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Abstract. The translation of brain activity into user command, through
Brain-Computer Interfaces (BCI), is a very active topic in machine learn-
ing and signal processing. As commercial applications and out-of-the-lab
solutions are proposed, there is an increased pressure to provide on-
line algorithms and real-time implementations. Electroencephalography
(EEG) systems offer lightweight and wearable solutions, at the expense
of signal quality. Approaches based on covariance matrices have demon-
strated good robustness to noise and provide a suitable representation
for classification tasks, relying on advances in Riemannian geometry. We
propose to equip the minimum distance to mean (MDM) classifier with
a new family of means, based on the inductive mean, for block-online
classification tasks and to embed the inductive mean in an incremental
learning algorithm for online classification of EEG.

1 Introduction

Real-time recording and decoding of brain signals allow to control a large va-
riety of systems, such as wheelchairs, exoskeletons, robotic arms or other types
of Brain-Computer Interface (BCI) devices [3]. With electroencephalography
(EEG), the brain signal is recorded at the surface of the head (on the scalp),
offering a simple setup that does not require surgery as it is the case for invasive
recording methods. The signal quality of EEG is lower than with invasive meth-
ods and the recording is very sensitive to noise, nonetheless possible applications
offer promising results [11]. As technologies and signal processing techniques are
more and more mature, out-of-the-lab applications and commercial systems are
the focus of growing interests [3]. These applications and systems rely on a small
number of electrodes for recording and low-cost hardware for signal processing.
Thus the denoising and classification algorithms should work online and with a
reasonable computational load. One of the most challenging issues with EEG-
based BCI is to harness the individual variability of brain signals, which could
change from hour-to-hour for a user and are highly variable from one user to the
other.

Among all the methods considered in the literature for EEG signal process-
ing, the ones relying on covariance matrices were shown numerically to achieve
good performances [12]. In this approach, a portion of the EEG signal is repre-
sented by a covariance matrix, whose elements correspond to the covariance of
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the signals recorded with different electrodes, possibly filtered around different
frequencies. The fact that covariance matrices belong to a non-Euclidean space
– the manifold of symmetric positive definite (SPD) matrices – calls for efficient
classifiers adapted to that geometry.

In this paper, we work with the Minimum Distance to Mean (MDM) clas-
sifier, initially proposed in [2]. This classifier assigns covariance matrices to the
class with the closest mean. The classification results were shown to depend
heavily on the mean and distance definition used, and many possibilities were
compared in [5]. In the following we will distinguish the offline setting, where
the classifier’s parameters are selected and evaluated using all available data,
the block-online setting, where the classifier is parametrized on a first batch of
data (usually the beginning of a session) and evaluated on another batch of data
(the rest of the session), and the online setting, where there is no data available
beforehand from the user and the classifier is assessed directly on new data. We
equip here this classifier with a new family of means based on the so-called in-
ductive mean, which has the main advantage of being computed incrementally,
a key property when working in an online setting. This property was already
used in [4] for k-means clustering. We show numerically that the use of these
new means achieves a classification accuracy in a block-online framework com-
parable to the most accurate nonparametric mean: the Riemannian barycenter
with respect to the affine-invariant metric (less than 1% of difference on aver-
age), while their computation cost is lower. We also propose a variant of the
online classification algorithm proposed in [6]. In our algorithm, the means of
the classes are adapted online, following an incremental learning scheme. Start-
ing from classes learned with other users, the goal is to enable the algorithm to
progressively fit with the observed data of a new user.

The paper is organized as follows. Section 2 is devoted to block-online classi-
fication: we define the MDM classifier and the family of means we use, and com-
pare numerically the classification results with other state-of-the-art methods. In
Section 3, we present our incremental learning algorithm for online classification.

2 Offline and block-online classification of EEG

The proposed approaches are applied on steady-state visual evoked potentials
(SSVEP), that is brain responses to visual stimuli, but are valid on other kinds
of BCI stimuli. In a SSVEP experiment, blinking LEDs are placed at different
locations in the visual field of a user. The LEDs are blinking at F different
frequencies (freq1, . . . , freqF ). The subject is either asked to focus on one specific
blinking LED (with a known frequency) or to focus on a location without LED
(resting state). The blinking LED elicit induced oscillations in the brain, which
are visible in the EEG. The goal is to determine based on the EEG if the user
is focusing on a blinking LED and if so, on which one.

We summarize in Algorithm 1 the block-online classification method pro-
posed in [5]. Each time that the user is asked to focus on a stimulus, the portion
of the EEG recording following the cue onset (the time at which the user was
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instructed to focus on the blinking LED) is first transformed into a covariance
matrix and then classified using the MDM classifier. The means of the classes
are estimated beforehand, based on a collection of labelled data, according to
the offline training scheme detailed in Algorithm 2.

Algorithm 1 Block-online classification - MDM algorithm

Inputs: Σ̄(k), the mean of the class k, for k = 1, . . . ,K (obtained using Algo-
rithm 2) and an unlabelled EEG trial X ∈ RC×N (with C the number of electrodes
and N the number of time samples).
Output: k̂, the predicted label of X.

1: Compute Σ̂, an estimate of the covariance matrix of X (see Section 2.1).
2: Define the class label associated to trial X as k̂ = argmink=1,...,K δ(Σ̂, Σ̄

(k)), where

δ(Σ1, Σ2) = ||Σ−1/2
1 Σ2Σ

−1/2
1 ||F is the Riemannian distance between Σ1 and Σ2.

Algorithm 2 Offline training

Inputs : Xi ∈ RC×N , for i = 1, . . . , l, a set of labelled EEG trials, and I(k),
k = 1, . . . ,K, the set of indices of trials belonging to class k.
Output: Σ̄(k), the mean of the class k, for k = 1, . . . ,K.

1: Compute Σ̂i, an estimate of the covariance matrix of Xi, for i = 1, . . . , l (see
Section 2.1).

2: For k = 1 : K do
3: Compute the center of class Σ̄(k) = µ({Σ̂i|i ∈ I(k)}) (see Section 2.2).

2.1 Estimation of covariance matrices

Algorithms 1 and 2 require to estimate the covariance matrix of an EEG trial
X ∈ RC×N , where N is the number of time samples and C the number of
electrodes. The signal X is first band-pass filtered around the F frequencies
used in the experiment, to yield an extended signal as follows:

X ∈ RC×N → XExt =
[
XT

freq1
, . . . , XT

freqF

]T ∈ RFC×N .

The covariance matrix Σ ∈ PCF of the signal XExt, with PCF the set of SPD
matrices of size CF ×CF , is then estimated using the Schäfer estimator [10]. We
refer the reader to [6] for more information regarding the choice of the estimator.

2.2 Inductive means and sequences

The training of the classifier also relies on the definition of a mean µ on the
set of SPD matrices. Several means were already considered in [5]. Among the
non-parametric means, the Riemannian barycenter with respect to the affine-
invariant metric was shown numerically to provide the most accurate classifica-
tion results (we will use the shortcut “Riemannian barycenter” in the rest of the
paper, implying that we work here with the affine-invariant metric). However, its
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computation is rather costly. To remedy this problem, another family of means
was proposed in [8]. These means are based on the inductive mean (see [9]).

The inductive mean of a set of SPD matrices Σ1, . . . , Σl ∈ PCF is defined as:

M Ind(Σ1, . . . , Σl) =
(((

Σ1# 1
2
Σ2

)
# 1

3
Σ3

)
. . .# 1

l
Σl

)
, (1)

where A#sB = A
1
2 (A− 1

2BA− 1
2 )sA

1
2 , with s ∈ [0, 1], is the (unique) point located

on the geodesic from A to B, at a distance sδ(A,B) of A.
If all the matrices pairwise commute, then the Riemannian barycenter and

the inductive mean coincide. Otherwise, the inductive mean looses the property
of invariance under permutation: in general,M Ind(Σ1, . . . , Σl) 6= M Ind(Σπ(1), . . . ,
Σπ(l)), where π is a permutation of (1, . . . , l). Moreover, in [8], the authors illus-

trate numerically that the inductive mean M Ind(Σ1, . . . , Σl) tends to overem-
phasize the last data points (i.e., Σl, Σl−1, . . . ). To remedy this, they developed
an inductive sequence (XInd

j )j=1,2,..., i.e., an extension of the inductive mean in

which each element XInd
jl , with j = 1, 2, . . . and l the total number of matrices,

is defined as:

XInd
jl = M Ind

π
Σ1, Σ2, . . . , Σl, . . . , Σ1, Σ2, . . . , Σl︸ ︷︷ ︸

j×l elements


 (2)

where π is a shuffling operator. The sequence (XInd
j )j=1,2,... converges to the Rie-

mannian barycenter, and the shuffling improves the convergence rate by reducing
the bias mentioned above.

2.3 Experimental results for block-online classification

Table 1 compares block-online classification accuracy and computation times for
several mean definitions. Our validation is performed on the same datasets as
in [5]. These datasets were obtained in a SSVEP experiment with three frequen-
cies (13, 17, or 21 Hz). This is thus a classification task with four classes (one
for each frequency and one for the resting class). For each subject, the recorded
session is made of several batches (from 2 to 5), one batch consisting in 32 trials
(i.e., the responses to 32 stimuli, 8 for each class). As in [5], we used, for each
subject, the last batch as validation set and all other batches as training set. We
refer the reader to [5] for more detail regarding the experimental protocol.

We compare inductive means with the Euclidean mean, the Log-Euclidean
mean and the Riemannian barycenter (estimated using a steepest descent algo-
rithm). For comparison, we also provide results obtained with a state-of-the-art
method not based on covariance matrices: the SVM algorithm with CCA fil-
tering used in [5]. The last row of Table 1 presents the average performances
obtained with the different means. It indicates that the inductive mean is a
nice trade-off between the Log-Euclidean mean, which is cheaper to compute
but also less accurate, and the Riemannian barycenter, which is more accurate
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but considerably more costly. Inductive sequences improve further the accuracy,
but become also more costly.

Observe finally that Algorithms 1 and 2 are only suitable for block-online
classification, and require to know the cue onsets, i.e., the time at which the
stimuli are applied to the subject. Those requirements will be relaxed in the
online classification approach presented in the next section.

CCA
+
SVM
[7]

MDM

Euclidean LogEuclid. Riem. Baryc. Ind. Mean Ind. Seq. XInd
2l Ind. Seq. XInd

5l

acc(%) acc(%) t(ms) acc(%) t(ms) acc(%) t(ms) acc(%) t(ms) acc(%) t(ms) acc(%) t(ms)

S1 54.68 53.12 0.6 71.88 15 73.44 74 70.31 15 73.44 20 73.44 54

S2 37.50 43.75 0.5 78.12 16 79.69 77 78.12 11 78.12 19 78.12 43

S3 89.06 67.19 0.7 85.94 18 85.94 72 85.94 16 85.94 23 85.94 60

S4 79.69 54.69 0.5 84.38 13 87.50 68 87.50 11 87.50 22 87.50 42

S5 50.00 37.50 0.6 62.50 16 68.75 63 67.19 11 68.75 21 68.75 44

S6 87.50 34.38 0.5 84.38 18 85.94 69 84.38 11 85.94 19 85.94 49

S7 77.08 60.42 0.9 87.50 29 88.54 131 89.58 27 89.58 39 89.58 99

S8 73.44 67.19 0.7 90.62 18 92.19 71 92.19 16 92.19 24 92.19 46

S9 60.94 57.81 0.6 70.31 13 70.31 69 70.31 15 70.31 23 70.31 56

S10 67.97 38.28 1.2 75.00 43 80.47 179 78.91 38 78.91 67 80.47 137

S11 71.88 48.44 0.8 60.94 18 65.62 82 64.06 16 64.06 22 65.62 47

S12 95.63 71.25 1.5 96.25 58 96.88 216 96.88 49 96.88 86 96.88 198

Avg 70.45 52.83 0.8 78.98 23 81.27 97 80.45 20 80.97 32 81.23 73

Table 1. Performances obtained for block-online classification. Each row of the table
corresponds to one subject. The computation times recorded are the average times
needed to compute the mean of the covariance matrices of a given class in the training
set of the subject. They are larger for the subjects 7, 10 and 12 since the number of
matrices to average were bigger for those subjects (their training sets were made of
respectively 2, 3 and 4 batches instead of one for the other subjects).

3 Online classification using inductive means

In most cases, cue onsets are not available. The goal is then to detect parts of
the EEG signal corresponding with a high probability to a given stimulus. Based
on the incremental definition of the inductive mean, we propose a variant of the
online classification algorithm detailed in [6]. Indeed, conversely to most other
means, including the Riemannian barycenter, the inductive mean of N + 1 data
points can be easily computed from the inductive mean of N points:

M Ind(Σ1, . . . , ΣN+1) = M Ind(Σ1, . . . , ΣN )# 1
N+1

ΣN+1.

It is then possible to update the means of the classes ’on-the-fly’ in the classifica-
tion algorithm. The complete classification scheme is presented in Algorithm 3.



6 Estelle M. Massart, Sylvain Chevallier

It works as follows. The algorithm scans the EEG signal, considering successive
frames of size w, the starting times of two successive frames being separated
by ∆n samples. The covariance matrix of the current frame is estimated and
classified using the MDM classifier. The most recurrent class among the last D
ones is considered to be the current class. If the confidence in this decision is
high enough (see Section 3.1), the class is returned and the mean of the class is
updated. Otherwise, the algorithm moves immediately to the next frame. It is of
tremendous importance to avoid that possible misclassifications move the means
of the classes in an erroneous direction. To this aim, we added in Algorithm 3 a
filtering step, following similar ideas as in the Riemannian potato [1]. The mean
of the class is updated at most once per trial (i.e., per different stimulus), in the
direction of the ’best’ covariance matrix scanned in the trial.

Algorithm 3 Online classification

Inputs : Σ̄(k) ∈ PFC , the mean of class k, for all class k = 1, . . . ,K (offline
training, or default initialisation based on data available from other subjects), d̄k
the average distance between the training matrices belonging to class k and Σ̄(k),
a EEG recording X (n) ∈ RC , n = 0, . . . , N , hyperparameters w, ∆n, D, s.
Output: Classification decisions k̂(n).

1: Initialisation: Σbest = Σ̄(1), dbest = ∞, kcur = −1, k̂(n) = −1 ∀n (default value,
meaning no decision).

2: For d = 0, . . . , bN−w
∆n
c do

3: Xd := X (d∆n, . . . , d∆n+ w)
4: Compute Σ̂d, an estimate of the covariance matrix of Xd, and classify it:

k∗d := argmin
k=1,...,K

δ(Σ̂d, Σ̄
(k)).

5: If d ≥ D then find most recurrent class among D last classifications:

k̄ := argmax
k=1,...,K

ρ(k) with ρ(k) :=
#{k∗j = k}j=d,d−1,...,d−D+1

D
.

6: Evaluate confidence criterion C (see Section 3.1)
7: If C = true then
8: If kcur > 0 and k̄ 6= kcur (we left previous class) and dbest ≤ d̄kcur

then update previous class:

9: Σ̄(kcur) := Σ̄(kcur)# α
s+α

Σ̂best with α := 1− δ(Σ̄(kcur),Σ̂best)

d̄kcur

10: s := s+ 1, Σbest := Σ̂d, d
best := δ(Σ̄(k̄), Σ̂d)

11: elseif δ(Σ̄(k̄), Σ̂d) ≤ dbest, improve current estimates:

12: Σbest := Σ̂d, d
best := δ(Σ̄(k̄), Σ̂d)

13: kcur := k̄
14: k̂(n) := k̄ for n ∈ [d∆n, d∆n+ w]

3.1 Confidence criterion

Similarly as in [6], a confidence criterion is used in Algorithm 3 to discard unre-
liable classifications. Two conditions have to be encountered for this criterion to
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be satisfied. The first one verifies that the current classification decision is con-
sistent with previous classifications: the class k̄ should have been chosen among
the D previous classes with a proportion larger than or equal to given threshold
ϑ, i.e.,

ρ(k̄) ≥ ϑ . (3)

The second condition is related to the displacement of the covariance ma-
trices: those should be in the direction of the mean of the class. Otherwise, we
might expect that a new stimulus has been applied, and that the covariance
matrices is moving away from the mean of the old class, to get closer to the
mean of the new class. Hence, the relative distances to means should on average
decrease on the last D frames:

d∑
j=d−D+2

(δrel
k̄ (j)− δrel

k̄ (j − 1)) ≤ 0 with δrel
k̄ (d) =

δ(Σ̂d, Σ̄
(k̄))

K∑
k=1

δ(Σ̂d, Σ̄
(k))

. (4)

If conditions (3) and (4) are satisfied, the confidence criterion is satisfied, i.e.,
C = true, otherwise C = false.

3.2 Numerical results for online classification

The main interest of Algorithm 3 is that it allows to progressively update the
user’s means of the classes. To illustrate this, we used EEG batches from the
three first subjects to initialize the centers of the classes and we run Algorithm 3
to perform classification on all the batches of the other users. In Figure 1, we
compare the results obtained using Algorithm 3 with those obtained when the
means of the classes are not updated, i.e. removing lines 10 to 12 in Algorithm 3,
for the two subjects with the highest number of batches available, that is 5 for
subject 12 and 4 for subject 10. Hyperparameters were set empirically to w =
2.6s, ∆n = 0.2s, D = 5, s = 8, ϑ = 0.7. For subject 12, the classification accuracy
improves with the batches, compared to the version with frozen means of the
classes. However, this is not the case for subject 10: despite the use of the filtering
step, some misclassification resulted in the displacement of the mean of one
class in an erroneous direction, which alters subsequent classification decisions.
Unfortunately, the low number of recordings per subject makes it difficult to
obtain a reliable measure of the performance of our online algorithm. Further
work should therefore aim at assessing the performance of the algorithm on larger
datasets. Other filtering strategies can also be investigated for Algorithm 3, as
well as the influence of the hyperparameters on the classification results.
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