A. Barachant, S. Bonnet, M. Congedo, and C. Jutten, Multiclass brain-computer interface classification by Riemannian geometry, IEEE Trans. Biomed. Eng, vol.59, issue.4, pp.920-928, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00681328

L. Blanch, Validation of the better care R ? system to detect ineffective efforts during expiration in mechanically ventilated patients: a pilot study, Intensiv. Care Med, vol.38, issue.5, pp.772-780, 2012.

B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, and K. R. Muller, Optimizing spatial filters for robust EEG single-trial analysis, IEEE Signal Process. Mag, vol.25, issue.1, pp.41-56, 2008.

M. Congedo, A. Barachant, and R. Bhatia, Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review, Brain-Comput. Interfaces, vol.4, pp.1-20, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01570120

M. Congedo, A. Barachant, and A. Andreev, A new generation of brain-computer interface based on Riemannian geometry, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00879050

M. Dres, N. Rittayamai, and L. Brochard, Monitoring patient-ventilator asynchrony, Curr. Opin. Crit. Care, vol.22, issue.3, pp.246-253, 2016.

M. Dubois, Neurophysiological evidence for a cortical contribution to the wakefulness-related drive to breathe explaining hypocapnia-resistant ventilation in humans, J. Neurosci, vol.36, issue.41, pp.10673-10682, 2016.

A. Esteban, How is mechanical ventilation employed in the intensive care unit? An international utilization review, Am. J. Respir. Crit. Care Med, vol.161, issue.5, pp.1450-1458, 2000.

M. Fatourechi, R. K. Ward, S. G. Mason, J. Huggins, A. Schlögl et al., Comparison of evaluation metrics in classification applications with imbalanced datasets, International Conference on Machine Learning and Applications (ICMLA), pp.777-782, 2008.

A. L. Hudson, Electroencephalographic detection of respiratory-related cortical activity in humans: from event-related approaches to continuous connectivity evaluation, J. Neurophysiol, vol.115, issue.4, pp.2214-2223, 2016.

E. K. Kalunga, S. Chevallier, Q. Barthélemy, K. Djouani, E. Monacelli et al., Online SSVEP-based BCI using riemannian geometry, Neurocomputing, vol.191, pp.55-68, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01351623

E. K. Kalunga, S. Chevallier, Q. Barthélemy, K. Djouani, Y. Hamam et al., From euclidean to riemannian means: information geometry for SSVEP classification, GSI 2015, vol.9389, pp.595-604, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01351753

M. Knafelc and P. W. Davenport, Relationship between magnitude estimation of resistive loads, inspiratory pressures, and the rrep p1 peak, J. Appl. Physiol, vol.87, issue.2, pp.516-522, 1999.

F. Lotte, A review of classification algorithms for eeg-based brain-computer interfaces: a 10 year update, J. Neural Eng, vol.15, issue.3, p.31005, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01846433

L. Mayaud, Brain-computer interface for the communication of acute patients: a feasibility study and a randomized controlled trial comparing performance with healthy participants and a traditional assistive device, Brain-Comput. Interfaces, vol.3, issue.4, pp.197-215, 2016.

M. Moakher, A differential geometric approach to the geometric mean of symmetric positive-definite matrices, SIAM J. Matrix Anal. Appl, vol.26, issue.3, pp.735-747, 2005.

X. Navarro-sune, Riemannian geometry applied to detection of respiratory states from EEG signals: the basis for a brain-ventilator interface, IEEE Trans. Biomed. Eng, vol.64, issue.5, pp.1138-1148, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01427496

L. Piquilloud, Neurally adjusted ventilatory assist (NAVA) improves patientventilator interaction during non-invasive ventilation delivered by face mask. Intensiv, Care Med, vol.38, issue.10, pp.1624-1631, 2012.

B. Reuter, D. Linke, and M. Kurthen, Cognitive processes in unconscious patients? A brain mapping study of the p300 potential, Archiv fur Psychologie, vol.141, issue.3, pp.155-173, 1989.

B. Rivet, A. Souloumiac, V. Attina, and G. Gibert, xDAWN algorithm to enhance evoked potentials: application to brain-computer interface, IEEE Trans. Biomed. Eng, vol.56, issue.8, pp.2035-2043, 2009.
DOI : 10.1109/tbme.2009.2012869

URL : https://hal.archives-ouvertes.fr/hal-00454568

A. J. Rotondi, Patients' recollections of stressful experiences while receiving prolonged mechanical ventilation in an intensive care unit, Critical Care Med, vol.30, issue.4, pp.746-752, 2002.

J. Schäfer and K. Strimmer, A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics, Stat. Appl. Genet. Mol. Biol, vol.4, issue.1, 2005.

B. Scholkopf and A. J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond, 2001.

J. Wolpaw, N. Birbaumer, D. J. Mcfarland, G. Pfurtscheller, and T. M. Vaughan, Brain-computer interfaces for communication and control, Clin. Neurophysiol, vol.113, issue.6, pp.767-791, 2002.

F. Yger, M. Berar, and F. Lotte, Riemannian approaches in brain-computer interfaces: a review, IEEE Trans. Neural. Syst. Rehabil. Eng, vol.25, issue.10, pp.1753-1762, 2017.
DOI : 10.1109/tnsre.2016.2627016

URL : https://hal.archives-ouvertes.fr/hal-01394253