C. S. Nam, A. Nijholt, and F. Lotte, Brain-Computer Interfaces Handbook: Technological and Theoretical Advances, 2018.

E. Niedermeyer, F. H. Lopes-da, and . Silva, Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 2005.

P. L. Nunez, R. Srinivasan, A. F. Westdorp, R. S. Wijesinghe, D. M. Tucker et al., EEG coherency: I: Statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales, Electroencephalogr Clin Neurophysiol, vol.103, issue.5, pp.499-515, 1997.

C. Vidaurre and B. Blankertz, Towards a cure for BCI illiteracy, Brain Topography, vol.23, issue.2, pp.194-198, 2010.

C. Jeunet, F. Jahanpour, and . Lotte, Why standard brain-computer interface (BCI) trainingprotocols should be changed: An experimental study, J Neural Eng, vol.13, 2016.

J. Faller, C. Vidaurre, T. Solis-escalante, C. Neuper, and R. Scherer, Autocalibration and recurrent adaptation: Towards a plug and play online ERD-BCI, IEEE Trans Neural Syst Rehabil Eng, vol.20, issue.3, pp.313-319, 2012.

F. Lotte, Signal processing approaches to minimize or suppress calibration time in oscillatory activity-based brain-computer interfaces, Proc IEEE, vol.103, issue.6, pp.871-890, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01159171

B. Rivet, A. Souloumiac, V. Attina, and G. Gibert, xDAWN Algorithm to Enhance Evoked Potentials: Application to Brain-Computer Interface, IEEE Trans Biomed Eng, vol.56, issue.8, pp.2035-2043, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00454568

B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, and K. R. Muller, Optimizing Spatial filters for Robust EEG Single-Trial Analysis, IEEE Signal Process Mag, vol.25, issue.1, pp.41-56, 2008.

G. Bin, X. Gao, Z. Yan, B. Hong, and S. Gao, An online multi-channel SSVEP-based brain-computer interface using a canonical correlation analysis method, J Neural Eng, vol.6, issue.4, 2009.

E. K. Kalunga, S. Chevallier, O. Rabreau, and E. Monacelli, Hybrid interface: Integrating BCI in multimodal human-machine interfaces, Int Conf on Adv Int Mech (AIM), pp.530-535, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01352056

F. Yger, M. Berar, and F. Lotte, Riemannian approaches in braincomputer interfaces: a review, IEEE Trans Neural Syst Rehabil Eng, vol.25, issue.10, pp.1753-1762, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01394253

M. Congedo, A. Barachant, and R. Bhatia, Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review, BrainComputer Interfaces, vol.4, pp.1-20, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01570120

A. Barachant, S. Bonnet, M. Congedo, and C. Jutten, Multiclass braincomputer interface classification by Riemannian geometry, IEEE Trans Biomed Eng, vol.59, issue.4, pp.920-928, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00681328

E. K. Kalunga, S. Chevallier, Q. Barthélemy, K. Djouani, E. Monacelli et al., Online SSVEP-based BCI using Riemannian geometry, Neurocomputing, vol.191, pp.55-68, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01681976

M. Moakher, A differential geometric approach to the geometric mean of symmetric positive-definite matrices, SIAM Journal on Matrix Analysis and Applications, vol.26, issue.3, pp.735-747, 2005.

P. T. Fletcher, C. Lu, S. M. Pizer, and S. Joshi, Principal geodesic analysis for the study of nonlinear statistics of shape, IEEE Trans Med Imaging, vol.23, issue.8, pp.995-1005, 2004.

H. He and . Wu, Transfer learning enhanced common spatial pattern filtering for brain computer interfaces (BCIs): Overview and a new approach, NIPS, pp.811-821, 2017.

N. Waytowich, V. Lawhern, A. Bohannon, K. Ball, and B. Lance, Spectral transfer learning using information geometry for a user-independent brain-computer interface, Frontiers in Neuroscience, vol.10, p.430, 2016.

H. Kang, Y. Nam, and S. Choi, Composite common spatial pattern for subject-to-subject transfer, IEEE Signal Process Lett, vol.16, issue.8, pp.683-686, 2009.

F. Lotte and C. Guan, Regularizing common spatial patterns to improve BCI designs: Unified theory and new algorithms, IEEE Trans Biomed Eng, vol.58, pp.355-362, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00476820

O. Ledoit and M. Wolf, A well-conditioned estimator for largedimensional covariance matrices, Journal of Multivariate Analysis, vol.88, issue.2, pp.365-411, 2004.