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Abstract

This chapter focus on the different implementations of brain-computer interface (BCI) based
on Steady-State Visually Evoked Potentials (SSVEPs). In offline BCI, feature extraction and the
classification are performed at the end of the session, when all trials are available. Whereas, in on-
line settings, they are performed several times during each trial, usually for each available epoch
recorded by the electroencephalogram (EEG) device, enabling real-time and asynchronous BCI. A
recent successful approach in feature extraction and signal processing for BCI is Riemannian geom-
etry, which deals with covariance matrices. They capture the degree of correlation between several
random variables, that is how the brain signals change relatively to each other. These techniques
have demonstrated their benefit on several occasions, leading to winning algorithms in international
competitions and to state-of-the-art results on renowned BCI benchmarks. After reviewing some of
the most robust approaches in feature extraction for SSVEP, this chapter will introduce newer tools
based on Riemannian geometry. With an application to SSVEP, this article shows through a compar-
ison how Riemannian geometry allows one to easily define offline and online implementations that
have better accuracies than state of the art.

1 Introduction

This chapter presents the feature extraction and classification techniques applied for signals of a particu-
lar paradigm of brain-computer interface (BCI). The most successful approaches, that is those providing
the highest transfer rates and the most robust representations, share one common ground: they are all
estimating the covariance from the signal to build or to derive their feature. The covariance captures the
degree of linear dependence between several random variables, that is how the brain signals change rela-
tively to each other. If two signals show the same variations, increasing and decreasing at the same time,
they are dependent. The notion of covariance is central in several fields of science, such as mathematical
finance, meteorology, oceanography and, of course, signal processing. A correct covariance estimation
requires to take into account a noticeable part of the time signal history. This fact has a strong impact
when setting up a BCI system, as it introduces a delay to allow a correct processing and interpretation
of the brain signal. Special attention is thus needed when dealing with covariance-based approaches in
online systems, to aim for a robust system without impeding the interactions with a high latency.

After reviewing some of the most robust approaches in features extraction for Steady-State Visually
Evoked Potentials (SSVEP), this chapter will present recently introduced tools for signal processing
based on a non-Euclidean geometry, namely the Riemannian geometry. These techniques have demon-
strated their benefit on several occasions, leading to winning algorithms in international competitions
and to state-of-the-art results on renowned BCI benchmarks. Most of these achievements are built on
the theoretical advances of a very active community working on Information Geometry and its applica-
tions to signal processing, for example in radar imagery, computer vision, or finance. A thorough review
of the existing Riemannian approaches for BCI is proposed, with its application to SSVEP.
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Regarding the implementation in offline BCI, feature extraction and classification are performed at
the end of the session, when all trials are available. Based on such a setting, it is difficult to design
algorithms for real-time BCI. On the contrary, in online implementation, feature extraction and classi-
fication are performed several times during each trial, usually for each available epoch recorded by the
electroencephalogram (EEG) device. This setting being more realistic, it enables the development of
real-time and asynchronous BCI. Applied to SSVEP, this chapter will compare on real data how Rie-
mannian geometry allows one to easily design offline and online implementations for BCI with a better
accuracy than state of the art. Moreover, using covariance matrices as feature allows one to define a
resting-state class, which is a crucial point in BCI design.

Section 2 gives an overall view of the SSVEP-based BCI and the state-of-the-art approaches. The
implication of designing online algorithms are explained and highlighted. Section 3 provides a detailed
description of the mathematical and theoretical principles involved in the feature extraction step. The
importance of the covariance matrices are shown and the link with Riemannian geometry is explained.
In Section 4, an overview of the Riemannian tools and their application to covariance matrices are pro-
posed. The existing approaches to estimate covariance matrices are explained before this section covers
the known distances, the mean estimation and the classification in the space of covariance matrices. Of-
fline and online implementations are described. Section 5 explains how these Riemannian approaches
are applied to EEG signal. The existing algorithms are evaluated on an SSVEP data set and the results
are analyzed in terms of quality of prediction and computing load. Section 6 concludes this chapter and
opens on questions on the future of Riemannian-based BCI.

2 A review of SSVEP-based BCI

This section quickly reviews some points about SSVEP and then details its application in BCI. As the
notion of offline analysis and online algorithms is at the center of this chapter, this section explains the
differences between those approaches.

2.1 Steady-state visually evoked potentials

Dealing with sensory evoked potentials, it is a common view to oppose event-related potential and
Steady-State Response (SSR) (Regan, 1982), including their visual counterpart SSVEP. This distinction
originates from the idea that the SSR may be generated by neural oscillations elicited by the repeated
stimulations (Takahashi, 2004, p. 4) whereas the ERP is the transient response to an event occurring at a
sufficiently long time interval to allow the system to return to its initial state (Niedermeyer and Lopes da
Silva, 2004).

The SSVEP-based BCI is often employed as a dependent BCI (Wolpaw et al., 2002), that is, some
residual muscular capabilities are required to move the eye toward the blinking stimulus as opposed to
independent BCI, such as Motor Imagery (MI), where the communication does not rely on any motor
capability. It has been shown that SSVEP could be used as an independent BCI (Morgan et al., 1996;
Müller et al., 2006) as the neural oscillations are strongly related to the focus of attention. Using covert
attention, that is shifting the focus of attention without moving the eyes, subjects can generate different
SSVEP responses.

Visual stimulus plays a crucial role, affecting the SSVEP-based BCI performance, and should be
designed carefully. An in-depth review of the literature (Zhu et al., 2010) shows that LED stimuli
provide better results than those obtained on a computer screen. Any stimulation between 2 and 50 Hz
induces visible oscillations in the visual cortex (Herrmann, 2001), with a peak in signal-to-noise ratio
visible around 15 Hz (Pastor et al., 2003). Common values employed in SSVEP studies are between
12 and 25 Hz, as they induce oscillations with higher amplitudes (Zhu et al., 2010). One should note
that safety considerations should be taken into account as some frequency ranges of the stimulation train
may trigger epileptic seizure (Fisher et al., 2005).
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Review articles (Vialatte et al., 2010; Zhu et al., 2010; Liu et al., 2014; Stawicki et al., 2017) provide
more details on SSVEP: properties of the visual stimuli (influence of the number of visual stimulation
frequencies to accommodate an increasing number of BCI commands), stimulation paradigm (multiple
frequencies sequential coding and frequency shift keying), and electrophysiological response. For more
details about SSVEP, one should refer to (Stawicki et al., 2017) in the Part I of this book, Chapter 8
“Design and Development of User Friendly SSVEP-based BCI Applications for Elderly People”.

2.2 Online and offline implementations for BCI

It is important to define some of the terminologies used in the chapter and in the literature. A first
important notion is to differentiate between synchronous and asynchronous BCI. In synchronous setting,
the system provides temporal cues for the subject, asking to perform specific action at a specific time.
This is not the case in asynchronous BCI, where the subject could act or elicit an action from the system
at any time. In SSVEP both settings could be found, even if the synchronous setting is very common in
the literature, as it is simpler to obtain meaningful and reproducible results.

Implementations of feature extraction and classification could be online or offline. Distinguishing
between those two implementations requires one to define some necessary notions. We call samples
the values acquired by the system at each time step. A group of successive samples of a predetermined
size is called an epoch; it is used to simplify the feature extraction. We define a trial as the sequence in
the experimental plan where the user is asked to perform a specific task. A session is defined here as a
group of trial performed successively by the subject. The classification results are generally obtained by
averaging performances across all trials.

We can thus distinguish the different implementations (Barthélemy et al., 2017):

• In offline settings, feature extraction and the classification are performed at the end of the ses-
sion; thus, all trials are available. It is not possible to design a real-time BCI system with such
implementation.

• In block-online settings, classification is performed at the end of each trial; the trials are available
one after the other. This is the common setting for synchronous interactions.

• In online settings, feature extraction and the classification are performed several times during each
trial, usually for each available epoch recorded by the EEG device, sometimes for each sample if
the computation time is compatible with the real-time constraints. With this implementation, it is
possible to set up an asynchronous BCI.

Note that using or not using a preliminary calibration on a training set does not change these distinctions.
One of the most crucial problems in BCI is the difference between these offline and online imple-

mentations. Offline analyses represent the major part of the scientific publications, but they cannot serve,
as they are, in practical implementations of a BCI, which are necessarily online or block-online. Offline
implementations often use non-causal processing (e.g. bilateral filtering), normalizations or whitening
that requires one to know the whole data distribution of the session. But these computations are not
possible in online settings, hence converting an offline implementation to an online one is not trivial and
can generate a loss of performances, in terms of classification accuracy.

3 Classifying SSVEP signals

This section presents the common techniques to classify SSVEP signals, that is finding the frequencies
of brain waves in the visual cortex that correspond to the target stimulus.

3.1 Notations

In the following, C denotes the number of electrodes recorded by the EEG system. Depending on
the sampling rate of the EEG system, a certain number of samples are recorded each second. Each
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Figure 1: Potential differences measured on the scalp are gathered in vector xn (top). A complete
recording is represented as a matrix X of C lines, corresponding to the number of electrodes, and N
columns, corresponding to the number of samples (bottom).

sample contains C values indicating the potential difference, usually expressed in microvolts, measured
at each electrode site. The potential differences are represented in a vector of C lines, denoted xn where
n = 1, . . . , N . This is illustrated in the upper part of the Fig. 1. A recording is represented as a matrix
X = [x1, . . . , xN ], X ∈ RC×N , which is the concatenation of all samples, as shown in the bottom of
Fig. 1. We will make the hypothesis that all N samples xn are randomly drawn from a distribution. It
follows that x is a variable of random vectors and its expected vector is ω = E{x} (Fukunaga, 1990).
The covariance matrix of the random vector x is defined by Σ = E{(x− ω)(x− ω)ᵀ}.

3.2 Classification using canonical correlation

To classify SSVEP signal, one should find the frequencies of brain waves in the visual cortex correspond-
ing to the target stimulus. Several methods have been proposed, using power spectral density or other
decomposition methods (Liu et al., 2014). The most robust approaches are based either on canonical
correlation or on Riemannian geometry.

Until recently, methods relying on Canonical Correlation Analysis (CCA) originating from Hotelling
(1936), were achieving the highest classification performances, but implementation is offline (Lin et al.,
2006). Given two set of signals, CCA aims at finding the projection space that maximizes their cross-
covariance while jointly minimizing their covariance.

For SSVEP, the CCA aims to find a new subspace such that the two sets of variables have maximal
correlation when projected on this subspace. The main idea is to use X ∈ RC×N as a first set of
variables and 2Nh reference signals Yf ∈ R2Nh×N as the second set. A common way of generating the
representation of the simulation signal at frequency f is:

Yf =


sin(2πfn)
cos(2πfn)

...
sin(2πNhfn)
cos(2πNhfn)

 , n =
1

Ts
,

2

Ts
, . . . ,

N

Ts
(1)

where Ts is the EEG sampling frequency, Nh is the number of harmonics, and N is the number of
samples. Nh is a parameter that can be defined by cross validation.
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The CCA seeks two projection directions wX and wYf
such that wT

XX and wYf
Yf have maximal

correlation. wX and wYf
maximize the correlation function ρ(wX , wYf

):

ρ(wX , wYf
) = corr(wT

XX,wYf
Yf )

=
wT
XΣXYf

wYf√
wT
XΣXwXwT

Yf
ΣYf

wYf

,
(2)

where ΣXYf
is the between-set covariance matrix; ΣX and ΣYf

are the within-set covariance matrices.
CCA can be solved as in Hardoon et al. (2004):

maximize
wX ,wYf

wT
XΣXYf

wYf

subject to wT
XΣXwX = 1,

wT
Yf

ΣYf
wYf

= 1.

The CCA objective is to maximize the correlation ρ between wT
XX and Y T

f wYf
as follows:

ρf = max
wX ,wYf

wT
XXY

T
f wYf√

wT
XXX

TwXwT
Yf
YfY

T
f wYf

. (3)

Note that when more than one couple of directions wX and wYf
are needed, a deflation step can be

applied and then another problem of CCA is solved. To determinate the target frequency f̂ , the values
of ρf are used for classification as (Lin et al., 2006):

f̂ = arg max
f
{ρf} . (4)

A different approach considers CCA only to obtain a spatial filter, using a support vector machine
(SVM) to process the spectral features of the filtered signal Kalunga et al. (2013). This approach is
referred to as CCA+SVM in this work.

Several aspects regarding the CCA are still debated and not clearly established, especially concern-
ing the harmonics. The number of harmonics to choose and its impact on the classification accuracy
are unclear. Chen et al. (2015a) introduce the Filter Bank Canonical Correlation Analysis (FBCCA),
which is an online algorithm. The EEG signal is filtered into n = 1 . . . Nb sub-bands covering multiple
harmonic frequency bands. As described above, CCA allows one to obtain a correlation coefficient ρnf
for each sub-band n. The correlation coefficients are combined as

ρ̃f =

Nb∑
n=1

wn(ρnf )2 , (5)

where Nb is the number of sub-bands, nb and wn respectively the index and the weight of a sub-band.
The weights are defined as:

wn = n−a + b, n ∈ [1 . . . Nb] , (6)

where a and b are constants that maximize the classification performance. Hyper-parameters a, b, and
Nb are determined in practice with a grid search conducted on an offline analysis. Once all ρ̃f are
determined, the classification is done with Eq. (4). FBCCA significantly improves the performance of
standard CCA (Chen et al., 2015a).

Recent studies conducted by Nakanishi et al. (2014) and by Chen et al. (2015b) made a breakthrough
in high-speed SSVEP-based speller, used in online settings. The objective of these experiments is to
successively select letters for a spelling task; SSVEP achieves the highest information transfer rate
(ITR) reported in EEG-based BCI. Nakanishi et al. brought the ITR to an average of 166.91 bits/min
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(Nakanishi et al., 2014) and later, Chen et al. raised it to an average of 270 bits/min (Chen et al., 2015b).
Nakanishi et al. (2014) achieved high classification performances, mainly relying on methodological
improvement of the stimulation protocol (phase modulation and combination of frequency) and stimulus
presentation (the proposed letters follow a similar scheme to SMS writing). However, there are two
strong limitations to these works. First, these studies do not consider a resting-state class (or a reject
class), where the user does not gaze at any specific stimulus, meaning that the system continuously
output a selected letter without any pause. Allowing users to act at their own pace is utterly important
in Human-Machine Interface (HMI), and hence in BCI. Moreover, taking into account the case where
the user does not gaze at any stimulus is a challenging issue as traces of stimulation frequencies are
still observable in the EEG. Second, the stimulation protocol is complex: a successful classification
requires a synchronization between the stimulation and EEG acquisition devices to ensure a proper time
reference for the phase measurements. This is not guaranteed in many experimental settings and it is a
limitation for the potential applications.

3.3 Classification using Riemannian geometry

The covariance is central in state-of-the-art CCA approaches as it allows one to estimate spatial filters
that are projections of the original sensor space into a surrogate sensor space that enhances the signal
of interest. Spatial filters are user-specific signal processing techniques yielding a robust representation,
with strong discrimination properties, allowing good accuracy in classification. Spatial filters are very
efficient on clean datasets obtained from strongly constrained environment but they are sensitive to ar-
tifacts and outliers (Lotte and Guan, 2011; Tomioka et al., 2007). But working directly on covariance
matrices is advantageous: it simplifies the whole BCI system (Yger, 2013), avoiding the alignment of
two learning steps (spatial filters and classifiers) that might lead to overfitting. The covariance matrices,
being Symmetric and Positive-Definite (SPD), are best handled by tools provided by Riemannian geom-
etry (Bhatia, 2009). Classification in the space of SPD matrices eliminates the need of spatial filters and
improves the system robustness (Barachant et al., 2012; Congedo et al., 2013; Yger, 2013). Riemannian-
based approaches have demonstrated their efficiency by outranking all other existing techniques on real
competitive problems: DecMeg 2014 challenge1, BCI Challenge - NER 20152 and Grasp-and-Lift EEG
Detection 20153.

To detail how Riemannian geometry can improve machine learning algorithms, one can argue that
it takes explicitly into consideration the underlying structure of the data. Different approaches in the
literature use the geometry of data in machine learning (for complete review see (Yger et al., 2017;
Congedo et al., 2017)). A first possibility is to rely on the mapping of the Riemannian manifold onto
a Euclidean vector space, where common algorithm could be applied. One such mapping, called log-
arithmic mapping, exists between the manifold and its tangent space, which is a Euclidean space, and
has been used in classification task for BCI (Barachant et al., 2013b). Some kernels have been applied
successfully to this end: Stein kernel, Log-Euclidean kernels as well as their normalized versions (Yger,
2013). The family of kernels defined on the Riemannian manifold allows the implementation of ex-
tensions of all kernel-based methods, such as SVM, kernel-PCA or kernel k-means (Jayasumana et al.,
2013). Apart from the kernel approaches, once the data are mapped onto a vector space, any machine
learning algorithm working in Euclidean space, such as LDA, could be applied (Barachant et al., 2012).

Another possibility is to develop new algorithms directly for Riemannian manifolds. The Minimum
Distance to Riemannian Mean (MDRM) relies on a Riemannian metric to implement a multiclass clas-
sifier and have been applied on EEG. New EEG trials are assigned to the class whose average covariance
matrix is the closest to the trial covariance matrix (Barachant et al., 2012). The MDRM classification
can be preceded by a spatial filtering of covariance matrices, like in (Barachant et al., 2010) where co-
variance matrices are filtered with LDA components in the tangent space, and then brought back to the

1https://www.kaggle.com/c/decoding-the-human-brain
2https://www.kaggle.com/c/inria-bci-challenge
3https://www.kaggle.com/c/grasp-and-lift-eeg-detection
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Riemannian space for classification with MDRM. Another example is the Riemannian Potato (Barachant
et al., 2013a), an unsupervised and adaptive artifact detection method, providing an online EEG outlier
removal. Incoming epochs are rejected if their covariance matrix lies beyond a predefined z-score.

To apply Riemannian geometry to SSVEP, the sample covariance matrices can be defined from
a rearrangement of the recorded data. The rearrangement is done such that the temporal or frequency
information is captured (Congedo et al., 2013; Congedo, 2013). With similar motivations, Li et al. (2012)
and Li and Wong (2013) defined a new Riemannian distance between SPD matrices filtered in different
frequency bands: an optimized spatial weighting matrix is commonly applied on covariance matrices of
each frequency band. They use this new distance as a dissimilarity between weighted matrices of power
spectral density to classify EEG into different sleep states by k-nearest neighbors.

4 Riemannian geometry

This section starts with a presentation of the tools and characteristics of the geometry of SPD matrices.
A simple classification algorithm is then described, which works directly in the space of covariance
matrices. This simple yet efficient classifier allows one to achieve near state-of-the-art results. It relies
on two key aspects, the estimation of covariance matrices, which should be as accurate as possible, and
the choice of a metric to estimate the center of mass of a set of covariance matrices. These aspects,
covariance estimation and existing metrics, are presented in this section. Finally, MDRM classifier is
presented for offline and online implementations.

4.1 Geometry of covariance matrices
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Figure 2: Visualization of the covariance matrices Σ ∈ R2×2. The Euclidean distance (dashed red line)
does not consider the curvature of the space and define chordal distance between elements. Riemannian
distances (AIR in plain blue and Log-Euclidean in dashed-dotted green) follows a geodesic and are thus
taking into account the shape of the space where covariance matrices lie.

Covariance matrices are SPD and are thus constrained to lie strictly inside a convex cone, as shown
in Fig. 2. This special topological space is a Riemannian manifold. Manifold could be described as a
collection of small flat structures, “glued” together. For each of these small structure, the neighborhood
of an element could be considered as flat, which is similar to a tangent space. The bijection between
the neighborhood of a manifold element and Rm is called a chart. A smooth differentiable atlas is a
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collection of charts verifying that the elements overlap smoothly (Absil et al., 2009). When the manifold
is equipped with a complete, smooth differentiable atlas and with an inner product defined on the tangent
space of each element, it is called a Riemannian manifold.

As illustrated by Yger et al. (2017), we can draw the parallel with the situation that occurs on Earth.
Indeed, the surface of Earth is a smooth lower-dimensional subspace. At every point of the surface, we
can approximate the surface as a map (a locally accurate flat approximation). Then, the shortest path
between two points on the surface is a curved called a geodesic.

The covariance matrices are elements of MC , a manifold of C × C symmetric positive-definite
matrices,

MC =
{

Σ ∈ RC×C | Σ = Σᵀ and xᵀΣx > 0,∀x ∈ RC\0
}
.

SPD matrices verify the properties listed in Table 1.

Symmetry Σ = Σᵀ

Positive definiteness xᵀΣx > 0, ∀x ∈ RC\0
Strict positivity of diagonal elements Σ(i, j) > 0 | i = j,∀i, j ∈ {1, . . . , C} i.e. positive variance
Cauchy-Schwarz inequalities |Σ(i, j)| ≤ (Σ(i, i)Σ(j, j))1/2, ∀i, j ∈ {1, . . . , C}

Table 1: Properties of the SPD matrices.

The tangent space TΣMC , which is a local linear approximation of the manifold at the point Σ, is
identified to the Euclidean space of symmetric matrices:

SC =
{

Θ ∈ RC×C : Θ = Θᵀ} .
The dimension of the manifoldMC , and its tangent space TΣMC , is m = C(C + 1)/2.

The mapping from a point Θi of the tangent space to the manifold is called the exponential mapping
ExpΣ(Θi): TΣMC →MC and is defined as:

ExpΣ(Θi) = Σ
1
2 Exp(Σ−

1
2 ΘiΣ

− 1
2 )Σ

1
2 . (7)

Its inverse mapping, from the manifold to the tangent space is called the logarithmic mapping LogΣ(Σi):
MC → TΣMC and is defined as:

LogΣ(Σi) = Σ
1
2 Log(Σ−

1
2 ΣiΣ

− 1
2 )Σ

1
2 . (8)

Exp(·) and Log(·) are the matrix exponential and matrix logarithm respectively. These two mappings
are illustrated in Fig. 3. The computation of these operators is straightforward for SPD matrices ofMC .
They are obtained from their eigenvalue decomposition:

Σ = U diag(λ1, . . . , λC)Uᵀ ,

Exp(Σ) = U diag(log(λ1), . . . , log(λC))Uᵀ ,

Log(Σ) = U diag(exp(λ1), . . . , exp(λC))Uᵀ ,

where λ1, . . . , λC are the eigenvalues and U is the matrix of eigenvectors of Σ. As any SPD matrix can
be diagonalized with strictly positive eigenvalues, Log(·) is always defined. Similarly the square root
Σ

1
2 is obtained as:

Σ
1
2 = U diag(λ

1
2
1 , . . . , λ

1
2
C)Uᵀ ,

and is unique. The same goes for Σ−
1
2 .
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TΣMC

MC

Σ

ExpΣ(Θi)
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Σ

TΣMC

MC

Θi

Σi

LogΣ(Σi)

Figure 3: Left: the exponential mapping of Θi, an element of the tangent space TΣMC at point Σ, on
the manifold MC is Σi. Right: the logarithmic mapping of Σi at point Σ is Θi on the tangent space
TΣMC .

4.2 Estimators of covariance matrices

Estimation of covariance matrices is a critical step required to design a working and efficient BCI system.
The covariance matrix is defined as Σ = E{(x − ω)(x − ω)ᵀ} and is unknown. Only an estimate Σ̂
could be computed from the observations. The first step is to choose an appropriate estimator. It is
crucial to verify that the obtained covariance matrices fulfill the following properties: they should be
accurate, symmetric, positive-definite, and well conditioned. The second step is to remove the outliers
properly, that is the samples that are contaminated either by exogenous or endogenous noise, to avoid
bias when estimating the mean of a class or when processing newly recorded EEG signals.

Regarding the first step, that is, the covariance estimation, an important property is the matrix con-
ditioning. It requires that the ratio between the maximum and minimum eigenvalue is not too large.
Moreover, to ensure the computational stability of the algorithm, the estimator should provide full-rank
matrices, and its inversion should not amplify estimation errors.

This section describes three different classes of estimators: the sample, the shrinkage, and the fixed-
point estimators. These classes of estimators are evaluated on a real EEG data set to assess their accuracy
in terms of classification and the condition of the obtained matrices. The most common estimator is
the Maximum Likelihood Estimator (MLE) under a multivariate Gaussian assumption. It is called the
empirical sample covariance matrix (SCM), defined as:

Σ̂scm =
1

N − 1

N∑
n=1

(xn − x̄)(xn − x̄)ᵀ

=
1

N − 1
X

(
IN −

1

N
1N1ᵀN

)
Xᵀ ,

(9)

where x̄ ∈ RC is the sample mean vector x̄ = 1
N

∑N
n=1 xn. In the matrix notation, IN is the N × N

identity matrix and 1N is the vector [1, . . . , 1]. The SCM is often normalized (Fukunaga, 1990) as:

Σ̂nscm =
C

N

N∑
n=1

(xn − x̄)(xn − x̄)ᵀ

σ2
xn

, (10)

with the inter-channel variance at time n defined as σ2
xn

= (xn − x̄)ᵀ(xn − x̄). Other normalization
techniques could be used. This estimation is fast and computationally simple. However when C ≈ N ,
the SCM is not a good estimator of the true covariance. In the case C > N , the SCM is not even full
rank.

To overcome the shortcomings of SCM, the shrinkage estimators have been developed as a weighted
combination of the SCM and a target covariance matrix, which is often chosen to be close to the identity
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matrix, that is, resulting from almost independent variables of unit variance:

Σ̂shrink = κΓ + (1− κ)Σ̂scm , (11)

where 0 6 κ < 1. This estimator provides a regularized covariance that outperforms the empirical
Σ̂scm for small sample size, that is C ≈ N . The shrinkage estimator has the same eigenvectors as the
SCM, but the extreme eigenvalues are modified, that is, the estimator is shrunk or elongated toward the
average. The different shrinkage estimators differ in their definition of the target covariance matrix Γ.
Ledoit and Wolf (2004) (Σ̂shrink_ledoit on Fig. 9) have proposed Γ = vIC , with v = Tr(Σ̂scm). Blankertz

et al. (2011) (Σ̂shrink_blank) defines Γ also as vIC but with v = Tr(Σ̂scm)
C . Schäfer (Σ̂shrink_schaf ) proposes

several ways of defining Γ depending on the observed Σ̂scm (Schäfer and Strimmer, 2005).
The fixed- covariance matrix (Pascal et al., 2005) is based on an M-estimator, which generalizes the

MLE, and is a solution to the following equation:

Σ̂fp = ˆ̀=
C

N

N∑
n=1

(
(xn − x̄)(xn − x̄)ᵀ

(xn − x̄)ᵀ ˆ̀−1(xn − x̄)

)
. (12)

As there is no closed form expression to Eq. (12), it can be written as a function of ˆ̀: g(ˆ̀) = Σ̂fp. g
admits a single fixed point ˆ̀∗, where g(ˆ̀∗) = ˆ̀∗, which is a solution to Eq. (12). Using ˆ̀

0 := Σ̂nscm as
the initial value of ˆ̀, it is solved recursively as ˆ̀

t −→
t→∞

ˆ̀∗.

4.3 Distances and means

From the definition of Riemannian manifolds, we have seen that they are defined by their atlas and by
the choice of an inner product defined on the tangent space. In the case of covariance matrices, there
exist several candidate inner products that lead to different distances and , thus to different geometries of
Riemannian manifolds. A distance function d :MC ×MC → R+ has the properties listed in Table 2
for all Σ1,Σ2,Σ3 ∈MC .

(i) Non-negativity d(Σ1,Σ2) ≥ 0
(ii) Identity d(Σ1,Σ2) = 0 iff Σ1 = Σ2

(iii) Symmetry d(Σ1,Σ2) = d(Σ2,Σ1)
(iv) Triangular inequality d(Σ1,Σ3) ≤ d(Σ1,Σ2) + d(Σ2,Σ3)

Table 2: Properties of a distance.

Divergences are very similar to distances, with the difference that properties (iii) and (iv) do not have
to be satisfied. In the context of SPD matrices, divergences and distances are carefully chosen to induce
a Riemannian metric. Divergences offer interesting properties but do not lead to qualitatively different
results. For the sake of clarity, this chapter focuses only on distances; an in-depth review of the existing
divergence and the analysis of their results are available in Kalunga et al. (2015).

As we will see in Section 4.4, the notion of mean, or center of mass, of a set of SPD matrices is
tightly linked with the task of classification in machine learning approaches. Given a set of covariance
matrices {Σi}i=1,...,I , the mean Σ̄ of those SPD matrices is a covariance matrix that minimizes the
dispersion of matrices Σi:

Σ̄ = µ({Σ1, . . . ,ΣI}) = arg min
Σ∈MC

I∑
i=1

d2(Σi,Σ) , (13)

where d(·, ·) is a distance between two matrices. In the literature, Σ̄ could be referred to as the geometric
mean, the Cartan mean, the Frechet mean, or the Karcher mean 4 (Ando et al., 2004; Lim and Pálfia,

4This appellation has been recently criticized by Karcher himself (Karcher, 2014).
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2012). Depending on the distance used, several means can be defined from (13). Hereafter, some of the
existing distances are briefly presented, along with their associated mean, and they are summarized in
Table 3.

A trivial choice is the Euclidean distance, which is not a Riemannian distance, and is derived from
the Frobenius inner product:

dE(Σ1,Σ2) = ‖Σ1 − Σ2‖F . (14)

Euclidean distance yields the arithmetic mean:

Σ̄E =
1

I

I∑
i=1

Σi . (15)

Averaging covariance matrices with this arithmetic mean is not adequate in the space of SPD matrices
for two main reasons: first, the Euclidean distance and averaging do not guarantee invariance under
inversion: a matrix and its inverse are supposed to be at the same distance from the identity matrix.
Second, the Euclidean averaging of covariance SPD leads to a swelling effect: the determinant of the
arithmetic mean of SPD matrices can be larger than the determinant of its individual components, as
illustrated in Fig. 4. Since the determinant of a covariance matrix is a direct measure of the dispersion of
the multivariate variable, the swelling effect introduces a large distortion on the dispersion of data (Ar-
signy et al., 2007). For these reasons, other means that adapt to the convex cone of SPD matrices are
more adequate than this arithmetic mean.
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Figure 4: Evolution of the determinant of a matrix along a geodesic. Both matrices being interpolated
have the same determinant (for t = 0 and t = 1); and along a Riemannian geodesic (in red), the
determinant remains the same, but along a Euclidean geodesic (in blue), the determinant rises. This
latter phenomenon is called the swelling effect.

To avoid these problems, a natural approach is to consider a distance built on curves from the man-
ifold, called geodesics; Pennec and Ayache (1998) give a method to generate invariant distance on
the manifold). The tangent vector of the geodesic γ(t) between Σ1 and Σ2, where γ(0) = Σ1 and
γ(1) = Σ2 is defined as v =

−−−→
Σ1Σ2 = LogΣ1

(Σ2). A natural distance between Σ1 and Σ2 can thus be
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defined as Moakher (2005):

dAIR(Σ1,Σ2) = ‖Log(Σ
−1/2
1 Σ2Σ

−1/2
1 )‖F =

(
C∑
c=1

log2 λc

)1/2

, (16)

where λc, c = 1, . . . , C, are the eigenvalues of Σ
−1/2
1 Σ2Σ

−1/2
1 . This distance is known as the affine-

invariant Riemannian (AIR) distance. Inserting (16) in (13) yields the mean Σ̄AIR associated to the
affine-invariant Riemannian metric:

I∑
i=1

Log(Σ̄
−1/2
AIR ΣiΣ̄

−1/2
AIR ) = 0 . (17)

It has no closed form solution and can be solved iteratively through a gradient descent algorithm (Fletcher
et al., 2004). This AIR distance has many properties (Bhatia, 2009, chap 6), and the most interesting
one is the invariance under congruent transformation:

dAIR(Σ1,Σ2) = dAIR(W ᵀΣ1W,W
ᵀΣ2W ) , (18)

for any invertible matrixW ∈ RC×C . This property is crucial, since it shows that a full-rank spatial filter
has no influence on Riemannian distance. Using Riemannian geometry, calculus is already performed
on the optimal feature space.

Another distance is the Log-Euclidean, which was introduced to alleviate the complexity involved in
the computation of the affine-invariant Riemannian distance and its related mean (Arsigny et al., 2007).
The mean associated to the Log-Euclidean distance corresponds to an arithmetic mean in the domain of
matrix algorithm. The distance between two SPD matrices is expressed as:

dLE(Σ1,Σ2) = ‖Log(Σ1)− Log(Σ2)‖F , (19)

and its associated mean is defined explicitly:

Σ̄LE = Exp

(
1

I

I∑
i=1

Log(Σi)

)
. (20)

Note that dLE can be interpreted at the Euclidean distance computed on the tangent plan at the identity
matrix. Hence, this distance can be generalized as in (Yger and Sugiyama, 2015) to other reference
points.

The distances presented above are summed up the following Table 3.

Distance Mean Reference

Euclidean dE = ‖Σ1 − Σ2‖F Σ̄E = 1
I

∑I
i=1 Σi

Log-Euclidean dLE = ‖Log(Σ1)− Log(Σ2)‖F Σ̄LE = Exp
(

1
I

∑I
i=1 Log(Σi)

)
Arsigny et al. (2007)

Affine-invariant dAIR = ‖Log(Σ−1
1 Σ2)‖F Algorithm 3 in Moakher (2005)

Fletcher and Joshi (2004)

Table 3: Some of the distances and means considered in this chapter.

4.4 Minimum distance to mean classifier

The distances seen in the previous section allow one to take into account the curvature of the space of
SPD matrices. Nonetheless, to be able to exploit those Riemannian metric in the context of BCI, one
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Σ̄(1)

Σ

Σ̄(2)

Figure 5: Illustration of a two-classes classification in the space of SPD matrices with the MDM algo-
rithm.

needs to design an algorithm to discriminate between the different patterns in brain signals. One of the
most simple classification algorithms consists in assigning a previously unseen signal to the class with
the closest mean. This implies a computation of means of classes and a measure of distances from the
means.

The classifier Minimum Distance to Mean (MDM), introduced in Barachant et al. (2010, 2012), is
presented for multi-class classification5. It is a simple Bayesian classifier, under the hypotheses that
classes have identical dispersions and that it is operating on a manageable space. The covariance ma-
trices of EEG trials are classified based on their distance to the k = 1 . . .K centers of the classes Σ̄(k),
that is, means, medians or centroids, as illustrated in Fig. 5. The predicted class k∗ of the current matrix
Σ is defined as:

k∗ = arg min
k

d(Σ, Σ̄(k)) . (21)

As described in Algorithm 1, from I labeled training trials {Xi}Ii=1 recorded per subject, K centers of
classes Σ̄(k) are estimated (step 3, detailled in Algorithm 1) . A new unlabeled test trial Z is predicted
to belong to the class whose mean Σ̄(k) is the closest to the trial covariance matrix, with respect to one
of the distances from Table 3 (step 2 of Algorithm 2).

This very simple classifier has outperformed classical approaches based on spatial filtering and ma-
chine learning classifiers (Barachant et al., 2013a,b). Note that MDM is a classifier that can be applied
offline or block-online (thus, in the experiments, these two cases will be grouped), but not online.

Algorithm 1 Offline Estimation of Riemannian Centers of Classes
Inputs: Xi ∈ RC×N , for i = 1, . . . , I , a set of labeled trials.
Inputs: I(k), a set of indices of trials belonging to class k.
Output: Σ̄(k), k = 1, . . . ,K, centers of classes.

1: Compute covariance matrices Σi of Xi

2: for k = 1 to K do
3: Σ̄(k) = µ({Σi | i ∈ I(k)}) , Eq. (13)
4: end
5: return Σ̄(k)

5A sample code is available at https://git.io/vDVRB.
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Algorithm 2 Minimum Distance to Mean

Inputs: Σ̄(k), K centers of classes from Algorithm 1.
Input: Z ∈ RC×N , an unlabeled test trial.
Output: k∗, the predicted label of Z.

1: Compute covariance matrix Σ of Z
2: k∗ = argmink d(Σ, Σ̄(k))
3: return k∗

4.5 MDM for SSVEP

The MDM has been extended in Congedo et al. (2013); Congedo (2013) for possible offline applications
on SSVEP signals. For SSVEP classification, K = F + 1 classes are considered: one class for each
target frequency, and one for the resting state.

To embed frequency information of SSVEP in the covariance matrices, we use a construction of ma-
trices proposed in Congedo et al. (2013). Let X ∈ RC×N be an EEG trial measured on C channels and
N samples in an SSVEP experiment with F stimulus blinking at different frequencies. The covariance
matrices are estimated6 from a modified version of the input signal X:

X ∈ RC×N →

Xfreq1
...

XfreqF

 ∈ RFC×N , (22)

whereXfreqf is the input signalX band-pass filtered around frequency freqf , f = 1, . . . , F . Henceforth,
all EEG signals will be considered as filtered and modified by Eq. (22), as shown in Fig. 6. The asso-
ciated covariance matrix Σ ∈ MFC (i.e., a manifold of dimension m = FC(FC + 1)/2) is estimated
using the Schäfer shrinkage estimator (Schäfer and Strimmer, 2005) which was experimentally found to
be the most adequate for the set of data used (Kalunga et al., 2016). These matrices are shown on Fig. 7.

4.6 Online MDM

The MDM algorithm as described above is suitable for offline and block-online BCI settings. Covari-
ance matrices were computed from a reference time given by the cue onsets used to locate SSVEP
occurrences. However, in an online and asynchronous setup, there is no cue onset, and EEG epochs are
thus classified on the fly. In this section we present an MDM online algorithm suitable for asynchronous
BCI Kalunga et al. (2016).

The algorithm identifies a period (i.e., time interval) in the online EEG χ ∈ RFC×N , where N is
the number of recorded samples, associated with a high probability (above threshold) of observing an
SSVEP at a specific frequency, as illustrated in Algorithm 3.

To locate this interval, we focus on the lastD recorded EEG overlapping epochs
{
Xj ∈ RFC×w}

j∈J (d)
,

with the set of indices J (d) = d−D+ 1, . . . , d− 1, d; where d is the index of the current epoch Xd in
the online recording χ(n). Epochs have size w, and the interval between two consecutive epochs is ∆n,
with w > ∆n:

Xd = χ(n− w, . . . , n) . (23)

To obtain the firstD epochsXj ∈ J (d), at leastw+(D−1) ∆n samples of χ should be recorded (step 4).
The classification outputs k∗j∈J (d) obtained in step 3 by applying Algorithm 2 onXj ∈ J (d) are stored

in a vector K, which always contains the latest D classification outputs. The class that occurs the most
in K (step 5), with an occurrence probability ρ(k) above a defined threshold ϑ, is considered to be the
class, denoted k̄, of the ongoing EEG recording χ(n). The vector ρ is defined as

ρ(k) =
#{k∗j∈J (d) = k}

D
, for k = 1, . . . ,K, (24)

6A code example is available at https://git.io/vDVRI
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Figure 6: Samples of EEG trials from Eq. (22). For each sub-band Xfreqf only channel Oz is shown.
Each subplot shows the first seconds of a trial from classes: (a) resting-state, (b) 13 Hz, (c) 21 Hz, (d)
17 Hz.
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Figure 7: Representation of covariance matrices: each image is the covariance matrix mean Σ̄(k) of the
class k, for one session of the recording. The diagonal blocks show the covariance in different frequency
bands, that is, 13 Hz in the upper-left block, 21 Hz in the middle, and 17 Hz in the bottom-right. Subjects
with highest (a) and lowest (b) BCI performance.
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with k̄ = arg maxk ρ(k); then ρ(k̄) is compared to the threshold ϑ. If ϑ is not reached within the last
D epochs, the classification output is held back, and the sliding process continues until ϑ is reached. In
the last D epochs, once a class k̄ has been identified, a curve direction criterion is introduced to enforce
the robustness of the result. For class k̄ to be validated, this criterion requires that the direction taken by
the displacement of covariance matrices Σj∈J (d) be toward the center of class Σ̄(k̄). Hence, δ̃k̄, the sum
of gradients (i.e., differentials) of the curve made by distances from Σj∈J (d) to Σ̄(k̄) should be negative
(step 8):

δ̃k̄ =
∑

j∈J (d)

∆δk̄(j)

∆j
=

d∑
j=d−D+2

δk̄(j)− δk̄(j − 1) < 0

with δk̄(j) =
δ(Σj , Σ̄

(k̄))∑K
k=1 δ(Σj , Σ̄(k))

.

(25)

The occurrence criterion is inspired by the dynamic stopping of Verschore et al. (2012); there is
no fixed trial length for classification. The occurrence criterion ensures that the detected user intention
is unaffected by any short time disturbances attributed to noise or subject inattention, as presented in
Algorithm 3. This approach offers a good trade-off to obtain robust results within a short and flexible
time.

The curve direction criterion solves both the problems of latency in the EEG synchronization and the
problem of the delays inserted by the EEG epochs processing. Indeed, some EEG epochs gather signals
from different classes, that is, intermediary states, and might be wrongfully classified if the decision
is solely based on the distance with the center of the class. This situation and the effect of the curve
direction criterion are shown in Fig. 8. The colors in the figure show the classification result before the
curve direction criteria. Ensuring that the covariance matrices are displaced toward the center of the
detected class provides a guarantee that it matches the current EEG state. Inversely, if the direction of
the curve is moving away from the center of the detected class, it might indicate that there has been a
change in the EEG state that has not been detected.
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Figure 8: Covariance matrices trajectory during a 4-class SSVEP online recording. The circles represent
class centers. The triangles mark the beginning of a new trial in the experiment, whose true class is
indicated by the triangle’s color. The colors of the crosses show the class identified by MDM before the
curve direction criterion is applied. 8(a) shows the first 7 trials. The first 3 trials are from the resting
class, the remaining are respectively class 13, 17, and 21 Hz. 8(b) shows the entire recording. Data are
taken from the subject with the highest BCI performance.

Algorithm 3 has four hyperparameters: w, ∆n, D, and ϑ. For the results of online classification
presented in Table 5, they are set through cross validation to: D=5, ϑ=0.7, w = 2.6, ∆n = 0.2.
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Although a large window size w is expected to increase the classification accuracy, it increases the
response time, thus reducing the time resolution, and extends the overlap between different EEG states.
The step size ∆n should be set to a minimum value to allow a maximum number of overlapping epochs
(D) within a short time. However, it should be large enough to avoid too many calculations within a
time interval with small or inexistent changes in EEG states. If the number of epoch D is too small,
the classification will be sensitive to nonintentional and abrupt changes in the EEG. A very large D will
increase the momentum and reinforce the influence of the past EEG signals. It should also be mentioned
that both the occurrence and the curve direction criteria cannot have a significant impact if the value of
D is too small. The probability threshold parameter ϑ acts like a rejection parameter: high ϑ values
correspond to high rejection rate.

Algorithm 3 Online MDM
Inputs: hyper-parameters w, ∆n, D, and ϑ.
Inputs: Σ̄(k), k = 1, . . . ,K, centers of classes from Algorithm 1 (offline training).
Inputs: Online EEG recording χ(n).
Output: k̃(n), online predicted class.

1: d = 1
2: for n = w to N step ∆n
3: Epoch Xd, Eq. (23), and classify it with Algorithm 2
4: if d ≥ D
5: Find the most recurrent class in K = k∗j∈J (d) | k̄ = arg maxk ρ(k), Eq. (24)
6: if ρ(k̄) > ϑ
7: Compute δ̃k̄, Eq. (25)
8: if δ̃k̄ < 0
9: return k̃ = k̄

10: end
11: end
12: end
13: d = d+ 1
14: end

5 Experimental evaluation on SSVEP dataset

5.1 SSVEP dataset description

To assess the covariance estimators, a benchmark is proposed on real SSVEP data set; this data set is
freely available7. The signals are recorded from 12 subjects during an SSVEP experiment. EEG is
measured on C = 8 channels: OZ , O1, O2, POZ , PO3, PO4, PO7, and PO8. The ground and the
reference electrodes were placed on FZ , and the right hear mastoid respectively. The acquisition rate is
Ts = 256 Hz on a gTec MobiLab Amp (gTec, Graz, Austria). The subjects are presented with F = 3
visual target stimuli blinking respectively at freq = 13, 17, and 21 Hz. It is a K = 4 classes BCI setup
made of the F = 3 stimulus classes and one resting class (no-SSVEP). In a session, which lasts 5 min,
32 trials are recorded: 8 for each visual stimulus and 8 for the resting class. The number of sessions
recorded per subject varies from 2 to 5. Thus the longest EEG recorded for a single subject is 25 min
or 160 trials. The trial length is 6 s, that is N = 6 × Ts = 1536 samples. For each subject, a test set is
made of 32 trials, whereas the remaining trials (which might vary from 32 to 128) make up the training
set.

7Data could be freely downloaded from https://github.com/sylvchev/dataset-ssvep-exoskeleton.
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5.2 Evaluation of the covariance estimators

The effectiveness of covariance matrix estimators is evaluated for SSVEP signals. The evaluation is
done in terms of classification accuracy, and the conditioning of covariance matrices is also investigated.
A bootstrapping with 1000 replications is performed to assess the performances of each estimator. Esti-
mators are compared on 10 trial lengths t ∈ {0.5, 1.0, . . . 5.0} seconds, as these are known to affect the
estimators performance. Here N ∈ {128, 256, . . . , 1280} is computed as N = t× Ts.

Fig. 9 shows the classification accuracy of each estimator computed across all subjects. Even if the
error bars show an important intersubject variability, the increase in the accuracy can be attributed to
the fact that the relevant patterns in EEG accumulate with the trial length, producing better estimation
of the covariance matrices. This is known to be particularly true for the SCM estimator, and it could be
seen in Fig. 9. It appears that shrinkage estimators (especially Ledoit and Schäfer) are less affected by
the reduction of epoch sizes than the other estimators. This is a direct consequence of the regularization
between the sample covariance matrices and the targeted (expected) covariance matrix of independent
variables.
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Figure 9: Comparison of covariance estimators in terms of classification accuracy obtained with offline
MDRM with increasing EEG trial length. For each trial length, the accuracy mean+/-std across all
subjects and across all replications is shown.

For computational purposes, it is important to look at the matrix conditioning. Fig. 10 shows the
ratio C between the largest and smallest eigenvalues: in well-conditioned matrices, C is small. Shrinkage
estimators offer better conditioned matrices whereas the SCM, NSCM, and fixed-point matrices are ill-
conditioned below 2 s of trial length and may result in singular matrices.

It appears in Fig. 9 and 10 that the shrinkage estimator, especially the Ledoit-Wolfe and the Schäfer
ones, are a good choice to obtain robust and accurate results, even if the covariances are estimated on
a small number of samples. This is an important aspect, as the processing time induces a delay in the
processing and should thus be reduced to provide responsive HMI.

5.3 Offline classification of SSVEP

Table 4 shows the offline classification accuracy for each subject obtained by the application of the MDM
described in Section 4.4. The distances and mean listed in Table 3 are used: Euclidean, Log-Euclidean,
and affine-invariant Riemannian. The performance of MDM approaches is compared to two CCA-based
state-of-the-art methods proposed by (Lin et al., 2006) and (Nakanishi et al., 2014) respectively. In the
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Figure 10: Covariance matrices condition expressed as the ratio C between largest and smallest eigen-
values for the different covariance estimators. The comparison is made with increasing EEG trial length.

implementation of these methods, the epochs are taken from τ0 + 2s, where τ0 is the start time of the
trial.

The MDM approach with Riemannian distances outperforms both CCA-based methods with an
average classification accuracy of 89.2±4.9 % and an ITR of 15.52±5.2 bits/min for the Log-Euclidean,
and 90.4±7.8 % and ITR of 16.3±5.3 bits/min for the AIR. The method by Lin et al. ranks third
with 87.5% ±15.1 % and 15.5±6.8 bits/min. The method proposed by Nakanishi et al., which could be
expected to achieve better results as reported in Nakanishi et al. (2014), only ranks fourth. This is mainly
due to the fact that this method requires information on the phase of the stimuli. In fact, Nakanishi et
al. use the average of all training trials belonging to a unique class as a reference signal in the CCA.
When SSVEP trials belonging to a unique trial are not in-phase, which is the case in the current work,
averaging them will cancel the signal. The MDM approach with Euclidean distance has the lowest
performance. This shows how inappropriate it is to use Euclidean geometry on covariance matrices as
the lie on a curved space.

Offline algorithms for SSVEP classification
CCA MDM

Lin et al. Nakanishi et al. Euclidean Log-Euclidean Affine-invariant
acc(%) itr(bpm) acc(%) itr(bpm) acc(%) itr(bpm) acc(%) itr(bpm) acc(%) itr(bpm)

S1 91.7 16.3 67.6 3.5 71.6 6.6 86.2 13.1 84.7 12.22
S2 45.8 0.7 66.0 3.2 46.7 0.8 77.4 8.8 79.4 9.79
S3 100.0 23.8 90.2 10.3 83.6 11.6 99.2 22.7 99.3 22.7
S4 97.9 21.3 78.3 6.1 66.2 4.9 89.7 15.0 89.7 15.05
S5 83.3 11.5 76.0 5.5 46.5 0.8 85.7 12.7 89.5 14.94
S6 77.1 8.7 72.2 4.5 46.4 0.8 84.5 12.1 87.2 13.63
S7 98.6 22.0 90.0 10.2 78.4 9.1 98.8 22.1 99.8 23.5
S8 97.9 21.3 90.4 10.3 80.5 10.2 98.9 22.3 99.7 23.2
S9 91.7 16.3 64.0 2.8 68.2 5.5 83.3 11.5 85.8 12.8
S10 80.2 10.0 79.2 6.4 53.9 1.9 90.9 15.8 93.1 17.3
S11 89.6 15.0 54.8 1.4 56.2 2.4 77.4 8.8 78.2 9.2
S12 95.8 19.4 82.3 7.4 82.9 11.2 97.8 21.2 98.6 22.0

Mean 87.5±15.1 15.5±6.8 81.2±14.1 11.8±6.0 65.1±9.5 5.5±4.2 89.2±4.9 15.52±5.2 90.4±7.8 16.3±5.3

Table 4: Offline performance in terms of accuracy and ITR. Five methods are compared: (1) CCA
approach introduced by Lin et al. (2006), (2) CCA approach introduced by Nakanishi et al. (2014), (3)
MDM approach with Euclidean mean and distance, (4) MDM with Log-Euclidean mean and distance,
and (5) MDM with affine-invariant distance and mean as described in Alg. (2).
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Online algorithms for SSVEP classification
CCA+SVM FBCCA Online MDM

Kalunga et al. Chen et al. Euclidean Log-Euclidean Affine-invariant
Sub. acc (%) acc (%) acc (%) acc (%) acc (%)

1 54.68 75.00 53.12 71.88 73.44
2 37.50 41.67 43.75 78.13 79.69
3 89.06 85.42 67.19 85.94 85.93
4 79.69 97.92 54.68 84.38 87.50
5 50.00 64.58 37.50 62.50 68.75
6 87.50 75.00 34.37 84.38 85.94
7 77.08 80.56 60.42 87.50 88.54
8 73.44 72.92 67.19 90.63 92.19
9 60.94 66.67 57.81 70.31 70.31
10 67.97 65.62 38.28 75.00 80.47
11 71.88 64.58 48.44 60.94 65.63
12 95.63 80.83 71.25 96.25 96.69

Mean 70.45±16.5 72.56±13.3 52.83±12.0 78.98±10.6 81.27±9.5

Table 5: Subject classification accuracies (acc(%)) elapsed for the classification of a single trial. Classi-
fication is performed with MDM using either Euclidean or Riemannian means (see Table 3).

5.4 Online classification of SSVEP

For online implementation, the different algorithms are compared in terms of classification accuracy.
The performances achieved using online MDM with the distances mentioned in Table 3 are compared
to the two state-of-the-art methods, CCA+SVM and FBCCA, both described in Section 3.2. For these
methods, the number of harmonics is set to Nh = 6. This value maximizes the classification accuracy
of standard CCA in an offline analysis on training data. In CCA+SVM, the EEG is filtered between
13 and 126 Hz to accommodate all six harmonics. In FBCCA, the Nb sub-bands are constructed such
that the nth sub-band starts from n × 8 Hz and ends at 93 Hz, that is, 10 times the stimuli frequency
range of 8 Hz (i.e., 13 to 21 Hz). Parameters a, b and Nb from Eq. (6) and (5) were set to 2, 0, and 3
respectively, through a grid search where their values were respectively limited to a = 0.25 × ia, with
ia = 0, 1, . . . , 40, b = 0.25× ib, with ib = 0, 1, . . . , 4, and Nb = iN , with iN = 1, . . . , 7.

Table 5 summarizes results obtained for each subject and each method. Using AIR distance sig-
nificantly improves classification performances (81.27%), in comparison with the state-of-the-art CCA-
based methods that have an average performance across subjects of 70.45% and 72.56% for CCA+SVM
and FBCCA respectively, and in comparison to the MDM with Euclidean distance that has an average
performance across subjects of 52.83%. Relying on CCA coefficients for classification, as in the classic
CCA method (Lin et al., 2006) or as in FBCCA (Chen et al., 2015a), has a strong limitation as it could
not account for the reject class. As the reject class does not have a specific reference signal, it is not
possible to determine the correlation coefficients associated with this class. This limitation disqualifies
the FBCCA for any real implementation of BCI and avoids confronting the most challenging case (iden-
tifying when the user does not look at any stimulus) from a machine learning perspective. Nonetheless,
to propose a thorough comparison with the existing approaches, we provide the results obtained with
FBCCA without including the resting-state (no-SSVEP) class.

This experiment on real EEG data shows that it is crucial to process covariance matrices with dedi-
cated Riemannian tools, affecting the efficiency of the classification. The obtained results show that the
simple MDM classification scheme used within the Riemannian framework outperforms CCA-based
state-of-the-art methods for SSVEP classification. With only four classes (three SSVEP stimulation
frequencies and a reject class), this experiment does not aim at improving the ITR of the BCI system.
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6 Conclusions

In this chapter, we have reviewed the different algorithms and implementations for feature extraction
in SSVEP-based BCI. The spatial covariance, which describes the relative changes observed between
the electrodes, plays a key role in the success of the state-of-the-art approaches. This observation also
applies for several EEG-based BCIs, such as systems relying on ERP or MI. SSVEP offers promising
results, as it is suggested by the fact that the highest ITR reported in the literature are using SSR. It
is thus important to use the appropriate tools and algorithms when building up such a BCI system, to
ensure that all the signal processing chain could work in online or block-online settings.

To estimate correctly the covariance from the data, a trade-off should be sought between accuracy
and temporal precision: using some large time windows to estimate covariance allows to compute accu-
rate and well-conditioned matrices at the expense of time resolution. Using an adequate estimator, it is
possible to use smaller time windows (on the order of 1 or 2 s) for estimating covariance, while avoiding
ill-conditioned matrices. One should keep in mind that this trade-off has a direct impact on the system
reactivity and on the precision for online settings. The delay introduced by the covariance estimation
lower the ITR: this has a strong incidence on the HMI aspect and it should be taken into account when
designing experiments.

In the BCI literature, most of the studies propose offline analyses, which are of interest for a better
understanding of the neurological phenomena. But offline implementations are not suitable to design
a BCI as they need information from the whole session to extract features and to provide classification
decisions. Converting offline algorithms to online ones is not an easy task and it systematically has a
negative impact on the classification accuracy.

A common approach is to rely on spatial filters, that are carefully tuned during a calibration session.
The system could then work online, applying the learned spatial filters on the acquired signal. The main
disadvantage of these filters is that they are user specific and session specific. Moreover, these filters
are best exploited when dealing with a clean signal, without artifacts, constraining the experiments to be
conducted in a strongly controlled environment. Riemannian approaches offer different methods, that
are efficient and more robust to noise. The algorithms could be relatively simple, such as the MDRM
classifiers. Note that the online MDM introduced here for SSVEP data could be applied identically to
MI-based BCI.

Future work on this topic could range from very practical works and theoretical advances. For
example, it is possible to improve the MDM classifier, taking into account various information about the
subject. Another possibility is to investigate the distribution of covariance matrices on the manifold, as
suggested in the work of Zanini et al. (2016) or of Gayraud et al. (2016). From a machine learning point
of view, there are still many open questions on the possibilities to include transfer learning to cope with
session-to-session or inter-subject variability (Waytowich et al., 2016).
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