanical coupling (linear or non
linear coupling). These polymers are very similar to piezoelectric materials.
Their main drawback is an actuation which requires very high voltage. The
second class of EAP are the ionic polymers. They are based on the ion trans-
port due to applied electric voltage. This kind of EAP exhibits very large
transformation (large deflexion) in the presence of low applied voltage (few
volts). Their main drawback is that they operate best in a humid environment
and they must be encapsulated to operate in ambient environment.

The present paper places the emphasis on the ionic polymer metal composite
(IPMC). Such class of electro-active polymers is an active material consist-
ing in a thin membrane of polyelectrolyte (Nafion, for instance) sandwiched
on both sides with thin metal layers acting as electrodes. The EAP can be
deformed repetitively by applying a difference of electric potential across the
thickness of the material and it can quickly recover its original configuration
upon releasing the voltage.
The mechanism of EAP deformation can be explained physically as follows.
Upon the application of an electric field across a moist polymer, which is held
between metallic electrodes attached across a partial section of the EAP strip,
bending of the EAP is produced (Fig. 1a). The positive counter ions move
towards the negative electrode (cathode), while negative ions that are fixed to
the polymer backbone experience an attractive force from positive electrode
(anode). At the same time water molecules in the EAP matrix diffuse towards
the region of the high positive ion concentration (near the negative electrode)
to equalize the charge distribution. As a result, the region near the cathode
swells and the region near the anode de-swells, leading to stresses which cause
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Fig. 1 Sketched representation of thin film of EAP : (a) undeformed strip. An inset gives
the representative elementary volume (REV) containing the microscopic components of the
polymer (Nafion) and (b) the strip bending under an applied electric field.

the EAP strip to bend towards the positive anode (Fig. 1b). When the electric
field is released the EAP strip recover its initial geometry. Conversely, a differ-
ence of electric potential is produced across the EAP when it is suddenly bent.

Electromechanical coupling in ionic polymer membranes was discovered over
50 years ago but has recently received renewed attention due to the devel-
opment of large strain actuators operating at low electric fields. Modelling of
EAP attracts scientists and engineers and a certain number of approaches has
been proposed to explain and quantify the physical micro-mechanism which
relate the EAP deformation to osmotic diffusion of solvent and ions into the
polymer. A micromechanical model has been developed by Nemat-Nasser and
Li [2,3]. The model accounts for the electromechanical and chemical-electric
coupling of the ion transport, electric field and elastic deformation to produce
the response of the EAP. The authors examine the field equations that place
the osmotic stress in evidence. They deduce a generalized Darcy’s law and the
balance law for the ion flux - a kind of Nernst-Plank equation - deduced from
the equation of the electric charge conservation. A first simple macroscopic
model was proposed by DeGennes et al. [4]. The model describes the coupling
between the electric current density and the solvent (water) flux. Shahinpoor
et al. [5–7] report the modelling of ion-exchange polymer-metal composites
(IPMCs) based on an equation governing the ionic transport mechanism. The
authors write down the equations for the solvent concentration, the ionic con-
centration, and the relationship between stress, strain, electric field, heat flux
and chemical energy flux. The stress tensor is related to the deformation gra-
dient field by using a constitutive equation of the neo-Hookean type.

The paper is divided in 8 Sections with 3 appendices. The next section re-
calls the main results of the previous work [1] and notations. The section 3
concerns the entropy balance law at the microscopic level and for the whole
material over the R.V.E. (Representative Volume Element). The fundamental
thermodynamic relations are given in Section 4. The thermodynamic equations
are written for each phase (solid, solvent) and then for the complete material
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leading to Gibb’s relation. On using the latter relation the generalized forces
and fluxes are identified in Section 5. The Section 6 is devoted to constitutive
equations, especially the tensorial and vectorial constitutive equations are de-
duced by invoking symmetry properties. A detailed discussion on the results
thus obtained is presented in Section 7 and some estimates of the constitu-
tive coefficients are given and compared to the proposed approximations. The
paper is closed with a brief conclusion.

2 Modelling and previous results

The system we study is an ionic polymer-metal composite (IPMC); it con-
sists of a polyelectrolyte coated on both sides with thin metal layers acting as
electrodes. The electro-active polymer is saturated with water, which results
in a quasi-complete dissociation of the polymer : anions remain bound to the
polymer backbone, whereas small cations are released in water [8]. When an
electric field perpendicular to the electrodes is applied, the strip bends : cations
are attracted by the negative electrode and carry solvent away by osmosis. As
a result, the polymer swells near the negative electrode and contracts on the
opposite side, leading to the bowing.

The modelling of this system is detailled in our previous article [1]. The poly-
mer chains are assimilated to a deformable porous medium saturated by an
ionic solution composed by water and cations. We suppose that the solution
is dilute. We depicted the complete material as the superposition of three sys-
tems : a deformable solid made up of polymer backbone negatively charged,
a solvent (the water) and cations (see the inset of Fig. 1 for schematic repre-
sentation). The three components have different velocity fields, and the solid
and liquid phases are assumed to be incompressible phases separated by an
interface whose thickness is supposed to be negligible. We identify the quan-
tities relative to the different components by subscripts : 1 refers to cations,
2 to solvent, 3 to solid, i to the interface and 4 to the solution, that is both
components 1 and 2; the lack of subscript refers to the complete material. Com-
ponents 2, 3 and 4 as well as the global material are assimilated to continua.
We venture the hypothesis that gravity and magnetic field are negligible, so
the only external force acting on the system is the electric force.

We describe this medium using a coarse-grained model developed for two-
phase mixtures [9–14]. The microscopic scale is large enough to provide the
continuum assumption, but small enough to enable the definition of a volume
which contains a single phase (3 or 4). At the macroscopic scale, we define a
representative elementary volume (R.V.E.) which contains the two phases; it
must be small enough so that average quantities relative to the whole material
can be considered as local, and large enough so that this average is relevant.
A microscale Heaviside-like function of presence χk (r, t) has been defined for



Constitutive equations for an electro-active polymer 5

the phases 3 and 4

χk = 1 when phase k occupies point r at time t, χk = 0 otherwise (1)

The function of presence of the interface is the Dirac-like function χi =
−∇χk · nk (in m−1) where nk is the outward-pointing unit normal to the
interface in the phase k. 〈〉k denotes the average over the phase k of a quan-
tity relative to the phase k only. The macroscale quantities relative to the
whole material are obtained by statistically averaging the microscale quanti-
ties over the R.V.E., that is by repeating many times the same experiment.
We suppose that this average, denoted by 〈〉, is equivalent to a volume average
(ergodic hypothesis) and commutes with the space and time derivatives [11,
14]. A macroscale quantity gk verifies

gk =
〈

χkg
0
k

〉

= φk

〈

g0k
〉

k
(2)

where g0k is the corresponding microscale quantity and φk = 〈χk〉 the volume
fraction of the phase k. In the following, we use superscript 0 to indicate mi-
croscale quantities; the macroscale quantities, which are averages defined all
over the material, are written without superscript.

The conservation and balance laws of the polymer saturated with water have
been previously established [1]. To this end, we supposed that the fluctuations
of the following quantities are negligible on the R.V.E. scale : the velocity Vk

of each phase and interface, the solid displacement vector u3, the cations molar
concentration C and the electric field E. Futhermore, we admitted that the
electric field is identical in all the phases and that the solid and liquid phases
are isotropic linear dielectrics. We thus established the mass conservation law
of the constituents and of the complete material

∂ρk

∂t + div (ρkVk) = 0 for k = 2, 3
∂ρ
∂t + div (ρV) = 0

(3)

where ρk = φkρ
0
k denotes the mass density of the phase k relative to the volume

of the whole material. Maxwell’s equations and the constitutive relation can
be written

rotE = 0 divD = ρZ D = εE (4)

with
ε =

∑

k=3,4

φkε
0
k (5)

where D is the electric displacement field, Z the total electric charge per unit
of mass and ε the permittivity. The linear momentum and internal energy
balance laws are

ρ
DV

Dt
= divσ + ρZE (6)

ρ
D

Dt

(

UΣ

ρ

)

=
∑

k=3,4

(σk : ∇Vk) + i · E− divQ (7)
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where σ denotes the stress tensor, i the diffusion current, Q the heat flux and
UΣ the sum of the volume internal energies of the different phases. These two
relations use the material derivative D

Dt defined in our previous paper [1] and
reported in appendix A.

The relative velocities of the different phases are negligible compared to the
velocities measured in the laboratory-frame. Let’s take for example a strip of
Nafion which is 200 µm thick and 1.57 cm long, bending in an electric field.
The tip displacement is about 4 mm and it is obtained in 1 s [2]. The different
phases velocities in the laboratory-frame

∣

∣V0
k

∣

∣ are close to 4 10−3 m s−1

and the relative velocities
∣

∣V0
k −V

∣

∣ to 2 10−4 m s−1. So we can reasonably
suppose that

∣

∣V0
k −V

∣

∣ <<
∣

∣V0
k

∣

∣ (8)

The kinetic energy of the whole material is defined either as the sum EcΣ of
the kinetic energies of the constituents, or as the kinetic energy of the center
of mass of the constituents Ec [1]. The difference between these two quantities
is

EcΣ − Ec =
ρ3ρ4

ρ
(V3 −V4)

2 (9)

and is negligible compared to the kinetic energies of each phases. On a first
approximation, we can therefore swap together EcΣ with Ec, and consequently
UΣ with the internal energy of the whole system U . Considering this hypoth-
esis, the internal energy balance equation can be written

ρ
d

dt

(

U

ρ

)

= σ : ∇V + i′ · E− divQ′ (10)

with

i′ = I− ρZV ≃ ρ1Z1 (V1 −V4) +
∑

k=3,4

ρkZk (Vk −V)

Q′ = Q−
∑

k=3,4

Uk (V −Vk)−
∑

k=3,4

σk · (Vk −V)
(11)

where I denotes the current density vector and

Zk = Z0
k for k = 1, 2, 3 and Z4 =

ρ1

ρ4
Z1 (12)

To describe the systeme, we finally have 14 independent scalar equations using
29 scalar variables (ρk, Vk (k = 1, 3), ρ, V, σ, Z, E, U , Q′ and D). 15 scalar
equations are missing to close the system : the constitutive relations. We will
now establish them in the form of three vectorial relations and one tensorial
relation relating second-rank symmetric tensors.
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3 Entropy balance law

The microscale entropy balance laws of the solid and liquid phases can be
written

∂S0
k

∂t
+ divS0

kV
0
k = −divΣ0

k + s0k k = 3, 4 (13)

where S0
k, Σ

0
k and s0k denote, respectively, the entropy density, the entropy

flux vector and the rate of entropy production of the phase k.

Averaging over the R.V.E. gives, considering the interface condition V0
1 =

V0
2 = V0

3 = V0
4 = V0

i

∂Sk

∂t
+ div (SkVk) = sk − divΣk −

〈

Σ0
k · nkχi

〉

(14)

in which the macroscale entropy density Sk, the entropy flux vector Σk and
the rate of entropy production sk are defined by

Sk =
〈

χkS
0
k

〉

Σk =
〈

χkΣ
0
k

〉

sk =
〈

χks
0
k

〉

(15)

One points out that the quantities Sk and sk are relative to the volume of the
whole material. For the interface we obtain (see appendix B)

∂Si

∂t
+ div (SiVi) =

∑

k=3,4

〈

χiΣ
0
k · nk

〉

+ si (16)

The entropy balance law of the whole material is

ρ
D

Dt

(

S

ρ

)

= s− divΣ (17)

where :

S =
∑

k=3,4,i

Sk s =
∑

k=3,4,i

sk Σ =
∑

k=3,4

Σk (18)

are the entropy density, the rate of entropy production and the entropy flux
vector of the complete material, respectively. In the barycentric frame of ref-
erence, we derive

ρ
d

dt

(

S

ρ

)

= s− divΣ′ (19)

with

Σ′ = Σ−
∑

k=3,4

Sk (V −Vk) (20)
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4 Fundamental thermodynamic relations

4.1 Thermodynamic relations for the solide phase

For a solid phase with one constituent, the Gibb’s relation can be written [15]

ρ03
d03
dt

(

U0
3

ρ03

)

= p03
1

ρ03

d03ρ
0
3

dt
+ σ

0e
3

s
:
d03ε

0
3

s

dt
+ ρ03T

0
3

d03
dt

(

S0
3

ρ03

)

(21)

where T 0
3 is the absolute temperature, ε03 the strain tensor, σ0e

3 the equilib-

rium stress tensor, σ0e
3

s
and ε

0
3

s
the stress and strain deviator tensors, and

d0

3

dt
the particule derivative following the microscale motion of the solid (see ap-
pendix A). p03 is the pressure or negative one-third the trace of the microscopic
equilibrium stress tensor

p03 = −1

3
tr

(

σ
0e
3

)

(22)

Equation (21) can also be deduced from equation (13) and internal energy
balance equation of the solid phase developped in [1] : indeed, the Gibbs re-
lation is satisfied at equilibrium, so the heat flux Q0

3, the diffusion current i03
and the rate of entropy production s03 cancel; deformations are small and the
stress tensor σ0

3 is equal to the equilibrium stress tensor σ0e
3 . In addition, the

solid phase is a closed system, consequently

Σ0
3 =

Q0
3

T 0
3

(23)

At the microscopic scale, Euler’s homogeneous function theorem provides for
the solid phase

p03 = T 0
3S

0
3 − U0

3 + µ0
3ρ

0
3 (24)

where µ0
3 denotes the chemical potential per unit of mass of the solid con-

stituent. As a result, Gibbs equation can be written

d03U
0
3

dt
= T 0

3

d03S
0
3

dt
+ µ0

3

d03ρ
0
3

dt
+ σ

0e
3

s
:
d03
dt

ε
0
3

s
(25)

Differentiating Euler’s relation and combining it with the Gibbs relation leads
to Gibbs-Duhem equation

d03p
0
3

dt
= S0

3

d03T
0
3

dt
− σ

0e
3

s
:
d03
dt

ε
0
3

s
+ ρ03

d03µ
0
3

dt
(26)

Let us assume that the fluctuations over the R.V.E. of the intensive thermody-
namical quantities T 0

3 , µ
0
3, p

0
3, the displacement u0

3 and the equilibrium stress
tensor σ0e

3 are negligible. Supposing that the solid deformations are small, we
obtain

T3 = T 0
3 µ3 = µ0

3 (27)

u3 = u0
3 ε3 = ε

0
3 =

1

2

(

∇u3 +∇u3
T
)

(28)
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p3 = p03 = − 1

3φ3

trσe

3 σ
e

3 = φ3σ
0e
3 = σ

e

3

s − φ3p31 (29)

where 1 denotes the second-rank identity tensor and σ
e

3
s the deviator part

of σe

3. Considering the small deformation hypothesis, one easily derives (cf
appendix C)

d3U3

dt = T3
d3S3

dt + µ3
d3ρ3

dt − p3
d3φ3

dt + σ
e

3
s : d3

dtε3
s Gibbs

φ3p3 = T3S3 − U3 + µ3ρ3 Euler

φ3
d3p3

dt = S3
d3T3

dt + ρ3
d3µ3

dt − σ
e

3
s : d3

dtε3
s Gibbs-Duhem

(30)

4.2 Thermodynamic relations for the liquid phase

According to S.R. De Groot and P. Mazur [15], the Gibbs relation of a two-
constituent fluid can be written as

d04
dt

(

U0
4

ρ04

)

= T 0
4

d04
dt

(

S0
4

ρ04

)

− p04
d04
dt

(

1

ρ04

)

+
∑

k=1,2

µ0
k

d04
dt

(

ρ′k
ρ04

)

(31)

where p04 is the fluid phase pressure, µ0
k the mass chemical potential of con-

stituent k, and
d0

4

dt the particule derivative following the microscale motion of
the liquid phase. ρ′k are the mass densities of cations and solvent relative to
the solution volume

ρ′

k

ρ0

4

= ρk

ρ4

ρ′1 = CM1 ρ′2 =
ρ0

2
φ2

φ4

(32)

M1 denotes the cations molar mass and C the cations molar concentration
relative to the liquid phase. As for the solid phase, one can find out this
equation combining the internal energy and entropy balance laws and taking
the limit at the equilibrium. Euler’s homogeneous function theorem takes on
the following form at the microscopic scale

U0
4 − T 0

4S
0
4 + p04 =

∑

k=1,2

µ0
kρ

′

k (33)

so that
d04U

0
4

dt
= T 0

4

d04S
0
4

dt
+

∑

k=1,2

µ0
k

d04ρ
′

k

dt
(34)

The Gibbs-Duhem relation of the liquid phase derives from the Gibbs and
Euler’s relations

∑

k=1,2

ρ′k
d04µ

0
k

dt
= −S0

4

d04T
0
4

dt
+

d04p
0
4

dt
(35)

We assume that the fluctuations of the intensive thermodynamic quantities
are negligible

T4 = T 0
4 µk = µ0

k p4 = p04 (36)
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Averaging the previous equations over the R.V.E., we obtain

T4
d4S4

dt = d4U4

dt + p4
d4φ4

dt − ∑

k=1,2

µk
d4ρk

dt Gibbs

φ4p4 = T4S4 − U4 +
∑

k=1,2

µkρk Euler

φ4
d4p4

dt = S4
d4T4

dt +
∑

k=1,2

ρk
d4µk

dt Gibbs-Duhem

(37)

4.3 Thermodynamic relations for the complete material

In order to write the thermodynamic relations of the complete material, we
make the hypothesis of local thermodynamic equilibrium; this requires among
other things that the heat diffuses well enough in the solid and the solution
so that temperature equilibrium is reached on the R.V.E.. We thus can write

p = p3 = p4
T = T3 = T4 = Ti

(38)

Otherwise, we have pointed out that the sum UΣ of the internal energies of
the constituents is close to the internal energy of the system U . Adding the
Euler’s relations of the solid and the liquid phases and the interface, we thus
obtain the Euler’s relation of the whole material

p = TS − U +
∑

k=1,2,3

µkρk (39)

The Gibbs relation of the complete material is also obtained by addition

T
D

Dt

(

S

ρ

)

=
D

Dt

(

U

ρ

)

+p
D

Dt

(

1

ρ

)

− 1

ρ
σ

e

3

s :
d3ε3

s

dt
−
∑

1,2

µk
ρ4

ρ

d4

dt

(

ρk

ρ4

)

(40)

The material derivative enables to follow the barycenters of each phase during
the motion. The solid phase is then supposed to be a closed system; for this
reason, no mass exchange term for the solid appears in this relation. On the
contrary, the solvent and the cations move at different velocities; thence there
is a mass exchange term concerning these two constituents in the barycentric
reference frame of the solution. The mass exchanges of the three constituents
appear if the particle derivative following the motion of the whole material
barycenter is used

T
d

dt

(

S

ρ

)

=
d

dt

(

U

ρ

)

+ p
d

dt

(

1

ρ

)

−
∑

k=1,2,3

µk
d

dt

(

ρk

ρ

)

− 1

ρ
σ

e

3
s :

dε3
s

dt
(41)

This relation can also be obtained using the Gibbs relations of the constituents;
at equilibrium, indeed, the velocities of the two phases and the interface are
identical, in such a way that the particle derivatives are the same

d3

dt
≡ d4

dt
≡ di

dt
≡ d

dt
(42)
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A third approach is to combine the balance equations of internal energy and
entropy of the complete material, and to take the limit at equilibrium.

Considering the small deformations hypothesis and neglecting the relative ve-
locities compared to the velocities in the laboratory-frame, we derive

σ
e

3
s : ∇V3 = σ

e

3
s :

d3ε3
s

dt
≃ σ

e

3
s :

dε3
s

dt
≃ σ

e

3
s : ∇V (43)

The equilibrium stress tensor of the complete material is written as follows

σ
e = σ

e

3 + σ
e

4 = −p1+ σ
e

3
s (44)

with
σ

e

4 = −φ4p41 (45)

As a result
σ

es = σ
e

3
s (46)

Finally, Gibbs relation is

T
d

dt

(

S

ρ

)

=
d

dt

(

U

ρ

)

+ p
d

dt

(

1

ρ

)

−
∑

k=1,2,3

µk
d

dt

(

ρk

ρ

)

− 1

ρ
σ

es : ∇V (47)

Differentiating Euler’s relation and combining it with Gibbs relation, the
Gibbs-Duhem relation takes on the form

dp

dt
= S

dT

dt
+

∑

k=1,2,3

ρk
dµk

dt
− σ

es : ∇V (48)

5 Generalized forces and fluxes

5.1 Entropy production

The stress tensor is composed of two parts : the equilibrium stress tensor σe

and the viscous stress tensor σ
v, which vanishes at equilibrium. Considering

(44), the complete stress tensor can be written as

σ = σ3 + σ4 = σ
e + σ

v = −p1+ σ
es + σ

v (49)

Combining the internal energy and entropy equations (10) and (19) with the
Gibbs relation (47) yields

s− divΣ′ = 1

T σ
v : ∇V + 1

T i
′ · E− 1

T 2Q
′ ·∇T

+
∑

1,2,3
ρk (V −Vk) ·∇µk

T − div

[

Q′

T +
∑

1,2,3

µkρk

T (V −Vk)

]

(50)

We can then identify the rate of entropy production s and the entropy flux
vector Σ′

s = 1

T σ
v : ∇V + 1

T i
′ · E− 1

T 2Q
′ ·∇T +

∑

k=1,2,3

ρk (V −Vk) ·∇µk

T

Σ′ = Q′

T +
∑

k=1,2,3

µkρk

T (V −Vk)
(51)
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5.2 Identification of the generalized forces and fluxes

A second rank tensor is the sum of three parts : a spherical tensor, a deviator
tensor (labeled with s) and an antisymmetric tensor (labeled with a)

∇V =
1

3
(divV) 1+∇Vs +∇Va (52)

where

∇Vs =
1

2

(

∇V +∇VT
)

− 1

3
(divV)1 (53)

The viscous stress tensor is symmetric, so

σ
v =

1

3
tr (σv)1+ σ

vs (54)

In the entropy production s appear the three mass diffusion fluxes relative to
the barycentric reference frame ρk (Vk −V) with k = 1, 2, 3. The sum of these
three fluxes is zero, so only two of them are linearly independant. We define
the following equivalent fluxes

J1 = ρ1 (V1 −V2) J4 = ρ4 (V4 −V3) (55)

which are respectively the mass diffusion flux of the cations in the solution
and the mass diffusion flux of the solution in the solid. These two fluxes are
linearly independant. The diffusion current i′ and the fluxes ρk (Vk −V) can
be expressed as functions of J1 and J4, then the entropy production takes on
the following form

s = 1

3T tr (σ
v) · divV

+Q′ ·∇ 1

T + ρ2

ρ4

[

1

T Z1E−∇
µ1

T +∇
µ2

T

]

· J1

+ ρ3

ρ

[

1

T

(

ρ1

ρ4

Z1 − Z3

)

E− ρ1

ρ4

∇
µ1

T − ρ2

ρ4

∇
µ2

T +∇
µ3

T

]

· J4

+ 1

T σ
vs : ∇Vs

(56)

This expression places in evidence one scalar flux 1

3
tr (σv), three vectorial

fluxes Q′, J1, J4 and one second-rank tensorial flux σ
vs along with the asso-

ciated generalized forces

Fluxes Forces
1

3
trσv 1

T divV

Q′
∇

1

T

J1
ρ2

ρ4

[

1

T Z1E−∇
µ1

T +∇
µ2

T

]

J4
ρ3

ρ

[

1

T

(

ρ1

ρ4

Z1 − Z3

)

E− ρ1

ρ4

∇
µ1

T − ρ2

ρ4

∇
µ2

T +∇
µ3

T

]

σ
vs 1

T ∇Vs

(57)
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6 Constitutive equations

6.1 Tensorial constitutive equation

We assume that the medium is isotropic. According to Curie dissymmetry
principle, there can not be any coupling between fluxes and forces whose ten-
sorial ranks differs from one unit. Moreover, we suppose that coupling between
fluxes and different tensorial rank forces are negligible, which is a generally ac-
cepted hypothesis [15]. Consequently, the scalar constitutive equation requires
only one scalar phenomenological coefficient L1

1

3
tr (σv) =

L1

T
divV (58)

In the same way, the tensorial flux σ
vs is related to the generalized force

1

T ∇Vs by a fourth-rank tensorial phenomenological coefficient L2

σ
vs = L2

1

T
∇Vs (59)

Because of the isotropy of the medium, tensor L2 is isotropic and requires
only three scalar coefficients [15]. Furthermore, tensors σ

vs and ∇Vs are
deviatoric, so

σ
vs =

L2

T
∇Vs (60)

where L2 is a scalar coefficient. Setting out L′

1 = L1 − L2

3
, the viscous stress

tensor is finally given by

σ
v =

L′

1

T
(divV)1+

L2

2T

(

∇V +∇VT
)

(61)

Assuming that the complete material satisfies the Hooke’s law at equilibrium,
the equilibrium stress tensor can be written as

σ
e = λ (trε)1+ 2Gε =

3λ+ 2G

3
(trε)1+ 2Gε

s (62)

where λ and G denote the first Lamé constant and the shear modulus of the
complete material, respectively, and where the material strain is defined by

ε =
1

2

(

∇u+∇uT
)

or
•

ε =
1

2

(

∇V +∇VT
)

(63)

u is the displacement vector. Supposing that the fluid is newtonian and stoke-
sian, the pressure is

p = −1

3
tr (σe) =

(

λ+
2

3
G

)

trε (64)

The stress tensor of the complete material thus satisfies a Kelvin-Voigt model

σ = λ (trε)1+ 2Gε+
L′

1

T

(

tr
•

ε

)

1+
L2

T

•

ε (65)
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6.2 Chemical potentials

The liquid phase is a dilute solution of strong electrolyte. Molar chemical po-
tentials of the three constituents µi,mol can be written on a first approximation
[16]

µ1,mol (T, p, x) = µ0
1,mol (T, p) +RT lnx+ o(

√
x)

µ2,mol (T, p, x) = µ0
2,mol (T, p)−RTx+ o(x3/2)

µ3,mol (T, p, x) = µ0
3,mol (T )

(66)

where R = 8, 314 J K−1 is the gas constant and x the molar fraction of the
cations in the solution

x = C
M2

ρ02
(67)

µ0
2,mol and µ0

3,mol denote the chemical potentials of the single solid and solvent,

and µ0
1,mol depends on the solvent and the solute. Mass chemical potentials

µi =
µi,mol

Mi
can then be written

µ1 (T, p, x) ≃ µ0
1 (T, p) +

RT
M1

ln
(

CM2

ρ0

2

)

µ2 (T, p, x) ≃ µ0
2 (T, p)− RT

ρ0

2

C

µ3 (T, p, x) = µ0
3 (T )

(68)

Using the Gibbs-Duhem’s relations for the solid and the liquid phases, we
obtain

∇µ1 = −S1

ρ1
∇T + v1

M1
∇p+

RTρ0

2

M2M1C
∇

(

CM2

ρ0

2

)

∇µ2 = −S2

ρ2

∇T + v2
M2

∇p− RT
M2

∇

(

CM2

ρ0

2

)

∇µ3 = −S3

ρ3

∇T

(69)

where vi denotes the partial molar volume of the constituent i.

6.3 Vectorial constitutive equations

Vectorial constitutive equations require nine phenomenogical coefficients. These
coefficients are a priori second-rank tensors; considering the isotropy of the
medium, they can be replaced by scalars

Q′ = L3∇
1

T + L4
ρ2

ρ4

[

1

T Z1E−∇
µ1

T +∇
µ2

T

]

+L5
ρ3

ρ

[

1

T

(

ρ1

ρ4
Z1 − Z3

)

E− ρ1

ρ4
∇

µ1

T − ρ2

ρ4
∇

µ2

T +∇
µ3

T

] (70)

J1 = L4∇
1

T + L7
ρ2

ρ4

[

1

T Z1E−∇
µ1

T +∇
µ2

T

]

+L8
ρ3

ρ

[

1

T

(

ρ1

ρ4

Z1 − Z3

)

E− ρ1

ρ4

∇
µ1

T − ρ2

ρ4

∇
µ2

T +∇
µ3

T

] (71)

J4 = L5∇
1

T + L8
ρ2

ρ4

[

1

T Z1E−∇
µ1

T +∇
µ2

T

]

+L11
ρ3

ρ

[

1

T

(

ρ1

ρ4
Z1 − Z3

)

E− ρ1

ρ4
∇

µ1

T − ρ2

ρ4
∇

µ2

T +∇
µ3

T

] (72)
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Onsager reciprocal relations lead otherwise to

L6 = L4 L9 = L5 L10 = L8 (73)

Considering that the solution is dilute and using the expressions obtained for
the chemical potentials, the heat flux writes

Q′ = −AQT

T 2
∇T +

AQE

T
E+

AQP

T
∇p+AQC∇C (74)

with

AQT ≃ L3 + L4

[

−µ0
1 − RT

M1

ln
(

CM2

ρ0

2

)

+ µ0
2 − RT

ρ0

2

C − S1T
ρ1

+ S2T
ρ2

]

+ ρ3

ρ L5

[

− ρ1

ρ2

(

µ0
1 +

RT
M1

ln CM2

ρ0

2

)

− µ0
2 +

RTC
ρ0

2

+ µ0
3 − S4T

ρ4

+ S3T
ρ3

]

AQE ≃ L4Z1 +
ρ3

ρρ4

(ρ1Z1 − ρ2Z3)L5

AQP ≃ L4

(

v2
M2

− v1
M1

)

− ρ3

ρρ4

φ4L5

AQC ≃ − R
M1C

L4

(75)

According to the definition of the partial molar volumes, indeed

ρ1
v1

M1

+ ρ2
v2

M2

= φ4 (76)

Likewise, the mass diffusion flux of the cations in the solution can be written
as

J1 = −A1T

T 2
∇T +

A1E

T
E+

A1P

T
∇p+A1C∇C (77)

with

A1T ≃ L4 + L7

(

µ0
2 − µ0

1 − RT
M1

ln CM2

ρ0

2

− RTC
ρ0

2

+ T S2

ρ4

− T S1

ρ1

)

+ ρ3L8

ρ4ρ

[

RTρ1

M1

(

1− ln CM2

ρ0

2

)

− ρ1µ
0
1 − µ0

2 + ρ4µ
0
3 − TS2 − TS1 − Tρ4S3

ρ3

]

A1E ≃ L7Z1 +
ρ3

ρ L8

(

ρ1

ρ4

Z1 − Z3

)

A1P ≃ L7

(

v2
M2

− v1
M1

)

− ρ3φ4

ρρ4

L8

A1C ≃ − R
M1C

L7

(78)
and the mass diffusion flux of the solution in the solid is

J4 = −A4T

T 2
∇T +

A4E

T
E+

A4P

T
∇p+A4C∇C (79)

with

A4T ≃ L5 + L8

[

µ0
2 − RT

ρ0

2

C − µ0
1 − RT

M1

ln
(

CM2

ρ0

2

)

− TS1

ρ1

+ TS2

ρ2

]

+ ρ3L11

ρ

[

RTC
ρ0

2

− RTC
ρ0

4

ln CM2

ρ0

2

− ρ1µ
0

1

ρ4

− µ0
2 + µ0

3 − TS1

ρ4

− TS2

ρ4

+ TS3

ρ3

]

A4E ≃ L8Z1 + L11
ρ3

ρ

(

ρ1

ρ4
Z1 − Z3

)

A4P ≃ L8

(

v2
M2

− v1
M1

)

− ρ3φ4

ρρ4

L11

A4C ≃ − R
M1C

L8

(80)
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7 Discussion

7.1 Nafion physicochemical properties

In order to approximate these complex equations, we are going to estimate
the different terms. To do this, we focus on a particular electroactive polymer,
Nafion, and we restrict ourself to the isothermal case.

The physicochemical properties of the dry polymer are well documented; its
molecular weight M3 is between 102 and 103 kg mol−1 [17] and its mass den-
sity ρ03 is close to 2.1 103 kg m−3 [2]. Its equivalent weight Meq, that is to
say, the weight of polymer per mole of ionic sites is 1.1 kg eq−1 [18]. We de-
duce the electric charge per unit of mass Z3 = − F

Meq
= 9 104 C kg−1 where

F = 96487 C mol−1 denotes the Faraday’s constant. The cations may be H+,
Li+ or Na+ ions; we use an average molar mass M1 ∼ 10-2 kg mol−1, which
corresponds to a mass electric charge Z1 ∼ 107 C kg−1. The cations partial
molar volume v1 is on the order of M1

ρ0

4

∼ 10-5 m3 mol−1. The solvent molar

mass M2 is equal to 18 10-3 kg mol−1 and its mass density ρ02 is 103 kg m−3;
its partial molar volume v2 is approximately equal to 18 10-6 m3 mol−1,
which is the molar volume of pure solvent. The dynamic viscosity of water η2
is 10-3 Pa s.

When the polymer is saturated with water, the solution mass fraction is usu-
ally between 20% and 25% if the counterion is a proton [19]. It corresponds
to a volume fraction φ4 between 34% and 41%. According to P. Choi [20],
each anion is then surrounded by an average of 14 molecules of water, which
corresponds to a porosity of 32%. In the case of a counterion Li+ or Na+, S.
Nemat-Nasser and J. Yu Li [2] indicate that the volume increases by 44.3%

and 61.7% respectively between the dry and the saturated polymer, which
corresponds to porosities equal to 31% and 38%. Thereafter we use an aver-
age value φ4 ∼ 35%. We deduce the mass densities of the complete material,
cations, solvent and solid relative to the volume of the whole material

ρ1 ∼ 14 kg m−3 ρ2 ∼ 0.35 103 kg m−3

ρ3 ∼ 1.4 103 kg m−3 ρ ∼ 1.8 103 kg m−3 (81)

The cations molar fraction relative to the liquid phase and the anions molar
concentration, which is equal to the average cations concentration, can be
written

x ∼ 7% C ∼ 4 103 mol m−3 (82)

In the following, we suppose that the temperature is T = 300 K. Regarding
to the electric field, it is typically about 104 V m−1 [2].
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7.2 Rheological equation

We have shown that the rheological equation of the complete material is iden-
tified with a Kelvin-Voigt model

σ = λ (trε)1+ 2Gε+ λv

(

tr
•

ε

)

1+ 2µv
•

ε (83)

where λ and G are respectively the first Lamé constant and the shear modulus
of the whole material. λv and µv are viscoelastic coefficients

λv ≡ L′

1

T
2µv ≡ L2

T
(84)

Nafion is a thermoplastic semi-crystalline ionomer. M. N. Silberstein and M.
C. Boyce represent the polymer by a Zener model [21]. The elastic coefficients
of the dry polymer can be deduced from their measures

G3 ∼ 1.1 108 Pa λ3 ∼ 2.6 108 Pa E3 ∼ 3 108 Pa ν3 ∼ 0.36 (85)

where G3 is the shear modulus, λ3 the first Lamé constant, E3 the Young’s
modulus and ν3 the Poisson’s ratio of the solid phase. Young’s modulus is in
good agreement with the values cited in [22]. They also correspond to the typ-
ical values of this kind of polymer, especially Poisson’s ratio, which is usually
close to 0.33 below the glass transition temperature and to 0.5 around the
transition temperature [23].

When the polymer is saturated with water, the elastic coefficients vary; water
has a plasticising effect [24,25]. We obtain the following values [21,22,25],
which are in agreement with the usual ones [23]

G ∼ 4.5 107 Pa λ ∼ 3 108 Pa E ∼ 1.3 108 Pa ν ∼ 0.435 (86)

Viscoelastic coefficients can be deduced from uniaxial tension tests [21,22,26]

Ev =
µv (3λv + 2µv)

λv + µv
∼ 1.2 108 Pa s (87)

The viscoelastic coefficients λv and µv (or Ev) can be estimated from the re-
laxation times according to traction and shear tests. Typically, the relaxation
time for a traction is of the order θE ∼ 15 s for the saturated Nafion poly-
mer [21,26,27]. The shear relaxation time is usually of the same order of the
traction one : θµ ∼ θE [23,28,29]. The viscoelastic coefficients are given by
the relations Ev = EθE and µv = Gθµ for the traction and shear viscoelastic
modulus, respectively. Therefore, the phenomenological coefficients are given
by

λ ∼ 3 108 Pa G ∼ 4.5 107 Pa λv ∼ 7 108 Pa s µv ∼ 108 Pa s

(88)
Accordingly, we deduce from (84)
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L
′

1 ∼ 2.1 1011 Pa s K L2 ∼ 6 1010 Pa s K (89)

It is worthwhile noting that these viscoelastic phenomenological coefficients
depend very strongly on the solvent concentration and on the temperature,
especially if the operating temperature of the polymer is close to that of the
glass transition. In addition, the molecular relaxation time is of the order of
10 s just bellow the glass transition [28,29].

7.3 Nernst-Planck equation

In the following, we focus on the isothermal case. Considering the previous
numerical estimations, we can write in a first approximation

Z1 >> Z3 ρ ∼ ρ2 ∼ ρ3 >> ρ1 ρ1Z1 ∼ ρ4Z3 (90)

Moreover, the non-diagonal phenomenological coefficients are usually small
compared to the diagonal ones; we suppose that

L3 & L4, L5 L7 & L4, L8 L11 & L5, L8 (91)

One deduces

J1 ≃ L7Z1

T
E+

1

T

[

v2

M2

(

L7 −
ρ3L8

ρ

)

− v1L7

M1

]

∇p− RL7

M1C
∇C (92)

that is to say

V1 ≃ − RL7

M1ρ1C

{

∇C − M1CZ1

RT E

+Cv1
RT

[

1− M1v2
M2v1

(

1− ρ3L
8

ρL7

)]

∇p
}

+V2

(93)

This expression is identified with the Nernst-Planck equation [30–32]

V1 = −D

C

[

∇C − Z1M1C

RT
E+

Cv1

RT

(

1− M1

M2

v2

v1

)

∇p

]

+V2 (94)

where D denotes the mass diffusion coefficient of the cations in the liquid
phase and v1 their partial molar volume. This equation expresses the equi-
librium of an ions mole under the action of four forces : the Stokes friction
force −6πη2aNa (V1 −V2), the pressure force −v1

(

1− M1

M2

v2
v1

)

∇p, the elec-

tric force Z1M1E and the thermodynamic force −M1∇µ1; Na denotes the
Avogadro constant and a the ion hydrodynamic radius, i.e. the radius of the
hydrated ion. The proton mass diffusion coefficient D = RT

6πη2aNa
is about

2 10-9 m2s−1 [33,34]. The proportionality factor 1 − M1

M2

v2
v1

reduces the mass
pressure force exerted on the solution to the cations; it is therefore of the order
of x. We obtain by identification

L8 << L7 (95)
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We can now estimate the order of magnitude of the different terms of this
equation. The concentration gradient |∇C| can be evaluated by dividing the
average concentration of anions (or cations) by the polymer film thickness.
This thickness e is typically about 200 µm [2], which provides a concentration
gradient of the order of 2 107 mol m−4. More precisely, numerical studies
show that cations gather near the electrode of opposite sign. The concentra-
tion gradient is thus higher in certain zones than the previous evaluation.
These simulations enable to estimate the maximal concentration gradient at
7 108 mol m−4 [3] or at 107 mol m−4 [35]. Thence

|∇C| - 108 mol m−4 (96)

The pressure gradient can be roughly estimated by dividing the air pressure
by the strip thickness, which provides a value about 5 108 Pa m−1, or using
the Darcy’s law; the average fluid velocity can be estimated from the response
time of the polymer strip τ ∼ 1 to 10 s [2]

|V4,moy| ∼
e

τ
∼ 10−4 m s−1 (97)

Otherwise, the characteristic size d of the hydrated polymer pores is about
100 Å [18,36]. We can deduce the polymer intrinsic permeability K, which
is on the order of the square of the pore size (10-16 m2). Darcy’s law then
provides

|∇p| ∼ η2

K
|V4,moy| ∼ 109 Pa m−1 (98)

This is in good agreement with the previous estimation.

We finally obtain the following orders of magnitude for the different terms of
the Nernst-Planck equation

|∇C| . 108 mol m−4

M1C
RT Z1 |E| ∼ 1.6 109 mol m−4

Cv1
RT

(

1− M1

M2

v2
v1

)

|∇p| ∼ 1.1 103 mol m−4

(99)

Cations mainly move under the actions of the electric field and the mass dif-
fusion; pressure gradient effect is negligible.

7.4 Generalized Darcy’s law

In the isothermal case, the mass diffusion flux of the solution in the solid can
be approximated

J4 ≃ 1

T

[

L8Z1 + L11
ρ3

ρ

(

ρ1

ρ4

Z1 − Z3

)]

E− R
M1C

L8∇C

+ 1

T

[

L8

(

v2
M2

− v1
M1

)

− ρ3φ4

ρρ4
L11

]

∇p
(100)
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The pressure term must be identified with Darcy’s law

1

Tρ4

[

L8

(

v1

M1

− v2

M2

)

+
ρ3φ4

ρρ4
L11

]

∼ K

η2φ4

(101)

where K denotes the intrinsic permeability of the solid phase. Considering the
previous estimation of L8, the first term is negligible, then we can compute
again L11

L11 ∼ KT

η2φ
2
4

ρ22ρ

ρ3
∼ 3.8 10−5 kg s K m−3 >> L8 (102)

The constitutive equation becomes

V4 −V3 ≃ − K

η2φ4

[

∇p− ρ02

(

ρ1

ρ4
Z1 − Z3

)

E

]

− R

M1Cρ4
L8

∇C (103)

The orders of magnitude of the different terms are

K
η2φ4

|∇p| ∼ 2.8 10−4 m s−1

Kρ0

2

η2φ4

(

ρ1

ρ4

Z1 − Z3

)

|E| ∼ 1.1 m s−1

R
M1Cρ4

L8 |∇C| << 2 10−6 m s−1

(104)

The phenomenological equation thus obtained can be identified at a first ap-
proximation with a generalized Darcy’s law

V4 −V3 ≃ − K

η2φ4

[

∇p− ρ04 (Z4 − Z3)E
]

(105)

In this expression, 1

ρ0

4

∇p represents the mass pressure force and (Z4 − Z3)E

is the mass electric force. The second term expresses the motion of the solu-
tion under the action of the electric field; it consists in an electroosmotic term.

When an electric field is applied, the cations distribution becomes very het-
erogeneous [3,35]. Three regions can be distinguished

– Around the negative electrode, where cations gather, Z4 >> Z3 and

V4 −V3 =
K

η2φ4

(

ρ04Z4E−∇p
)

The electric force exerted on the solution is due to the cations charge; we
find out the expression obtained by M.A. Biot [37].

– Near the positive electrode, where the cation concentration is very low,
Z4 << Z3 and

V4 −V3 = − K

η2φ4

(

ρ04Z3E+∇p
)

(106)

ρ04Z3E represents the electric force exerted on the anions relative to the
volume of the solution. This result corresponds to the expression obtained
by Grimshaw et al [2,38]. The solution motion is due to the attractive force
exerted on the cations by the solid.

– In the center of the strip, Z4 ∼ Z3. The solution electric charge is partially
balanced with the solid one, and the mass electric force exerted on the
solution is proportional to the net charge (Z4 − Z3).
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8 Conclusion

We have studied an ionic electro-active polymer. When this electrolyte is satu-
rated with water, it is fully dissociated and releases cations of small size, while
anions remain bound to the polymer backbone. We have depicted this system
as the superposition of three systems : a solid component, the polymer back-
bone negatively charged, which is assimilated to a deformable porous medium;
and an ionic liquid solution, composed by the free cations and the solvent (the
water); these three components move with different velocity fields. In a pre-
vious article [1], we have established the conservation laws of the two phases
: mass continuity equation, Maxwell’s equations, linear momentum conserva-
tion law and energy balance laws. Averaging these equations over the R.V.E.
and using the material derivative concept, we obtained the conservation laws
of the complete material.

In this paper, we derive the entropy balance law and the thermodynamic rela-
tions using the same method. We deduce the entropy production and indentify
the generalized forces and fluxes. Then we can write the constitutive equations
of the complete material. The first one links the stress tensor with the strain
tensor; the saturated polymer satisfies a Kelvin-Voigt model. The three oth-
ers are vectorial equations, including a generalized Fourier’s law. Focusing on
the isothermal case, we also obtain a generalized Darcy’s law and find out
the Nernst-Planck equation. Using the Nafion physico-chemical properties, we
estimate the phenomenological coefficients. This enables an evaluation of the
different terms of the equations.

We now plan to compare these results with experimental data published in
the literature. This should allow us to improve our model. Other possibility of
improvement of the model should consider the Zener model for the viscoelastic
behavior of the polymer.

9 Appendix A : Particle derivatives and material derivative

In order to write the balance equations of the whole material, we use the
material derivative D

Dt defined in our previous paper [1].
Indeed, the different phases do not move with the same velocity : velocities of
the solid and the solution are a priori different. For a quantity g, we can define
particle derivatives following the motion of the solid (d3

dt ), the solution (d4

dt ) or

the interface (di

dt ) as

dkg

dt
=

∂g

∂t
+∇g ·Vk (107)

Let us consider an extensive quantity of density g (r, t) relative to the whole
material.

g = g3 + g4 + gi (108)



22 Mireille Tixier, Joël Pouget

where g3, g4 and gi are the densities relative to the total actual volume attached
to the solid, the solution and the interface, respectively. Material derivative
enables to calculate the variation of g (r, t) following the motion of the different
phases [39–41]

ρ
D

Dt

(

g

ρ

)

=
∑

k=3,4,i

ρk
dk

dt

(

gk

ρk

)

=
∑

k=3,4,i

∂gk

∂t
+ div (gkVk) (109)

This derivative must not be confused with the derivative d
dt following the

barycentric velocity V.

10 Appendix B : Interface modelling

In practice, contact area between phases 3 and 4 has a certain thickness;
extensive physical quantities vary from one bulk phase to the other one. This
complicated reality can be modelled by two uniform bulk phases separated by
a discontinuity surface Σ whose localization is arbitrary. Let Ω be a cylinder
crossing Σ, whose bases are parallel to Σ. We denote by Ω3 and Ω4 the parts
of Ω respectively included in phases 3 and 4.
The continuous quantities relative to the contact zone are identified by a super-
script 0 and no subscript. The microscale surface entropy S0

i and the microscale
surface entropy production s0i are defined by

S0
i = lim

Σ−→0

1

Σ

{

∫

Ω S0dv −
∫

Ω3

S0
3dv −

∫

Ω4

S0
4dv

}

s0i = lim
Σ−→0

1

Σ

{

∫

Ω
s0dv −

∫

Ω3

s03dv −
∫

Ω4

s04dv
} (110)

where Ω3 and Ω4 are small enough so that S0
3 , S

0
4 , s

0
3 and s04 are constant.

Their averages over the R.V.E. are the volume quantity Si and si

Si =
〈

χiS
0
i

〉

si =
〈

χis
0
i

〉

(111)

We arbitrarily fix the interface position in such a way that it has no mass
density

ρ0i = lim
Σ−→0

1

Σ

{
∫

Ω

ρ0dv −
∫

Ω3

ρ03dv −
∫

Ω4

ρ04dv

}

= 0 (112)

Neglecting the heat flux along the interfaces, the balance equation of the in-
terfacial quantity S0

i is written as [13]

∂S0
i

∂t
+ divs

(

S0
i V

0
i

)

=
∑

3,4

[

S0
k

(

V0
k −V0

i

)

.nk +Σ0
k.nk

]

+ s0i (113)

where divs denotes the surface divergence operator. Averaging this equation
over the R.V.E. provides

∂Si

∂t
+ div (SiVi) =

∑

3,4

〈

χiΣ
0
k.nk

〉

+ si (114)
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Interfacial Gibbs equation derives from the entropy balance equation (114)
and from the internal energy balance equation established in [1]

diUi

dt
= Ti

diSi

dt
(115)

remarking that entropy production si and diffusion current ii cancel at equilib-
rium. The interface has no mass density; as a result, there is no mass exchange
term in this relation.
In the same way, Euler’s relation and Gibbs-Duhem relation write

Ui − TiSi = 0 (116)

Si
diTi

dt
= 0 (117)

11 Appendix C : Small deformation hypothesis

In the case of small deformations, the Green-Lagrange finite strain tensor come
down to the Cauchy’s infinitesimal strain tensor ε03

ε
0
3 =

1

2

(

∇u0
3 +∇u0

3

T
)

(118)

where u0
3 is the displacement vector [39]. The solid phase velocity is defined

by

V0
3 =

d03
dt

(

u0
3

)

(119)

The small deformation hypothesis results in

∣

∣∇u0
3

∣

∣ << 1 and
∣

∣∇V0
3

∣

∣ << 1 (120)

Let A, a vectorial quantity. The particles derivative of A following the motion
of the solid phase identifies with

d03
dt

(A) ≡ ∂

∂t
(A) +∇ (A) .V0

3 (121)

Small deformation assumption leads to

d03
dt

[div (A)] ≃ div

(

d03A

dt

)

(122)

d03
dt

[∇A] ≃ ∇

(

d03A

dt

)

(123)

One deduces
d3

dt
ε3 ≃ d03

dt
ε
0
3 (124)
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12 Notations

k = 1, 2, 3, 4, i subscripts respectively represent cations, solvent, solid, solution
(water and cations) and interface; quantities without subscript refer to the
whole material. Superscript 0 denotes a local quantity; the lack of superscript
indicates average quantity at the macroscopic scale. Microscale volume quan-
tities are relative to the volume of the phase, average quantities to the volume
of the whole material. Superscripts s and a respectively indicate the deviatoric
and the antisymmetric parts of a second-rank tensor, and T its transpose.

C : cations molar concentration (relative to the liquid phase);
D : mass diffusion coefficient of the cations in the liquid phase;
D : electric displacement field;
E, E3 : Young’s modulus;
E : electric field;
Ec, EcΣ : kinetic energy density;
F = 96487 C mol−1 : Faraday’s constant ;
G, G3 : shear modulus;
I : current density vector;
i (i′, ik, i

0
k) : diffusion current;

Jk : mass diffusion flux;
K : intrinsic permeability of the solid phase;
Li, L

′

i : phenomenological coefficients;
Mk : molar mass of component k;
Meq : equivalent weight (weight of polymer per mole of sulfonate groups);
nk : outward-pointing unit normal of phase k;
p (pk, p

0
k) : pressure;

Q (Q′, Q0
k) : heat flux;

R = 8, 314 J K−1 : gaz constant;
s (s0k, sk) : rate of entropy production;
S (S0

k, Sk) : entropy density;
T (Tk, T

0
k ) : absolute temperature;

U (UΣ ,Uk, U
0
k ) : internal energy density;

u (u0
3, u3) : displacement vector;

vk : partial molar volume of component k (relative to the liquid phase);
V (Vk, V

0
k) : velocity;

x : cations mole fraction (relative to the liquid phase);
Z (Zk, Z

0
k) : total electric charge per unit of mass;

ε (ε0k) : permittivity;
ε (εk, ε

0
k
) : strain tensor;

η2 : dynamic viscosity of water;
λ, λ3 : first Lamé constant;
λv, µv, Ev : viscoelastic coefficients;
ν, ν3 : Poisson’s ratio;
µk, µ

0
k (µ0

k,mol) : mass (molar) chemical potential;

ρ (ρk, ρ
′

k, ρ
0
k) : mass density;
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σ (σk) : stress tensor;
σ

v : dynamic stress tensor;
σ

e (σe

k
,σ0e

k
) : equilibrium stress tensor;

Σ (Σ′, Σ0
k, Σk) : entropy flux vector;

φk : volume fraction of phase k;
χk : function of presence of phase k ;
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32. Schlögl: Membrane permeation in systems far from equilibrium. Ber. Bunsen. Phys.

Chem. 70, 400 (1966)
33. Zawodsinski T.A., Neeman M., Sillerud L.O. and Gottesfeld S.: Determination of water

diffusion coefficients in perfluorosulfonate ionomeric membranes. J. Phys. Chem.-US 95,
6040-6044 (1991)

34. Kreuer K.D.: On the development of proton conducting polymer membranes for hydro-
gen and methanol fuel cells. J. Membrane Sci. 185, 29-39 (2001)

35. Farinholt K., Leo D.J.: Modeling of electromechanical charge sensing in ionic polymer
transducers. Mech. Mater. 36, 421-433 (2004)

36. Pineri, M., Duplessix, R., Volino, F.: Neutron studies of perfluorosulfonated polymer
structures. A. Eisenberg, H.L. Yeager (Eds.), Perfluorinated Ionomer Membranes, Amer-
ican Chemical Society, ACS Symposium Series, 180, 249–282, Washington, DC (1982)

37. Biot M. A.: Theory of elasticity and consolidation for a porous anisotropic solid. J.
Appl. Phys. 26, 2, 182-185 (1955)

38. Grimshaw P.E., Nussbaum J.H., Grodzinsky A.J., Yarmush M.L.: Kinetics of electrically
and chemically induced swelling in polyelectrolyte gels. J. Chem. Phys. 93 (6), 4462-4472
(1990)

39. Coussy O.: Mechanics of porous continua. Wiley, Chichester (1995)
40. Biot M.A.: Variational Lagrangian-thermodynamics of nonisothermal finite strain. Me-

chanics of porous solids and thermonuclear diffusion. Int. J. Solids Structures 13, 79-597
(1977)

41. Coussy O.: Thermomechanics of saturated porous solids in finite deformation. Eur. J.
Mech., A/Solids, 8, 1, 1-14 (1989)


