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Résumé
The purpose of this document is to study, experimentally, the behavior of the basic operations on

vectors whose components are random numbers with different distribution laws. Specifically, we compute
the dot product of two vectors whose components are random numbers with distribution law taken to be
normal on the one hand and uniform on the other.

1 Oppenheim-Ricoux (OR) conjecture
Let x ∈ Rn and y ∈ Rn be two vectors whose components xi (resp. yi), i = 1, n are random variables with

standard normal or uniform distribution. The angle between these vectors is defined by

θn(x, y) = ]

(
x

|| x ||
,

y

|| y ||

)
(1)

which is equivalent to

cos(θn) =
(

< x, y >

|| x || || y ||

)
∈ [−1,+1] (2)

The Oppenheim-Ricoux conjecture presented in 2014 [1] states that :

(OR) lim
n→+∞

| θn |=
π

2 ⇔ lim
n→+∞

| cos(θn) |= 0 (3)

The present note is an experimental validation of (OR).

2 Description of experiments
In order to present these experiments, we consider two real vectors x and y of length n which the compo-

nents are randomly drawn with the normal and uniform distributions. We study numerically and statistically
the convergence towards zero of | cos(θn) | as n tends to +∞. For that we compute | cos(θn) | by (2) for
n ∈ [1, N ] where N ∈ N∗ takes increasingly large values. The statistical software that we use is R language
and its environment for statistical computing and graphics [2].

2.1 Normal distribution
Here, we suppose that the components of x and y are randomly drawn with the normal distribution whose

mean µ = 0, variance σ2 = 1. Two types of experiments are considered. The first type is numerical : the size
N of the vectors varies. In the second type is statistical, we consider p samples of a fixed size n, n = 10 and
n = 1000.
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2.1.1 Normal distribution : first case

In this set of experiments, N takes 10, 100, 1000, 10000 and 100000 values successively. The left side of
the figures 1-5 represents the evolution of | cos(θn) | when n goes from 1 to N . We notice that for n large
| cos(θn) | tends to zero.

Let z ∈ Rn be the vector whose components are zi = cos(θi), i = 1, n. The right side of the figures 1-5
represent the distribution of the variables zi, i = 1, n. The distribution seems to follow the normal law when
n is large.

Figure 1 – N = 1 to 10

Figure 2 – N = 1 to 100

Figure 3 – N = 1 to 1000

Moreover, to present the evolution of | cos(θn) | for growing values of n, we also show its numerical value
for selected n. For that, we consider the interval [1, N ] divided in 10 equal segments [`i−1, `i] for i = 1, 10 with
`i = `i−1 +(N/10) and `0 = 0. Then, we display the values of | cos(θ) | on the terminals of these sub-intervals.
Table 1 presents the values of c(`i) =| cos(θ`i) | for i = 1, 10 for N values given in the first column.
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Figure 4 – N = 1 to 10000

Figure 5 – N = 1 to 100000

2.1.2 Normal distribution : second case

Suppose that the components of vectors x and y of length n are randomly drawn with standard normal
distribution. Let Xj and Yj represent these random variables corresponding to the sample j and Zj represents

cos(θn) for the same sample j (for fixed n). Here we want to study the mean value Ep = 1
p

p∑
j=1
| Zj | where

p is the size of the sample. The left side of the figures 6-10 (resp. 11-15) represents the evolution of Ep when
N is fixed to 10 (resp. 1000) and the size of sample varies between 1 and p (with p = 10, 100, 1000, 10000
and 100000). The right side of the figures 6-10 (resp. 11-15) represents the density of "random variables" Ei,
i = 1, p. We notice that this distribution seems to follow the normal law.

This table 2 shows the decay of Ep as a function of the growth of p. Each line of the this table presents
the mean value of Ep for p ∈ {10, 100, 1000, 10000, 100000} for a fixed n (10 for the first line and 1000 for the
second line). We can notice that Ep tends to zero when p becomes large.

N c(`2) c(`3) c(`4) c(`5) c(`6) c(`7) c(`8) c(`9) c(`10)
10 0.9902856 0.7209751 0.3066497 0.5312624 0.2996368 0.2203304 0.7378387 0.3774181 0.4285758

102 0.2501916 0.1506945 0.3999998 0.04415448 0.1163811 0.08798113 0.08454565 0.08260819 0.06563538
103 0.06487468 0.01782859 0.03096038 0.002885614 0.03940472 0.006627125 0.01246893 0.01039661 0.02977677
104 0.01204089 0.01838448 0.0105312 0.01846281 0.02694352 0.01389076 0.0131747 0.008603132 0.00567131
105 0.01455886 0.004676293 0.006317398 0.001420822 0.0002394812 0.003782211 0.006602555 0.003156112 0.00142408

Table 1 – | cos(θn) | for n = `i, i = 1 to 10 in the interval [1, N ].
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Figure 6 – Evolution of the mean value Ep for p = 1, 10 (fixed n = 10)

Figure 7 – Evolution of the mean value Ep for p = 1, 100 (fixed n = 10)

Figure 8 – Evolution of the mean value Ep for p = 1, 1000 (fixed n = 10)

Figure 9 – Evolution of the mean value Ep for p = 1, 10000 (fixed n = 10)
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Figure 10 – Evolution of the mean value Ep for p = 1, 100000 (fixed n = 10)

Figure 11 – Evolution of the mean value Ep for p = 1, 10 (fixed n = 1000)

Figure 12 – Evolution of the mean value Ep for p = 1, 100 (fixed n = 1000)

Figure 13 – Evolution of the mean value Ep for p = 1, 1000 (fixed n = 1000)
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Figure 14 – Evolution of the mean value Ep for p = 1, 10000 (fixed n = 1000)

Figure 15 – Evolution of the mean value Ep for p = 1, 100000 (fixed n = 1000)

2.2 Uniform distribution
Here, we suppose that the the components of x and y are randomly drawn with uniform distribution on

the interval I = [a, b]. As in section 2.1, we consider wo types of experiments. In the first one, the size of the
vectors varies. In the second type, we consider p samples and the vectors of a fixed size n.

2.2.1 Uniform distribution : first case

In the set of experiments presented here N takes successively the values 10, 100, 1000, 10000 and 100000.
The left side of the figures 16-20 represents the evolution of | cos(θn) | when n goes from 1 to N . We notice
that for n large | cos(θn) | tends to zero.

Let z ∈ Rn be the vector whose components are zi = cos(θi), i = 1, n. The right side of the figures 16-20
represents the density of "random variables" zi, i = 1, n. According to these figures, the distribution seems to
follow the normal law when n is large.

As in the case of normal distribution law, we also show the evolution of | cos(θn) | by presenting its
numerical values for growing values of n. The same manner as in Section 2.1.1, we consider the interval [1, N ]
divided in 10 equal segments [`i−1, `i] for i = 1, 10 with `i = `i−1 + (N/10) and `0 = 0. Then, we display the
values of | cos(θ) | on the terminals of these sub-intervals. Table 3 presents the values of c(`i) =| cos(θ`i

) | for
i = 1, 10 and N given in the first column.

n
p 10 100 1000 10000 100000

10 0.1595175 0.006914514 0.0001481639 0.0007234779 0.0005579374
1000 0.0009650849 0.0007422512 0.00172796 0.0003205711 0.0001605052

Table 2 – Ep for various n and p
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Figure 16 – The size of the vectors goes from 1 to 10

Figure 17 – The size of the vectors goes from 1 to 100

Figure 18 – The size of the vectors goes from 1 to 1000

Figure 19 – The size of the vectors goes from 1 to 10000
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Figure 20 – The size of the vectors goes from 1 to 100000

N c(`2) c(`3) c(`4) c(`5) c(`6) c(`7) c(`8) c(`9) c(`10)
10 0.3914833 0.7593072 0.04978319 0.4778023 0.342336 0.1080792 0.6815922 0.228317 0.4305548

100 0.1111445 0.2198388 0.1944975 0.008304239 0.2429919 0.1836851 0.09046331 0.1741768 0.1219234
1000 0.09502381 0.02903221 0.04312589 0.03447621 0.00332147 0.04386698 0.07434009 0.04587727 0.006665223

10000 0.004675528 0.03526224 0.004552958 0.006673089 0.006159439 0.003180619 0.003608415 0.002587822 0.003079349
100000 0.004063001 0.005613358 0.01064448 0.006071409 0.008743094 0.001314857 0.006016169 0.00519082 0.00111364

Table 3 – | cos(θn) | for selected n in a sample (each line represents a sample of size N)

2.2.2 Uniform distribution : second case

Suppose that the components of vectors x and y of length n are randomly drawn with uniform distribution
law on the interval [a = −1.0, b = +1.0]. Let Xj and Yj represent these random variables corresponding to
the sample j and Zj represents cos(θn) corresponding to the same sample j (for fixed n). Here, as in the

section 2.1.2, we present the mean value Ep = 1
p

p∑
j=1
| Zj | where p is the size of the sample. The left side of

the figures 21-25 (resp. 26-30) represents the evolution of Ep when n is fixed to 10 (resp. 1000) and the size
of sample goes from 1 to p (with p = 10, 100, 1000, 10000 and 100000). The right side of the figures 21-25
(resp. 26-30) represents the density of "random variables" Ei, i = 1, p. Again, the distribution seems to follow
the normal law.

This table 4 shows the decay of Ep as a function of the growth of p. Each line of the this table presents
the mean value of Ep for p ∈ {10, 100, 1000, 10000, 100000} and a fixed n (10 for the first line and 1000 for the
second line). We can notice that Ep tends to zero when p becomes large.

A zoom (1000 times) on the left side of the last experiment (i.e. : Figure 30) highlights the convergence
to zero of Ep. This zoom is presented in the figure 31.

Figure 21 – Evolution of the mean value Ep for p = 1, 10 (fixed n = 10)

3 Observation
The OR conjecture seems to be verified by the above experiment when the variables are randomly drawn

with standard normal and uniform distributions.

8



Figure 22 – Evolution of the mean value Ep for p = 1, 100 (fixed n = 10)

Figure 23 – Evolution of the mean value Ep for p = 1, 1000 (fixed n = 10)

Figure 24 – Evolution of the mean value Ep for p = 1, 10000 (fixed n = 10)

Figure 25 – Evolution of the mean value Ep for p = 1, 100000 (fixed n = 10)

9



Figure 26 – Evolution of the mean value Ep for p = 1, 10 (fixed n = 1000)

Figure 27 – Evolution of the mean value Ep for p = 1, 100 (fixed n = 1000)

Figure 28 – Evolution of the mean value Ep for p = 1, 1000 (fixed n = 1000)

Figure 29 – Evolution of the mean value Ep for p = 1, 10000 (fixed n = 1000)
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Figure 30 – Evolution of the mean value Ep for p = 1, 100000 (fixed n = 1000)

Figure 31 – Zoom on the left side of the figure 30
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N
p 10 100 1000 10000 100000

10 0.05766342 0.01327352 0.01185789 0.002234513 0.0002172728
1000 0.02290564 0.002709578 0.0007072537 0.0001488402 1.019963e-05

Table 4 – Ep for various n and p
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