P. Absil, R. Mahony, and R. Sepulchre, Optimization algorithms on matrix manifolds, 2009.
DOI : 10.1515/9781400830244

T. Ando, C. Li, M. , and R. , Geometric means. Linear algebra and its applications, pp.305-334, 2004.

V. Arsigny, P. Fillard, X. Pennec, and N. Ayache, Geometric Means in a Novel Vector Space Structure on Symmetric Positive???Definite Matrices, SIAM Journal on Matrix Analysis and Applications, vol.29, issue.1, pp.328-347, 2007.
DOI : 10.1137/050637996

URL : https://hal.archives-ouvertes.fr/inria-00616031

A. Barachant, A. Andreev, and M. Congedo, The Riemannian potato: an automatic and adaptive artifact detection method for online experiments using Riemannian geometry, Proceedings of TOBI Workshop IV, pp.19-20, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00781701

A. Barachant, S. Bonnet, M. Congedo, and C. Jutten, Riemannian Geometry Applied to BCI Classification, Latent Variable Analysis and Signal Separation, pp.629-636, 2010.
DOI : 10.1007/978-3-642-15995-4_78

URL : https://hal.archives-ouvertes.fr/hal-00602700

A. Barachant, S. Bonnet, M. Congedo, and C. Jutten, Multiclass Brain???Computer Interface Classification by Riemannian Geometry, IEEE Transactions on Biomedical Engineering, vol.59, issue.4, pp.920-928, 2012.
DOI : 10.1109/TBME.2011.2172210

URL : https://hal.archives-ouvertes.fr/hal-00681328

A. Barachant, S. Bonnet, M. Congedo, and C. Jutten, Classification of covariance matrices using a Riemannian-based kernel for BCI applications, Neurocomputing, vol.112, pp.172-178, 2013.
DOI : 10.1016/j.neucom.2012.12.039

URL : https://hal.archives-ouvertes.fr/hal-00820475

R. Bhatia, Positive definite matrices, 2009.
DOI : 10.1515/9781400827787

URL : https://hal.archives-ouvertes.fr/hal-01500514

B. Blankertz, S. Lemm, M. Treder, S. Haufe, and K. Müller, Single-trial analysis and classification of ERP components ??? A tutorial, NeuroImage, vol.56, issue.2, pp.56814-825, 2011.
DOI : 10.1016/j.neuroimage.2010.06.048

X. Chen, Y. Wang, S. Gao, T. Jung, and X. Gao, Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain???computer interface, Journal of Neural Engineering, vol.12, issue.4, p.46008, 2015.
DOI : 10.1088/1741-2560/12/4/046008

X. Chen, Y. Wang, M. Nakanishi, X. Gao, T. Jung et al., High-speed spelling with a noninvasive brain???computer interface, Proceedings of the national academy of sciences, pp.112-6058, 2015.
DOI : 10.1109/78.157221

URL : http://www.pnas.org/content/112/44/E6058.full.pdf

M. Congedo, EEG Source Analysis. Habilitation à diriger des recherches, 2013.
DOI : 10.1016/b978-0-12-382235-2.00002-0

URL : https://hal.archives-ouvertes.fr/tel-00880483

M. Congedo, A. Barachant, and A. Andreev, A new generation of brain-computer interface based on Riemannian geometry. arXiv preprint, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00879050

M. Congedo, A. Barachant, and R. Bathia, Riemannian geometry for EEG-based braincomputer interfaces; a primer and a review, Brain-Computer Interfaces, pp.1-20, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01570120

R. S. Fisher, G. Harding, G. Erba, G. L. Barkley, and A. Wilkins, Photic- and Pattern-induced Seizures: A Review for the Epilepsy Foundation of America Working Group, Epilepsia, vol.62, issue.4, pp.461426-1441, 2005.
DOI : 10.1212/01.WNL.0000115391.40539.8B

J. Fletcher and S. , Principal Geodesic Analysis on Symmetric Spaces: Statistics of Diffusion Tensors, Computer Vision and Mathematical Methods in Medical and Biomedical Image Analysis, pp.87-98, 2004.
DOI : 10.1007/978-3-540-27816-0_8

P. T. Fletcher, C. Lu, S. M. Pizer, and S. Joshi, Principal Geodesic Analysis for the Study of Nonlinear Statistics of Shape, IEEE Transactions on Medical Imaging, vol.23, issue.8, pp.23995-1005, 2004.
DOI : 10.1109/TMI.2004.831793

K. Fukunaga, Introduction to statistical pattern recognition, 1990.

N. Gayraud, N. Foy, and M. Clerc, A Separability Marker based on high-dimensional statistics for classification confidence assessment, 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2016.
DOI : 10.1109/SMC.2016.7844725

URL : https://hal.archives-ouvertes.fr/hal-01407759

D. R. Hardoon, S. R. Szedmak, and J. R. Shawe-taylor, Canonical Correlation Analysis: An Overview with Application to Learning Methods, Neural Computation, vol.10, issue.12, pp.162639-2664, 2004.
DOI : 10.1093/biomet/58.3.433

URL : http://eprints.ecs.soton.ac.uk/9225/01/tech_report03.pdf

C. S. Herrmann, Human EEG responses to 1?100???Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena, Experimental Brain Research, vol.137, issue.3-4, pp.346-353, 2001.
DOI : 10.1007/s002210100682

H. Hotelling, RELATIONS BETWEEN TWO SETS OF VARIATES, Biometrika, vol.28, issue.3-4, pp.321-377, 1936.
DOI : 10.1093/biomet/28.3-4.321

S. Jayasumana, R. Hartley, M. Salzmann, H. Li, and M. Harandi, Kernel Methods on the Riemannian Manifold of Symmetric Positive Definite Matrices, 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp.73-80, 2013.
DOI : 10.1109/CVPR.2013.17

E. Kalunga, K. Djouani, Y. Hamam, S. Chevallier, and E. Monacelli, SSVEP enhancement based on Canonical Correlation Analysis to improve BCI performances, 2013 Africon, pp.1-5, 2013.
DOI : 10.1109/AFRCON.2013.6757776

URL : https://hal.archives-ouvertes.fr/hal-01352059

E. K. Kalunga, S. Chevallier, Q. Barthélemy, K. Djouani, Y. Hamam et al., From Euclidean to Riemannian Means: Information Geometry for SSVEP Classification, Geometric Science of Information, pp.595-604, 2015.
DOI : 10.1007/978-3-319-25040-3_64

URL : https://hal.archives-ouvertes.fr/hal-01351753

H. Karcher, Riemannian center of mass and so called Karcher mean, 2014.

O. Ledoit and M. Wolf, A well-conditioned estimator for large-dimensional covariance matrices, Journal of Multivariate Analysis, vol.88, issue.2, pp.365-411, 2004.
DOI : 10.1016/S0047-259X(03)00096-4

URL : https://doi.org/10.1016/s0047-259x(03)00096-4

Y. Li, K. Wong, D. Bruin, and H. , Electroencephalogram signals classification for sleep-state decision ??? a Riemannian geometry approach, IET Signal Processing, vol.6, issue.4, pp.288-299, 2012.
DOI : 10.1049/iet-spr.2011.0234

Y. Li and K. M. Wong, Riemannian Distances for Signal Classification by Power Spectral Density, IEEE Journal of Selected Topics in Signal Processing, vol.7, issue.4, pp.655-669, 2013.
DOI : 10.1109/JSTSP.2013.2260320

Y. Lim and M. Pálfia, Matrix power means and the Karcher mean, Journal of Functional Analysis, vol.262, issue.4, pp.1498-1514, 2012.
DOI : 10.1016/j.jfa.2011.11.012

URL : https://doi.org/10.1016/j.jfa.2011.11.012

Z. Lin, C. Zhang, W. Wu, and X. Gao, Frequency Recognition Based on Canonical Correlation Analysis for SSVEP-Based BCIs, Biomedical Engineering IEEE Transactions on, issue.12, pp.532610-2614, 2006.
DOI : 10.1109/tbme.2006.886577

F. Lotte and C. Guan, Regularizing Common Spatial Patterns to Improve BCI Designs: Unified Theory and New Algorithms, IEEE Transactions on Biomedical Engineering, vol.58, issue.2, pp.355-362, 2011.
DOI : 10.1109/TBME.2010.2082539

URL : https://hal.archives-ouvertes.fr/inria-00476820

M. Moakher, A Differential Geometric Approach to the Geometric Mean of Symmetric Positive-Definite Matrices, SIAM Journal on Matrix Analysis and Applications, vol.26, issue.3, pp.735-747, 2005.
DOI : 10.1137/S0895479803436937

S. T. Morgan, J. C. Hansen, and S. A. Hillyard, Selective attention to stimulus location modulates the steady-state visual evoked potential., Proceedings of the National Academy of Sciences, pp.934770-4774, 1996.
DOI : 10.1073/pnas.93.10.4770

M. Nakanishi, Y. Wang, Y. Wang, Y. Mitsukura, J. et al., A HIGH-SPEED BRAIN SPELLER USING STEADY-STATE VISUAL EVOKED POTENTIALS, International Journal of Neural Systems, vol.23, issue.06, p.241450019, 2014.
DOI : 10.1088/1741-2560/7/1/016010

E. Niedermeyer and F. Lopes-da-silva, Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 2004.

F. Pascal, P. Forster, J. P. Ovarlez, and P. Arzabal, Theoretical analysis of an improved covariance matrix estimator in non-gaussian noise, IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005.
URL : https://hal.archives-ouvertes.fr/halshs-00158387

M. A. Pastor, J. Artieda, J. Arbizu, M. Valencia, and J. C. Masdeu, Human cerebral activation during Steady-State Visual-Evoked responses, The Journal of Neuroscience, vol.23, issue.37, pp.11621-11627, 2003.

X. Pennec and N. Ayache, Uniform distribution, distance and expectation problems for geometric features processing, Journal of Mathematical Imaging and Vision, vol.9, issue.1, pp.49-67, 1998.
DOI : 10.1023/A:1008270110193

URL : https://hal.archives-ouvertes.fr/inria-00615085

D. Regan, COMPARISON OF TRANSIENT AND STEADY-STATE METHODS, Annals of the New York Academy of Sciences, vol.97, issue.1 Evoked Potent, pp.45-71, 1982.
DOI : 10.1016/0042-6989(73)90064-3

J. Schäfer and K. Strimmer, A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics, Statistical applications in genetics and molecular biology, 2005.
DOI : 10.1093/bioinformatics/18.2.287

P. Stawicki, F. Gembler, and I. Volosyak, Brain Computer Interfaces Handbook: Technological and Theoretical Advances, chapter Design and Development of User Friendly SSVEP-based BCI Applications for Elderly People, 2017.

T. Takahashi, Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, chapter Activation methods, pp.241-262, 2004.

R. Tomioka, K. Aihara, and K. Müller, Logistic regression for single trial EEG classification, NIPS, pp.1377-1384, 2007.

H. Verschore, P. Kindermans, D. Verstraeten, and B. Schrauwen, Dynamic Stopping Improves the Speed and Accuracy of a P300 Speller, Artificial Neural Networks and Machine Learning? ICANN 2012, pp.661-668, 2012.
DOI : 10.1007/978-3-642-33269-2_83

F. Vialatte, M. Maurice, J. Dauwels, and A. Cichocki, Steady-state visually evoked potentials: Focus on essential paradigms and future perspectives, Progress in Neurobiology, vol.90, issue.4, pp.418-438, 2010.
DOI : 10.1016/j.pneurobio.2009.11.005

N. R. Waytowich, V. J. Lawhern, A. W. Bohannon, K. R. Ball, L. et al., Spectral Transfer Learning Using Information Geometry for a User-Independent Brain-Computer Interface, Frontiers in Neuroscience, vol.113, issue.270, 2016.
DOI : 10.1016/S1388-2457(02)00057-3

J. Wolpaw, N. Birbaumer, D. J. Mcfarland, G. Pfurtscheller, and T. M. Vaughan, Brain???computer interfaces for communication and control, Clinical Neurophysiology, vol.113, issue.6, pp.767-791, 2002.
DOI : 10.1016/S1388-2457(02)00057-3

F. Yger, A review of kernels on covariance matrices for BCI applications, 2013 IEEE International Workshop on Machine Learning for Signal Processing (MLSP), pp.1-6, 2013.
DOI : 10.1109/MLSP.2013.6661972

F. Yger, M. Berar, L. , and F. , Riemannian Approaches in Brain-Computer Interfaces: A Review, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.25, issue.10, 2017.
DOI : 10.1109/TNSRE.2016.2627016

URL : https://hal.archives-ouvertes.fr/hal-01394253

F. Yger and M. Sugiyama, Supervised LogEuclidean metric learning for symmetric positive definite matrices. arXiv preprint, 2015.

P. Zanini, M. Congedo, C. Jutten, S. Said, and Y. Berthoumieu, Parameters estimate of Riemannian Gaussian distribution in the manifold of covariance matrices, 2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM), 2016.
DOI : 10.1109/SAM.2016.7569687

URL : https://hal.archives-ouvertes.fr/hal-01325055

D. Zhu, J. Bieger, G. G. Molina, and R. M. Aarts, A Survey of Stimulation Methods Used in SSVEP-Based BCIs, Computational Intelligence and Neuroscience, vol.49, pp.1-12, 2010.
DOI : 10.1073/pnas.0606668103