A. Barachant, A. Andreev, and M. Congedo, The Riemannian Potato: an automatic and adaptive artifact detection method for online experiments using Riemannian geometry, TOBI Workshop lV, pp.19-20, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00781701

A. Barachant, S. Bonnet, M. Congedo, and C. Jutten, Riemannian Geometry Applied to BCI Classification, Latent Variable Analysis and Signal Separation, pp.629-636, 2010.
DOI : 10.1007/978-3-642-15995-4_78

URL : https://hal.archives-ouvertes.fr/hal-00602700

J. Ho, G. Cheng, H. Salehian, and B. Vemuri, Recursive Karcher expectation estimators and geometric law of large numbers, In Artificial Intelligence and Statistics, pp.325-332, 2013.

E. K. Kalunga, S. Chevallier, Q. Barthélemy, K. Djouani, Y. Hamam et al., From Euclidean to Riemannian Means: Information Geometry for SSVEP Classification, LNCS, pp.595-604, 2015.
DOI : 10.1007/978-3-319-25040-3_64

URL : https://hal.archives-ouvertes.fr/hal-01351753

E. K. Kalunga, S. Chevallier, Q. Barthélemy, K. Djouani, E. Monacelli et al., Online SSVEP-based BCI using Riemannian geometry, Neurocomputing, vol.191, pp.55-68, 2016.
DOI : 10.1016/j.neucom.2016.01.007

URL : https://hal.archives-ouvertes.fr/hal-01351623

E. K. Kalunga, K. Djouani, Y. Hamam, S. Chevallier, and E. Monacelli, SSVEP enhancement based on Canonical Correlation Analysis to improve BCI performances, 2013 Africon, 2013.
DOI : 10.1109/AFRCON.2013.6757776

URL : https://hal.archives-ouvertes.fr/hal-01352059

E. M. Massart, J. M. Hendrickx, and P. Absil, Matrix geometric means based on shuffled inductive sequences, Linear Algebra and its Applications, vol.542, 2017.
DOI : 10.1016/j.laa.2017.05.036

URL : http://dial.uclouvain.be/downloader/downloader.php?pid=boreal:185613&datastream=PDF_01&disclaimer=ee4706ce20c4c39dce2f46cb0baf4dac6de59336aca631f4b5be79fce753c02e

M. Sagae and K. Tanabe, Upper and lower bounds for the arithmetic-geometricharmonic means of positive definite matrices. Linear and Multilinear Algebra, pp.279-282, 1994.

J. Schäfer and K. Strimmer, A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics, Statistical Applications in Genetics and Molecular Biology, vol.18, issue.1, 2005.
DOI : 10.1093/bioinformatics/18.2.287

J. Van-erp, F. Lotte, and M. Tangermann, Brain-Computer Interfaces: Beyond Medical Applications, Computer, vol.45, issue.4, pp.26-34, 2012.
DOI : 10.1109/MC.2012.107

URL : https://hal.archives-ouvertes.fr/hal-00688344

F. Yger, M. Berar, and F. Lotte, Riemannian Approaches in Brain-Computer Interfaces: A Review, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.25, issue.10, 2016.
DOI : 10.1109/TNSRE.2016.2627016

URL : https://hal.archives-ouvertes.fr/hal-01394253