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LAGRANGIAN CONTROLLABILITY OF INVISCID INCOMPRESSIBLE
FLUIDS: A CONSTRUCTIVE APPROACH ∗

Thierry Horsin
1

and Otared Kavian
2

Abstract. We present here a constructive method of Lagrangian approximate controllability for the
Euler equation. We emphasize on different options that could be used for numerical recipes: either,
in the case of a bi-dimensionnal fluid, the use of formal computations in the framework of explicit
Runge approximations of holomorphic functions by rational functions, or an approach based on the
study of the range of an operator by showing a density result. For this last insight in view of numerical
simulations in progress, we analyze through a simplified problem the observed instabilities.
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1. Introduction and main results

Let Ω ⊂ RN , with N ≥ 2, be a bounded domain with a regular boundary ∂Ω, and let Γ be a part of ∂Ω with
nonempty relative interior.

Assume that a subdomain ω ⊂⊂ Ω is given such that its boundary γ := ∂ω is a Jordan curve and let us
denote by n the exterior normal to the boundary of Ω\ω. The question we address in this paper is the following:
given a function h defined on γ, can one find a function v defined on ∂Ω having its support supp(v) ⊂ Γ , and
such that the solution Ψ of

ΔΨ = 0 in Ω,
∂Ψ

∂n
= v on ∂Ω, (1.1)

satsifies
∂Ψ

∂n
= h on γ? (1.2)

The motivation of this question lies in its application to the Lagrangian control of Euler equation. Indeed, if
such a v, and thus such a Ψ exist, then upon considering a function h depending smoothly on t ∈ [0, T ] for some
T > 0, one may reasonably expect that v and Ψ might also depend smoothly on t, and therefore, upon setting

u := ∇Ψ, p := −∂tΨ − 1
2
|∇Ψ |2,
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the pair (u, p) is a solution of the Euler equation⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tu+ (u · ∇)u + ∇p = 0 in (0, T )×Ω, (1.3a)
div(u) = 0 in (0, T ) ×Ω, (1.3b)
u(0, ·) = u0 in Ω, (1.3c)
u · n = 0 on (0, T ) × (∂Ω \ Γ ), (1.3d)

where in addition we have u · n = v on Γ , and the value of the normal component of u(t, ·) on γ is prescribed,
that is u(t, ·) · n = h(t, ·) on γ. From this point of view, one can say that a control problem is solved by the
means of the mapping (h, γ) �→ v. This is precisely the Lagrangian control of (1.3), as investigated by Glass
and Horsin in [3,4]. As a matter of fact, proving the Lagrangian controllability is a consequence of the fact that
one may prescribe the velocity of a certain set of fluid particles, so that its topological and regularity properties
along its motion are preserved. With this approach of the problem, it is then enough to prescribe the normal
velocity of this set of particles at every point of its boundary. This is the motivation of our first result.

Before stating the first result of this paper, let us recall briefly the following definitions and notations. A set
γ ⊂ RN with N = 2 or N = 3 is called a Jordan curve (when N = 2) or a Jordan surface (when N = 3) if
one has γ = Φ(SN−1) where Φ : SN−1 −→ RN is a continuous and injective mapping. Then it is known that
RN \ γ has exactly two connected components, one of them being bounded, which will be denoted by insd(γ)
(the inside of γ). A smooth (resp. analytic) Jordan curve or surface corresponds to the case where in addition
Φ is smooth (resp. analytic).

Let Ω ⊂ RN be a smooth bounded domain, and let γ ⊂⊂ Ω be a smooth Jordan curve or surface. We
shall denote by Ω2 := insd(γ) the inside of γ (see above), and by Ω1 := Ω \ Ω2 its complement. Also we
will denote by n12 the unit normal vector on γ pointing from Ω1 towards Ω2, and naturally we will denote
n21 = −n12, the normal pointing from Ω2 into Ω1. As usual we will denote by H1/2(γ) the space of traces on
γ of functions in H1(Ω2), which coincides with the traces on γ of functions in H1(Ω1), since γ is sufficiently
smooth. We will denote by H−1/2(γ) the dual of H1/2(γ), the duality between the two being denoted by 〈·, ·〉,
or 〈·, ·〉H−1/2(γ),H1/2(γ) if it is necessary to avoid ambiguities. Also we will denote by H−1/2

m (γ) the orthogonal
of the constants in H−1/2(γ):

H−1/2
m (γ) :=

{
v ∈ H−1/2(γ) ; 〈v, 1〉 = 0

}
.

We are given Γ , a closed connected part of ∂Ω with a non empty relative interior in ∂Ω, and we will denote

H−1/2
m (Γ ) :=

{
v ∈ H−1/2(∂Ω) ; v = 0 in D′(∂Ω \ Γ ), and 〈v, 1〉 = 0

}
.

Our first result is the following:

Theorem 1.1. Let Ω ⊂ R
N be a smooth bounded domain, γ be a Jordan curve or surface in Ω, and let Γ be

a closed, connected part of ∂Ω with non empty relative interior. For v ∈ H
−1/2
m (Γ ) denote by Ψv ∈ H1(Ω) the
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unique solution of ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−ΔΨv = 0 in Ω, (1.4a)
∂Ψv
∂n

= v on ∂Ω, (1.4b)∫
Ω

Ψvdx = 0, (1.4c)

and define the operator Λγ : H−1/2
m (Γ ) −→ H

−1/2
m (γ) by setting

Λγv := ∇Ψv · n12|γ . (1.5)

Then the operator Λγ has a dense image in H
−1/2
m (γ).

This means that given h ∈ H
−1/2
m (γ), while in general it is not possible to find v ∈ H

−1/2
m (Γ ) such that (1.1)

and (1.2) are satisfied (due for example to the mere fact that Ψ , solution to (1.1), is analytic in Ω), nevertheless
given any ε > 0 one may find v ∈ H

−1/2
m (Γ ) such that

there exists Ψ := Ψv satisfying (1.4) and ‖h− ∂Ψ/∂n‖H−1/2 < ε. (1.6)

Thus, using the above Theorem one may solve a Lagrangian approximate control of Euler equation, since in
general an exact control is not possible.

In fact in Section 3, as far as the dimension N = 2 is concerned, we give another insight about the fact that
the operator Λγ has a dense image, by using a complex variable approach. Indeed, using the classical Runge
theorem (see for instance [7] and Sect. 3), it is possible to give a procedure for the construction of an appropriate
v such that (1.6) is fulfilled, through an expansion in series.

Going back to the motivations of the above Theorem, let us recall that the Lagrangian control problem is
the following: given a time interval [0, T ], a family of smooth subdomains ωt ⊂⊂ Ω depending continuously on
t ∈ [0, T ] (in a sense yet to be precised), and a function h : [0, T ] × Ω −→ R, can one find a solution (u, p) of
the Euler system (1.3) such that for all t ∈ [0, T ] one has u(t, ·) · n = h(t, ·) on ∂ωt? We should point out that
in the system (1.3) the initial data u0 is given, and the solution u is determined through appropriate boundary
datas on Γ ensuring the existence and uniqueness of the solution u, those boundary datas playing the role of
the control on Γ .

As it is observed by Glass and Horsin in [3, 4], in general this control problem does not have a solution,
essentially due to some restrictions intrinsically imposed by the vorticity ∇∧ u when u is a solution to (1.3).

However if the above problem is relaxed into an approximate control problem, a positive answer has been
given in the references previously quoted, provided some restrictions are imposed on the subdomains ωt and on
the function h.

Recall that if γ0 and γ1 are merely continuous images of SN−1, they are said to be homotopic in Ω, when
there exists g ∈ C([0, 1] × SN−1;Ω) such that g(j, ·) is a parameterization of γj for j = 0 and j = 1; moreover
if γ1 is reduced to a point, then one says that γ0 is contractible in Ω. The following result is proved in [3] (here
and in the sequel we denote by meas(ω) the Lebesgue measure of a measurable set ω ⊂ R

N ):

Theorem 1.2. Assume that N = 2, that γ0 and γ1 are hotomopic smooth Jordan curves in Ω, and that,
denoting by insd(γ) the inside of γ, the following conditions are satisfied:

meas(insd(γ0)) = meas(insd(γ1)), and u0 ∈ C∞(Ω).

Then approximate controllability between γ0 and γ1 holds at any time T > 0 in L∞-norm, in the sense described
below in Theorem 1.3.

A similar result, but with stronger assumptions on γ0, γ1, is given in [4] when N = 3.
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The cornerstone of the proof of Theorem 1.2 relies on the resolution of the controllability question in the
case when u0 = 0, and the construction of a vector field X satisfying (1.12) (A remark concerning the existence
of such X is given further). Indeed in that case, the following result is proved in [3, 4], which motivates the
approach of this paper.

Theorem 1.3. Let either N = 2 and the assumptions of Theorem 1.2 be satisfied, or let N = 3 and assume
that γ0 and γ1 are smooth Jordan surfaces, contractible in Ω. Then, given ε > 0 and any vector field X ∈
C∞([0, T ] × Ω,RN ) satisfying equations (1.12), there exists δ > 0 and a function ψ ∈ C∞([0, T ] × Ω,R) such
that

ψ(0, ·) = ψ(T, ·) = 0 (1.7a)
∀t ∈ [0, T ], Δxψ(t, ·) = 0 (1.7b)

∇xψ(t, ·) · n = 0 on ∂Ω \ Γ (1.7c)

and such that, if for each t ∈ [0, T ] we denote by γt := ΦX(0, t, γ0) then we have

‖∇xψ · n−X · n‖L∞(γt) ≤ δ, (1.8)

Φ∇xψ(0, ·, ·)([0, T ]× γ0) ⊂ Ω, (1.9)

and

‖Φ∇xψ(0, T, γ0) − γ1‖∞ ≤ ε. (1.10)

The precise meaning of this result is that, up to the construction of the vector field X , when u0 ≡ 0 in (1.3c),
one can obtain the approximate Lagrangian controllability of (1.3) between γ0 and γ1 in time T by means of
potential flows.

The use of such a potential flow is related to the so-called return method , introduced by Coron [2], which
involves an appropriate change of scale in time, and is used when dealing with the case u0 �≡ 0.

Let us point out that estimate (1.8) is necessary to obtain the approximate controllability, but in itself it
does not imply readily (1.10).

As a matter of fact, one can consider the approximate Lagrangian controllability from two different perspec-
tives. The first one is related to the problem of approximately extending harmonic functions, by an appropriate
resolution of some elliptic equations, and the use of trace operators acting on spaces such as H±1/2(Γ ). The
second point of view, only in the case of dimension N = 2, consists in a constructive approach using Runge’s
approximation theorem, as treated in Section 3.

In the sequel we shall adopt the following notations and conventions: for a sufficiently regular vector field
X : [0, T ]×Ω −→ RN , let ΦX denote the flow of X defined by:

ΦX : [0, T ]× [0, T ]×Ω −→ R
N , (1.11a)⎧⎨⎩∂ΦX

∂t
(s, t, x) = X(t, ΦX(s, t, x)), (s, t, x) ∈ [0, T ]2 ×Ω,

ΦX(s, s, x) = x.
(1.11b)

For instance one may assume that X is uniformly Lipschitz on [0, T ] × Ω, to ensure that ΦX exists for all
(s, t, x) ∈ [0, T ]2 ×Ω.
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Let us consider γ0 and γ1, two smooth Jordan surfaces or curves homotopic in Ω. We assume that there
exists a smooth vector field X : [0, T ]×Ω −→ RN such that

X(0, ·) ≡ X(T, ·) ≡ 0 (1.12a)
X(t, σ) = 0, for all (t, σ) ∈ [0, T ]× ∂Ω (1.12b)

ΦX(0, t, γ0) := ΦX(0, t, ·)(γ0) ⊂ Ω for all t ∈ [0, T ] (1.12c)

ΦX(0, T, γ0) := ΦX(0, T, ·)(γ0) = γ1 (1.12d)
div(X(t, ·)) = 0 in Ω, for all t ∈ [0, T ]. (1.12e)

Given a parameterization of γ0, equality (1.12d) means that the image of γ0 by ΦX(0, T, ·) is a parameteri-
zation of γ1.

In [3,4], Glass and Horsin construct explicitly smooth vector fields X satisfying the conditions (1.12) according
to the specific assumptions on γ0 and γ1, which depend on the dimension N = 2 or N = 3. Despite having
explicit procedures for the construction of the vector fields X , from a numerical analysis perspective, it is
nevertheless necessary to understand the stability of such procedures.

The remainder of this paper is organized as follows. In Section 2 we prove Theorem 1.1, while in Section 3
a constructive method, based on Runge’s theorem, is presented which applies only in dimension N = 2. In
Section 4 we give a precise analysis of a Cauchy problem on the boundary for the Laplace operator. In fact we
show that the stability constant is of the order exp(dist(Γ, γ)), where Γ is the region of the boundary on which
a control is implemented, and γ denotes the boundary of the region which one desires to control. Thus, in order
to have a tractable numerical procedure for the Lagrange controllability, it is necessary that the zone Γ should
be close enough to γ.

2. Approximate controllability in H−1/2
-norm

As we mentioned in the introduction, motion of curves in R2, or surfaces in R3, is governed by the dynamics
of the normal velocity. In this chapter we prove first Theorem 1.1 and then we comment (see Rem. 2.3 below)
how this theorem yields an approximate controllability result for the Euler equation, albeit in a weak sense,
that is in H−1/2-norm.

It is clear that the solution Ψv of the system (1.4) exists, is unique, and the mapping v �→ Ψv is continuous
from H

−1/2
m (Γ ) into H1(Ω). Thanks to a result due to Lions (see [6], Chap. VII, Sect. 5), Λγ(v) := ∇Ψv · n12 is

well defined on γ, and the operator Λγ is continuous from H
−1/2
m (Γ ) into H−1/2

m (γ).
Let us recall that H1/2

m (γ) ↪→ L2
m(γ) ↪→ (H1/2

m (γ))′ with dense and compact imbeddings where we have set

L2
m(γ) :=

{
ϕ ∈ L2(γ),

∫
γ

ϕdσ = 0
}
,

and as a matter of fact one has (
H1/2
m (γ)

)′
= H−1/2

m (γ).

In order to prove Theorem 1.1, we will introduce the following operators Λi for i = 1, 2, defined through
the resolution of an appropriate partial differential equation in Ωi (recall that we have set Ω2 := insd(γ), the
inside of γ, and that Ω1 := Ω \ Ω2). The operator Λ1 is a Poincaré−Steklov type operator (also called a
Neumann-to-Dirichlet operator), and is given by

Λ1 : H−1/2
m (γ) −→ H1/2

m (γ)
ψ �→ ξ(ψ)|γ (2.1)
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where ξ := ξ(ψ) ∈ H1(Ω1) is the unique solution of⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Δξ = 0 in Ω1, (2.2a)
∂ξ

∂n12
= ψ on γ, (2.2b)

∂ξ

∂n
= 0 on ∂Ω (2.2c)∫

γ

ξ(σ) dσ = 0. (2.2d)

The operator Λ2 is also a Poincaré−Steklov type operator, and is given by

Λ2 : H1/2
m (γ) −→ H−1/2

m (γ)

ϕ �→ ∂ζ(ϕ)
∂n21

:= ∇ζ(ϕ) · n21|γ (2.3)

where ζ := ζ(ϕ) ∈ H1(Ω2) is the unique solution of{
−Δζ = 0 in Ω2,

ζ = ϕ on γ.
(2.4)

It is readily seen that the operators Λ1 : H−1/2
m (γ) −→ H

1/2
m (γ) and Λ2 : H1/2

m (γ) −→ H
−1/2
m (γ) are bounded

and self-adjoint operators, and that with the above notations we have, for ψ ∈ H
−1/2
m (γ) and ϕ ∈ H

1/2
m (γ),

〈ψ,Λ1ψ〉H−1/2(γ),H1/2(γ) =
∫
Ω1

|∇ξ(x)|2 dx, (2.5)

〈Λ2ϕ,ϕ〉H−1/2(γ),H1/2(γ) =
∫
Ω2

|∇ζ(x)|2 dx. (2.6)

In the course of our proof of Theorem 1.1 we shall need to show that the operator T12 := I + Λ1Λ2 is a
homeomorphism on the space H1/2

m (γ). To this end we recall the following result: if A and B are two n × n
self-adjoint semi-definite matrices, it is a well known result that all the eigenvalues of the matrix AB are real
and nonnegative, and as a consequence for any λ > 0 the matrix I + λAB is invertible. An analogous result
holds for operators in acting in a Hilbert space, as stated in the following lemma.

Lemma 2.1. Let H be a Hilbert space, with a scalar product and norm denoted respectively by (·|·) and ‖ · ‖,
and two bounded nonnegative (in the sense of forms) selfadjoint operators A and B defined in H. Then for any
λ > 0 the operator I + λAB is invertible and has a bounded inverse.

Proof. We are going to verify that the kernel N(I+λAB) = {0} and that the range R(I+λAB) is closed. Recall
that since B = B∗ is nonnegative in the sense of forms, in particular we have the Cauchy−Schwarz inequality
stating that for any u, v ∈ H ,

|(Bu|v)| ≤ (Bu|u)1/2 (Bv|v)1/2.
In particular note that if u ∈ H is such that (Bu|u) = 0 then Bu = 0. If u ∈ H is such that

u+ λABu = 0,

then by taking the scalar product of the above with Bu, and using the facts that B is self-adjoint, and A,B are
nonnegative, we have

0 = (Bu|u) + λ(ABu|Bu) ≥ (Bu|u) ≥ 0,
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yielding that (Bu|u) = 0, and thus Bu = 0. Since u + λABu = 0, this shows that u = 0 and thus N(I +
λAB) = {0}.

We show now that R(I + λAB) is closed. Indeed if un, fn ∈ H and f ∈ H are such that

un + λABun = fn → f in H

we set gn,k := fn − fk and vn,k := un − uk so that

vn,k + λABvn,k = gn,k.

We may take the scalar product of this equality with Bvn,k and obtain

‖B1/2vn,k‖2 = (Bvn,k|vn,k) ≤ (Bvn,k|vn,k) + λ(ABvn,k|Bvn,k) = (gn,k|Bvn,k)
≤ (Bgn,k|gn,k)1/2‖B1/2vn,k‖ ≤ ‖B‖1/2‖gn,k‖ ‖B1/2vn,k‖.

We conclude that
‖B1/2un −B1/2uk‖ ≤ ‖B‖ ‖fn − fk‖,

proving that (B1/2un)n is a Cauchy sequence, and therefore the sequence (ABun)n is also a Cauchy sequence,
the linear operator AB1/2 being continuous. Thus there exists a certain g ∈ H such that ABun → g as n→ ∞.
Finally, if we set u := f − λg, we have that un → u as n → ∞, and also ABun → ABu and therefore
u+ λABu = f , that is u ∈ R(I + λAB), and the range of the operator I + λAB is closed.

It is clear that, changing the roles played by A and B, we can also see that

N((I + λAB)∗) = N(I + λBA) = {0}

and that R((I + λAB)∗) = R(I + λBA) is closed. Since by the closed range theorem of S. Banach (see for
instance K. Yosida [9], p. 205, Chap. VII, Sect. 5), we have

R(I + λAB) = N((I + λAB)∗)⊥ = H,

we conclude that (I +λAB) is one-to-one, that is (I +λAB)−1 exists. Thanks for instance to an applications of
Banach’s closed graph theorem to the mapping (I + λAB)−1 (see Yosida [9], p. 79, Thm. 1, Chap. II, Sect. 6),
we infer that I + λAB has a bounded inverse and thus it is a homeomorphism of H into itself. �

We are now in a position to prove the following result:

Proposition 2.2. The map

T12 : H1/2
m (γ) −→ H1/2

m (γ)
ϕ �→ ϕ+ Λ1Λ2ϕ

is a one-to-one homeomorphism.

Proof. Let J := H
1/2
m (γ) −→ H

−1/2
m (γ) be the duality isomorphism given by F. Riesz’ theorem. Then setting

A := Λ1J and B := J−1Λ2, it is easily seen that A and B are two self-adjoint, nonnegative and bounded
operators on H

1/2
m (γ). For instance let us check that A = A∗ and is nonnegative. To simplify notations, set

H := H
1/2
m (γ) so that H ′ = H

−1/2
m (γ). The isomorphism J satisfies, for any ϕ1, ϕ2 ∈ H and ψ1, ψ2 ∈ H ′,

〈ψ1, ϕ1〉H′,H = (J−1ψ1|ϕ1)H , (ϕ1|ϕ2)H = (Jϕ1|Jϕ2)H′ = 〈Jϕ1, ϕ2〉H′,H .
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Thus, for ϕ1, ϕ2 ∈ H
1/2
m (γ), if we set ψk := Jϕk for k = 1, 2, using the above properties of J and the fact that

Λ1 : H ′ −→ H is selfadjoint, we have

(ϕ1|Aϕ2)H = (J−1ψ1|Λ1ψ2)H = 〈ψ1, Λ1ψ1〉H′,H = 〈ψ2, Λ1ψ1〉H′,H

= (J−1ψ2|Λ1ψ1)H = (ϕ2|Λ1ψ2)H
= (ϕ2|Aϕ1)H = (Aϕ1|ϕ2)H ,

which means that A is selfadjoint (recall that A is bounded). Setting ψ := Jϕ, for ϕ ∈ H , the fact that A is
nonnegative is a consequence of (2.5) and the equality

(Aϕ|ϕ)H = 〈ψ,Λ1ψ〉H′,H =
∫
Ω1

|∇ξ(x)|2 dx,

where ξ satisfies (2.2).
It is clear that T12 = I + AB, and thus applying Lemma 2.1 we conclude that T12 is a homeomorphism on

H
1/2
m (γ). �

2.1. Proof of Theorem 1.1

Proof. By a result due to S. Banach, it is well known that the closure of the range of Λγ is the orthogonal of
the kernel of its adjoint Λ∗

γ , that is R(Λγ) = N(Λ∗
γ)⊥ (see for instance Yosida [9], p. 205, Chap. VII, Sect. 5).

Thus we have to show that N(Λ∗
γ) = {0}. This will be done in two steps.

Step 1. In this step, we consider the following case. Assume that Ω̃ ⊂ RN is a domain such that ω ⊂⊂ Ω̃
is connected, Γ = ∂ω is smooth, and finally Ω = Ω̃ \ ω̄ (see Fig. 1). We have to show that Λ∗

γ is injective
(recall that the operator Λγ is defined in (1.5)), and to do so we need to characterize this adjoint operator by
establishing a certain representation formula.

For ϕ ∈ H
1/2
m (γ) let us determine Λ∗

γ(ϕ). We solve (2.4) and denote its solution by ζ := ζ(ϕ), and we denote

by ξ := ξ(−Λ2(ϕ)) the solution of (2.2) with v = −Λ2(ϕ). For this v ∈ H
−1/2
m (Γ ) given, multiply (2.4) by Ψv

Figure 1. The case of the first step.
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defined in (1.4), and integrate by parts to obtain successively:

〈Λγv, ϕ〉H−1/2(γ),H1/2(γ) = −
∫
Ω2

ΔΨv(x) ζ(x) dx −
∫
Ω2

∇Ψv(x) · ∇ζ(x) dx

=
∫
Ω2

Ψv(x)Δζ(x) dx − 〈Λ2ϕ, Ψv〉H−1/2(γ),H1/2(γ)

=
〈

∂ζ

∂n12
, Ψv

〉
H−1/2(γ),H1/2(γ)

(2.7)

=
∫
Ω1

Δξ(x)Ψv(x) dx +
∫
Ω1

∇ξ(x) · ∇Ψv(x) dx

= −
∫
Ω1

ξ(x)ΔΨv(x) dx +
〈
∂Ψv
∂n12

, ξ

〉
H−1/2(γ),H1/2(γ)

+ 〈v, ξ〉H−1/2(Γ ),H1/2(Γ )

= −〈Λγv, Λ1Λ2ϕ〉H−1/2(γ),H1/2(γ)

+ 〈v, ξ〉H−1/2(Γ ),H1/2(Γ ).

Here, and in the sequel, in the duality bracket 〈v, ξ〉H−1/2(Γ ),H1/2(Γ ) one should interpret ξ as being the trace

of ξ ∈ H1(Ω1) on Γ . We thus deduce that for all ϕ ∈ H
1/2
m (γ) and v ∈ H

−1/2
m (Γ ) we have

〈Λγv, ϕ+ Λ1Λ2ϕ〉H−1/2(γ),H1/2(γ) = 〈v, ξ〉H−1/2(Γ ),H1/2(Γ ). (2.8)

Recall that for any given ϕ̃ ∈ H
1/2
m (γ), by Proposition 2.2 there exists a unique ϕ ∈ H

1/2
m (γ) such that

ϕ̃ = ϕ+ Λ1Λ2(ϕ). Setting ϕ := (I + Λ1Λ2)−1ϕ̃ and then

ζ := ζ(ϕ) = ζ
(
(I + Λ1Λ2)−1ϕ̃

)
and ξ := ξ(−Λ2(ϕ)) ,

we deduce from (2.8) that for any v ∈ H
−1/2
m (Γ ) and any ϕ̃ ∈ H

1/2
m (γ), by the very definition of Λ∗

γ : H1/2
m (γ) −→

H
1/2
m (Γ ), we have〈

v, Λ∗
γϕ̃

〉
H−1/2(Γ ),H1/2(Γ )

= 〈Λγ(v), ϕ̃〉H−1/2(γ),H1/2(γ) = 〈v, ξ〉H−1/2(Γ ),H1/2(Γ ). (2.9)

Now to conclude the first step of our proof, assume that ϕ̃ ∈ H
1/2
m (γ) is such that Λ∗

γϕ̃ = 0. Then the above

identity (2.9) implies that for all v ∈ H
−1/2
m (Γ ) we have 〈v, ξ〉H−1/2(Γ ),H1/2(Γ ) = 0. This means that ξ ≡ 0 on Γ ,

which, thanks to the unique continuation property for the Laplace operator (see e.g. Hörmander [5], Thm. 8.6.5)
and the fact that ξ satisfies also condition (2.2c), implies that ξ ≡ 0 in Ω1. This in turn implies that Λ2(ϕ) ≡ 0
on γ. However, thanks to (2.6) and the fact that by our assumption on γ the set Ω2 is a connected open domain,
we conclude that ζ is constant in Ω2. Finally, ϕ is a constant on γ and, since it has zero mean value there, we
infer that ϕ ≡ 0 on γ and thus ϕ̃ ≡ 0, that is N(Λ∗

γ) = {0} and R(Λγ) is dense in H−1/2
m (γ).

Step 2. In this step we assume that the part of the boundary Γ ⊂ ∂Ω, on which the Lagrangian control is
applied, is as in Figure 2. More precisely, we extend the domain Ω into a strictly larger domain Ω̃ in such a
way that some relatively open part Γ0 of Γ lies in Ω̃. Now we consider a small ball ω ⊂⊂ Ω̃ \ Ω, and we set
Ω̃0 := Ω̃ \ ω and Γ̃0 := ∂ω.

In the domain Ω̃0 we may apply the result of the above Step 1: denote by Λ0,γ the mapping defined by

Λ0,γ : H−1/2
m (Γ̃0) −→ H−1/2

m (γ)
v0 �−→ Λ0,γ(v0) := ∇Ψ0,v0 · n12|γ
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Figure 2. The case of the second step.

where Ψ0,v0 has a mean value equal to zero on Ω, and sastisfies

−ΔΨ0,v0 = 0 in Ω̃0, ∇Ψ0,v0 · n = v0 on Γ̃0, and ∇Ψ0,v0 · n = 0 on ∂Ω̃.

Then, according to what we have proved in Step 1, we know that R(Λ0,γ) is dense in H−1/2
m (γ). Now we point

out that if we set v := ∇Ψv ·n on ∂Ω, and Ψv := (Ψ0,v0)|Ω the restriction of Ψ0,v0 to Ω, then Ω being smooth, we
have Ψv ∈ H1(Ω) and −ΔΨv = 0 in Ω. Thus the mapping v �→ ∇Ψv ·n12 corresponds to the mapping v �→ Λγ(v),
and we see that R(Λ0,γ) ⊂ R(Λγ) (note that Ψv being harmonic in Ω, this implies that v ∈ H

−1/2
m (Γ0)): from

this we infer that R(Λγ) is dense in H−1/2
m (γ), and the proof of Theorem 1.1 is complete. �

Remark 2.3. Since for any v ∈ H
−1/2
m (Γ ), Ψv defined by (1.4a) is harmonic in Ω, we have that Λγ(v) is as

smooth as the manifold γ itself. Thus Λγ cannot be surjective. This means that in general it is not possible to
have an exact Lagrangian controllability. However, in order to decsribe the process which allows us to deduce
the approximate Lagrangian controllability from the density result of Theorem 1.1, we refer to ([4], Sect. 2.2).

3. Specificity of the dimension 2

Before dealing with an interpretation of the instabilities inherent to the problem under investigation, in this
section we present some specific comments on the dimension 2. We refer to the paper [3] by Glass and Horsin
for a thorough presentation of this approach.

Let Ω ⊂ R2 a domain, and let f : Ω → C be a complex valued function. We write f = f1 + if2 where f1 and
f2 are real valued functions. First we recall that f satisfies the Cauchy−Riemann equations, or equivalently f
is holomorphic in Ω (see for instance Rudin [7]), if and only if the vector

Vf :=
(
f1
−f2

)
satisfies the two conditions div(Vf ) = curl(Vf ) = 0.

Now, if f satisfies the Cauchy−Riemann equation in Ω, since curl(Vf ) = 0 in Ω, then the vector valued
function Vf : Ω −→ R

2 is the gradient of some function Φ in Ω, and thus finally, as Vf satisfies div(Vf ) = 0 in
Ω, then we conclude that Φ is a harmonic function defined in Ω and Vf = ∇Φ. The aim of this section is to give
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a constructive approximation of f through the classical Runge’s theorem, and thus to obtain an approximation
procedure for ∇Φ.

With the notations introduced in Section 1 for Theorem 1.3, in this section we will moreover assume that
T = 1, and that the curve γ0, as well as the maps x �→ X(t, x) for each t ∈ [0, 1] are smooth, more precisely we
assume that γ0 ∈ Cω(S1,C) and X ∈ C∞

0 ([0, T ], Cω(Ω) ∩ C∞
0 (Ω)).

Throughout this section we will denote γt := ΦX(0, t, γ0), that is the image of γ0 under the flow of the vector
field X .

In this situation the proof of Theorem 1.3 relies on a compactness argument in time and the use of an
appropriate version of the Cauchy−Kowalevsky’s theorem (see [1], Thm. 5.7.1’) for a precise statement) on one
hand, and the Runge’s approximation theorem, on the other hand.

More precisely, it is shown that, for some integer m ∈ N∗, there exists a finite sequence of times t0 := 0 <
t1 < . . . < tm < tm+1 = T = 1, and m functions ρi ∈ C∞

0 (]ti−1, ti+1[, [0, 1]) and m functions ϕi harmonic on Ω,
satisfying conditions (1.7b) and (1.7c) at t = ti, as well as (1.8), such that

ϕ(t, x) :=
m∑
i=1

ρi(t)ϕi(x), (3.1)

satisfies (1.9) and (1.10).
As the above definition (3.1) suggests, in order to prove the approximate lagrangian controllability, an option

is to approximate the functions ρi in time and the functions ϕi in x.

3.1. Constructing a Runge’s approximation

We wish to find an explicit approximation procedure in the following Runge’s approximation theorem (see [7]
in particular for other remarkable properties deduced from this theorem).

Theorem 3.1. Let Ω be an open subset of C. Let K a compact subset of Ω and S ⊂ C a set which has exactly
one point in each connected component of C\Ω, and f : Ω → C a holomorphic function. Then given any ε > 0,
there exists a rational function R whose poles are exactly the points of S, and moreover R satisfies

||f −R||L∞(K) ≤ ε.

Though the proof can be given in a more general settings, in the sequel, for the sake of simplicity and clarity,
we will assume that Ω is connected, and that C \Ω has one connected component.

Let O ⊂ Ω be an open set such that, for some integer p ≥ 0, the set C \ O has exactly (p + 1) connected
components, each of them containing exactly one element of S, and verifying

O ⊂ Ω, and ∀t ∈ [0, 1], ΦX(0, t, γ0) ⊂ O. (3.2)

We assume moreover that X ∈ C∞
0 ([0, 1], C∞

0 (Ω) ∩ Cω(O)), and that there exists Φ ∈ C∞
0 ([0, 1], Cω(O)) such

that (recall that X is divergence free)

∀t ∈ [0, 1], ∇Φ(t, ·) = X(t, ·) in O.
Let us consider a curve γ̃0 such that γ0 ⊂ insd(γ̃0) ⊂ O. For t ∈ [0, 1] if we denote by

γ̃t := ΦX(0, t, γ̃0),

then we clearly have
ΦX(0, t, γ0) = γt ⊂ insd(γ̃t).

We now define f : [0, 1]× Ω → C by the formula

Vf(t,·) = ∇Φ(t, ·), (3.3)
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and thus f(t, ·) is holomorphic on a neighborhood of γt. We may prove now the following:

Theorem 3.2. For any ε > 0, there exists a function R ∈ C∞([0, 1], Cω(C \ S)) such that for any t ∈ [0, 1],
the function z �→ R(t, z) is a rational function whose poles are exactly the points of S and such that

sup
t∈[0,1]

||f(t, ·) −R(t, ·)||L∞(insd(γt)) ≤ ε. (3.4)

Proof. For the sake of simplicity, we give the proof only in the case when C \Ω has one connected component.
The reader will be convinced that through easy modifications the proof can be carried out in the general case.

Let us choose K, a compact subset of Ω, such that⋃
t∈[0,1]

insd(γt) ⊂ Int(K).

Thanks to the compactness of [0, 1] and the continuity of f , for a given ε > 0, there exist an integer n ≥ 1, a
positive number κ, and a sequence 0 < t1 < · · · < tn < 1 such that [0, 1] = ∪nj=0((tj − κ, tj + κ) ∩ [0, 1]) and

∀ t ∈ (tj − κ, tj + κ) ∩ [0, 1], sup
z∈K

|f(t, z)− f(tj , z)| ≤ ε

2
·

Choose (ϕj)1≤j≤n a partition of unity such that supp(ϕj) ⊂ (tj − κ, tj + κ) ∩ [0, 1], and also for 1 ≤ j ≤ n
denote

Kj :=
⋃

t∈(tj−κ,tj+κ)∩[0,1]

insd(γt).

Now, thanks to Runge’s theorem there exists Rj a rational function whose poles are exactly the points of S
such that

sup
z∈Kj

|f(tj , z) −Rj(z)| ≤ ε

2
·

At this point it is clear that if we set

R(t, z) :=
n∑
j=1

ϕj(t)Rj(z),

then by construction R satisfies (3.4). �

Remark 3.3. As a matter of fact, it is possible to give an explicit construction of R. Indeed, first, the partition
of unity (ϕj)1≤j≤n can be constructed by means of the well-known function

x �→ Ψ(x)Ψ(1 − x)

where

Ψ(x) =
∫ x

−∞
ψ(t)dt,

with

ψ(x) =

{
0 if x < 0,
e−1/x otherwise.

Next, with our assumptions on Ω, we can give an explicit function Rj . Indeed such an explicit construction is
given, for example in [8].



LAGRANGIAN CONTROLLABILITY OF FLUIDS 1191

Figure 3. Illustration of the situation in Section 3.2.

3.2. Application to the controllability problem

We now explain how we apply this approximation to the Lagrangian controllability by means of harmonic
flows and in particular how we deal with condition (1.3d). For simplicity, we will assume that C \ Ω has only
one connected component.

Consider a simply connected open neighborhood U of O (recall that O is defined by (3.2)) such that O ⊂
U ⊂ U ⊂ Ω, and denote by V a simply connected neighborhood of ∂Ω \ Γ such that V ∩ U = ∅.

Let us recall the Mergelyan’s theorem (see [7])

Theorem 3.4. Let O be a relatively compact open set of C such that C \ O is connected and consider h a
continuous map defined in O, holomorphic in O. Then for any ε > 0 there exists a polynomial P such that

∀z ∈ O, |P (z) − h(z)| ≤ ε.

Now let f be given as in (3.3) and, for a given ε, let R be the Runge’s approximation given by Theorem 3.2. If
h is a continuous function defined in Ω such that h ≡ 1 on U and h ≡ 0 on V , then using the above Mergelyan’s
theorem with O = U ∪ V on which h is holomorphic, there exists a polynomial Pε such that

∀z ∈ U , |Pε(z) − 1| ≤ ε/‖R‖W 1,∞(U),

and such that
∀z ∈ V , |Pε(z)| ≤ ε/‖R‖W 1,∞(V).

Precisely we have to impose that C \ O is connected. But in fact due to our construction we can assume
that Γ and ∂Ω \ Γ are connected (it suffices not to control on the other part of Γ ), and thus we can take U
connected and simply connected and since Ω is supposed to be simply connected, we can take V connected and
simply connected as well.

Thus we get

sup
t∈[0,1]

‖PεR(t, ·) − f‖L∞(insd(γt)) ≤ sup
t∈[0,1]

‖PεR(t, ·) −R(t, ·)‖L∞(insd(γt))

+ sup
t∈[0,1]

‖R(t, ·) − f(t, ·)‖L∞(insd(γt))

≤ 2ε (3.5)

and naturally
‖PεR‖L∞(V) ≤ ε. (3.6)
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Let us remark that, if we consider an intermediate smooth Jordan curve γ̂0 such that γ0 ⊂ insd(γ̂0) ⊂ γ̂0 ⊂
insd(γ̃0), and if we denote γ̂t := ΦX(0, t, γ̂0), then the preceding approximation can be done by replacing γ0

by γ̂0. Proceeding analogously, we get the same estimate as (3.5) where γt is replaced by γ̂t.
However, since PεR and f are holomorphic and thus harmonic where defined, by standard elliptic estimates,

for some constant C > 0 we have

sup
t∈[0,1]

‖PεR(t, ·) − f‖W 1,∞(insd(γt)) ≤ Cε, (3.7)

and, by choosing Ṽ a neighborhood of ∂Ω \ Γ such that Ṽ ⊂ V , we have (again using elliptic estimates)

sup
t∈[0,1]

‖PεR‖W 1,∞(Ṽ) ≤ Cε, (3.8)

where C depends only on d(Ṽ , ∂V) and mint∈[0,1] d(γt, γ̂t) (let us remark that since γ0 ⊂ Int(insd(γ̂0)) then
γt ⊂ Int(insd(γ̂t)) since ϕX is the flow of X , and since by uniqueness of the solution of an ordinary differential
equation, a compactness argument implies that we have mint∈[0,1] d(γt, γ̂t) = inft∈[0,1] d(γt, γ̂t) > 0).

We denote fε(t, z) := Pε(z)R(t, z). Since Ω is connected, for each t ∈ [0, 1], the vector valued function Vfε

is the gradient of some harmonic function ψε, but it does not necessarily satisfy (1.7c). In order to construct a
function which satisfies this condition, let us consider a function k on [0, 1] × ∂Ω such that ∀t ∈ [0, 1]

k(t, ·) = Vfε on ∂Ω \ Γ
‖k(t, ·)‖C2(∂Ω) ≤ C‖Vfε(t, ·)‖C2(∂Ω\Γ )∫
∂Ω

k(t)dσ = 0, (3.9)

for some constant C independend of ε (such a k can be constructed using Urysohn’s extension theorem). For
any t ∈ [0, 1], let us now consider ζ(t, ·) harmonic in Ω such that

∂ζ

∂n
(t, ·) = k(t, ·) on ∂Ω, and

∫
∂Ω

ζ(t, ·)dσ = 0.

Thanks to standard elliptic estimates we have, for some constants C > 0

sup
t∈[0,1]

‖ζ(t, .)‖C2(Ω) ≤ C ‖k(t, .)‖C2(∂Ω) ≤ C ε. (3.10)

Finally, consider a function ρ ∈ C∞([0, 1]) such that

∀ t ∈ [0, 1], ρ(t) ∈ [0, 1], ρ(0) = ρ(1) = 0,

and define the new function f̂ε(t, z) := ρ(t)(fε(t, z) − ζ(t, z)), the vector valued function Vf̂ε
is the gradient

of a function that satisfies the conditions of Theorem 1.3 provided that ρ = 1 on some [η, 1 − η] with η > 0
sufficiently small.

To finish with this section, let us remark that in order to achieve our approximation argument, one has to
explain how we can explicitely construct Pε and how one can approximate ζ. For the former, if one closely looks
at the proof of the Mergelyan’s theorem given in [7], one sees that it suffices to give an explicit construction of
the Runge’s approximation which is done in [8]. For the latter, it suffices to apply a finite element method to
approximate Υε.
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4. A precise analysis of ill-posedness

The analysis undertaken in the previous sections shows the possibility of an approximate Lagrangian control
which, in general, cannot be exact. As a matter of fact, this can be interpreted as an issue related to the ill-
posedness of the problem consisting in the determination of a harmonic function in a domain Ω with Cauchy
data on some part of its boundary ∂Ω.

Indeed, consider the following problem, which is a simplified version of the Lagrangian control under study
in this paper. Let Ω be the rectangular domain

Ω := (0, π) × (0, �) ⊂ R
2 for some � > 0,

and denote by Γ0, Γ1 and Γ the following parts of the boundary:

Γ0 := [0, π] × {0} , Γ1 := [0, π] × {�} , Γ := ∂Ω \ (Γ0 ∪ Γ1). (4.1)

Moreover, for a given �∗ such that 0 < �∗ < �, consider

Γ∗ := [0, π] × {�∗} . (4.2)

The problem we want to analyze is this: for a given g∗ ∈ H−1/2(Γ∗) find a Neumann boundary data g0 ∈
H−1/2(Γ0) such that there exists a harmonic function u ∈ H1(Ω) such that

−Δu = 0 in Ω, and
∂u

∂n
= g0 on Γ0 and

∂u

∂n
= g∗ on Γ∗. (4.3)

Note that this problem is similar to the one considered in Theorem 1.1, but here the target curve γ is a simple
line which intersects the boundary of Ω. In the limit case when �∗ = �, the problem would be

−Δu = 0 in Ω, and
∂u

∂n
= g0 on Γ0 and

∂u

∂n
= g1 on Γ1, (4.4)

for which one sees obviously that any g0 ∈ H−1/2(Γ0) such that

〈g0, 1〉H−1/2(Γ0),H1/2(Γ0) + 〈g1, 1〉H−1/2(Γ1),H1/2(Γ1) = 0

yields a function u ∈ H1(Ω) solution to the above equation (4.4).
To find a g0 such that (4.3) is satisfied, or rather such that the normal derivative ∂u/∂n on Γ∗ is an

approximation of g∗, we first solve an auxiliary boundary value problem, namely for a fixed f0 ∈ H1/2(Γ0) and
g1 ∈ H−1/2(Γ1) we seek v ∈ H1(Ω) solution to⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−Δv = 0 in Ω

v = f0 on Γ0

∂v

∂n
= g1 on Γ1

∂v

∂n
= 0 on Γ.

(4.5)

For later comments, we attract the reader’s attention to the fact that at this point we have added a Neumann
boundary condition on the part Γ of the boundary, where problems (4.3) or (4.4) do not impose any such
restriction. Actually one may consider other boundary conditions on Γ , but we shall develop this aspect later.

Clearly, for any given pair (f0, g1) ∈ H1/2(Γ0)×H−1/2(Γ1), equation (4.5) has a unique solution v ∈ H1(Ω),
and if we can find a (f0, g1) ∈ H1/2(Γ0) ×H−1/2(Γ1) such that this solution v satisfies

∂v

∂n
= g∗ on Γ∗, or

∥∥∥∥ ∂v∂n − g∗

∥∥∥∥
H−1/2(Γ∗)

≤ ε,



1194 T. HORSIN AND O. KAVIAN

for a certain ε > 0, then v solves problem (4.3), or an approximation of it. It is also clear that not all g∗ ∈
H−1/2(Γ∗) may be attained, and thus again the only hope is to approximate g∗ with ∂v/∂n.

We shall describe the solution of (4.5) in terms of eigenfunctions of two Steklov eigenvalue problems associated
to this boundary value problem, and then we shall give necessary and sufficient conditions on the pair (f0, g0)
ensuring the existence and uniqueness of a solution u ∈ H1(Ω) of⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−Δu = 0 in Ω

u = f0 on Γ0

∂u

∂n
= g0 on Γ0

∂u

∂n
= 0 on Γ.

(4.6)

For j = 0 or j = 1, the Steklov eigenfunctions ψj,k are defined as solutions to⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−Δψj,k = 0 in Ω
∂ψj,k
∂n

= μj,kψj,k on Γj

(1 − j)
∂ψj,k
∂n

+ jψj,k = 0 on Γ1−j
∂ψj,k
∂n

= 0 on Γ

(4.7)

with the normalization
∫
Γj
ψj,k(σ)ψj,k′ (σ) dσ = δk′k, so that the Steklov eigenfunctions (ψj,k)k≥0 form a Hilbert

basis of L2(Γj). One checks easily that

ψ0,0(x, y) :=
1√
π
, ψ1,0(x, y) :=

1
�
√
π
y, (4.8)

while for k ≥ 1 we have

ψ0,k(x, y) :=

√
2
π

cos(kx)
cosh(k(�− y))

cosh(k�)
, (4.9)

and

ψ1,k(x, y) :=

√
2
π

cos(kx)
sinh(ky)
sinh(k�)

· (4.10)

The eigenvalues μj,k are given by μ0,0 := 0, and μ1,0 := 1/�, while

μ0,k := k tanh(k�), μ1,k := k cotanh(k�) for k ≥ 1. (4.11)

If (f0, g1) ∈ H1/2(Γ0) ×H−1/2(Γ1), we shall denote for k ≥ 0

f0,k :=
∫ π

0

f0(x)ψ0,k(x, 0) dx, g1,k :=
∫ π

0

g1(x)ψ1,k(x, �) dx.

Note that for the definition of g1,k we should have written duality brackets between H−1/2(Γ1) and H1/2(Γ1),
instead of an integral over (0, π), but clearly there is no risk of ambiguity. Also we have that

f0 ∈ H1/2(Γ0) ⇐⇒ |f0,0|2 +
∑
k≥1

μ0,k|f0,k|2 <∞,

the right hand side being equivalent to the norm of f0 in H1/2(Γ0). Analogously

g1 ∈ H−1/2(Γ1) ⇐⇒ |g1,0|2 +
∑
k≥1

1
μ1,k

|g1,k|2 <∞,
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again the right hand side being equivalent to the norm of g1 in H−1/2(Γ1).
Now we can state the following auxiliary result:

Lemma 4.1. Let (f0, g1) ∈ H1/2(Γ0)×H−1/2(Γ1) be given. With the above notations for the Steklov eigenvalues
and eigenfunctions, and for the Fourier coefficients f0,k, g1,k, the solution of (4.5) is given by

v = � g1,0 ψ1,0 +
∑
k≥1

tanh(k�)
k

g1,k ψ1,k +
∑
k≥0

f0,k ψ0,k (4.12)

and on Γ0 we have:

∂v

∂n
=

−1√
π
g1,0 +

√
2
π

∑
k≥1

[
k tanh(k�) f0,k − 1

cosh(k�)
g1,k

]
cos(kx). (4.13)

Proof. We know that (ψ0,k(·, 0))k≥0 and (ψ1,k(·, �))k≥0 are Hilbert bases of L2(Γ0) and L2(Γ1) respectively (ac-
tually up to an appropriate normalization (ψ1,k(·, �))k≥0 can be also considered as a Hilbert basis in H−1/2(Γ1)).
Now, if we express f0 and g1 in terms of their coefficients in these bases, since v is entirely determined by its
traces on Γ0 and Γ1 we may write

v =
∑
k≥0

αkψ0,k +
∑
k≥0

βkψ1,k.

In order to find the coefficients αk and βk, it is sufficient to multiply equation (4.5) by ψ0,k and ψ1,k, and one
finds easily the expression given by (4.12).

For the determination of the normal derivative ∂v/∂n on Γ0, one considers first a finite sum in (4.12), and
then pass to the limit in H−1/2(Γ0), since clearly the series in (4.13) converges in this space, thanks to the
assumptions on f0 and g1. �

From the expression of ∂v/∂n it is clear that we may infer the following:

Corollary 4.2. Let g1 ∈ H−1/2(Γ1) be given. For any f0 ∈ H1/2(Γ0) and g0 ∈ H−1/2(Γ0) the solution v
of (4.5) is solution to (4.3) if and only if we have g0,0 = −g1,0 and for all k ≥ 1

g0,k = k tanh(k�) f0,k − 1
cosh(k�)

g1,k. (4.14)

One sees that, as we already pointed out, problem (4.4) has infinitely many solutions, since for each given
f0 ∈ H1/2(Γ0) one may determine g0 thanks to the above corollary, in which case the solution of (4.4) obtained
in this way satisfies moreover ∂u/∂n = 0 on Γ = ∂Ω \ (Γ0 ∪ Γ1).

Incidently, the above analysis shows that in order to find a harmonic function u with Cauchy data (f0, g0)
on Γ0, more precisely in order to solve the following problem: find u ∈ H1(Ω) such that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−Δu = 0 in Ω

u = f0 on Γ0

∂u

∂n
= g0 on Γ0

∂u

∂n
= 0 on Γ ,

(4.15)
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one possibility is to find g1 ∈ H−1/2(Γ1) such that the solution v of (4.5) satisfies ∂v/∂n = g0. Thus we may
state the following necessary and sufficient condition on the compatibility of f0, g0:

Proposition 4.3. Let f0 ∈ H1/2(Γ0) and g0 ∈ H−1/2(Γ0). With the above notations, equation (4.15) has a
unique solution u ∈ H1(Ω) if, and only if, the Cauchy boundary data f0, g0 satisfy the following compatibility
condition: ∞∑

k=1

k sinh2(k�)
(
f0,k − cotanh(k�)

k
g0,k

)2

<∞. (4.16)

Moreover, when the above condition is satisfied, the solution u is given by

u =
∑
k≥0

f0,kψ0,k − �g0,0ψ1,0 +
∑
k≥1

sinh2(k�)
cosh(k�)

(
f0,k − cotanh(k�)

k
g0,k

)
ψ1,k,

and there exist two positive constants c1, c2 such that if we denote by ‖(f0, g0)‖2∗ the quantity

|f0,0|2 + |g0,0|2 +
∞∑
k=1

k|f0,k|2 +
∑
k≥1

k sinh2(k�)
(
f0,k − cotanh(k�)

k
g0,k

)2

,

then we have
c1 ‖(f0, g0)‖2

∗ ≤ ‖u‖2
H1(Ω) ≤ c2 ‖(f0, g0)‖2

∗. (4.17)

Remark 4.4. Note that in our analysis of the resolution of (4.6) we began with the resolution of the mixed
boundary value problem (4.5), while we could have proceeded with another choice, for instance by solving⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−Δv = 0 in Ω

v = f0 on Γ0

v = f1 on Γ1

∂v

∂n
= 0 on Γ.

(4.18)

for some f1 ∈ H1/2(Γ1). Then we would have found a condition on f0, f1 such that for a given g0 we have
∂v/∂n = g0, where v is the unique solution of the above equation (4.18). In this case the Steklov eigenvalues
and eigenfunctions ψ1,k should be replaced with μ1,0 := 0 and ψ1,0 := 1/

√
π, and for k ≥ 1

μ1,k := k tanh(k�) = μ0,k, ψ1,k(x, y) :=

√
2
π

cos(kx)
cosh(ky)
cosh(k�)

·

Then condition (4.16) would be replaced with the following necessary and sufficient condition
∞∑
k=1

k cosh2(k�)
(
f0,k − tanh(k�)

k
g0,k

)2

<∞,

which is equivalent to (4.16).

Remark 4.5. If Γ∗ is as in (4.2) and g∗ ∈ H−1/2(Γ∗), let u ∈ H1(Ω) be the solution of (4.15) for a compatible
pair (f0, g0) ∈ H1/2(Γ0) ×H−1/2(Γ0), and let us compute ∂u/∂y restricted to Γ∗ and compare it with g∗. We
have, for k ≥ 1

∂ψ0,k(x, �∗)
∂y

=
−k sinh(k(�− �∗))

cosh(k�)

√
2
π

cos(kx)

∂ψ1,k(x, �∗)
∂y

=
k sinh(k�∗)
cosh(k�)

√
2
π

cos(kx),
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while for k = 0 we have
∂ψ0,0

∂n
= 0,

∂ψ1,0

∂n
=

1
�
√
π
·

Setting for k ≥ 1

αk :=
−k sinh(k(�− �∗))

cosh(k�)
f0,k

βk :=
sinh2(k�)
cosh2(k�)

(
f0,k − cotanh(k�)

k
g0,k

)
k sinh(k�∗),

we have
∂u(x, �∗)

∂n
=

−g0,0√
π

+

√
2
π

∑
k≥1

(αk + βk) cos(kx).

Therefore one sees that the necessary and sufficient condition for the existence of (f0, g0) such that condi-
tion (4.16) is satisfied, and moreover we have g∗ = ∂u(·, �∗)/∂n, is that the Fourier coefficients of g∗

a0 :=
1√
π

∫ π

0

g(x) dx, ak :=

√
2
π

∫ π

0

g∗(x) cos(kx) dx for k ≥ 1

are such that ak = αk + βk and a0 = −g0,0/√π. Since αk has an exponential decay (of order exp(−k�∗)) and
βk also has an exponential decay of order exp(−k(� − �∗)), due to the condition (4.16), one sees that ak must
have a decay of order exp(−kmax(�∗, �− �∗)), and in particular one sees that g∗ must be analytic on (0, π).

If one wishes only to approximate a given g∗ ∈ H−1/2(Γ∗), clearly one can do so by taking a finite sum

a0√
π

+

√
2
π

n∑
k=1

ak cos(kx),

and then find coefficients f0,k, g0,k for 1 ≤ k ≤ n, such that

ak =
−k sinh(k(�− �∗))

cosh(k�)
f0,k +

sinh2(k�)
cosh2(k�)

(
f0,k − cotanh(k�)

k
g0,k

)
k sinh(k�∗).

For instance one choice may be

f0,k :=
− cosh(k�)

k sinh(k(�− �∗))
ak,

g0,k := k tanh(k�)f0,k =
− sinh(k�)

sinh(k(�− �∗))
ak,

which shows why a numerical instability appears since, for instance, an error in the coefficient an of order ε is
transmitted as an error of order ε exp(n�∗)/n in the determination of f0,n. One can check that any other choice
of f0,k, g0,k yields the same type of numerical error.

In the following corollary we state a noteworthy result for the case in which the domain (0, π)×(0, �) is replaced
by (0, �1) × (0, �2): its proof is straightforward after a slight adaptation of the Steklov eigenfunctions ψj,k.

Corollary 4.6. Let Ω := (0, �1) × (0, �2) for some �1 > 0 and �2 > 0, and denote

Γ0 := [0, �1] × {0}, Γ1 := [0, �1] × {�2}, Γ := ∂Ω \ (Γ0 ∪ Γ1) .
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Let the Steklov eigenfunctions and eigenvalues ψj,k, μj,k be defined by ψ0,0 := 1/
√
�1, with μ0,0 := 0, and

ψ1,0 := y/(�2
√
�1) with μ1,0 = 1/�2, while for k ≥ 1

ψ0,k(x, y) :=
√

2
�1

cos(kπx/�1)
cosh(kπ(�2 − y)/�1)

cosh(kπ�2/�1)
, μ0,k := k tanh(kπ�2/�1), (4.19)

and

ψ1,k(x, y) :=
√

2
�1

cos(kπx/�1)
sinh(kπy/�1)
sinh(kπ�2/�1)

, μ1,k := k cotanh(kπ�2/�1). (4.20)

If f0 ∈ H1/2(Γ0) and g0 ∈ H−1/2(Γ0) are given, for k ≥ 0 integer denote

f0,k :=
∫ �1

0

f0(x)ψ0,k(x, 0)dx, g0,k :=
∫ �1

0

g0(x)ψ0,k(x, 0)dx. (4.21)

Then the following equation ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−Δu = 0 in Ω

u = f0 on Γ0

∂u

∂n
= g0 on Γ0

∂u

∂n
= 0 on Γ.

(4.22)

has a unique solution u ∈ H1(Ω) if, and only if, the Cauchy boundary data f0, g0 satisfy the following compati-
bility condition:

∞∑
k=1

k sinh2(kπ�2/�1)
(
f0,k − �1 cotanh(kπ�2/�1)

kπ
g0,k

)2

<∞. (4.23)

Moreover, when the above condition is satisfied we have

u =
∞∑
k=0

f0,kψ0,k − g0,0ψ0,0 +
∞∑
k=1

sinh2(kπ�2/�1)
cosh(kπ�2/�1)

(
f0,k − �1 cotanh(kπ�2/�1)

kπ
g0,k

)
ψ1,k,

and there exist two positive constants c1, c2 such that if we denote by ‖(f0, g0)‖2∗ the quantity

|f0,0|2 + |g0,0|2 +
∞∑
k=1

k|f0,k|2 +
∞∑
k=1

k sinh2(kπ�2/�1)
(
f0,k − �1 cotanh(kπ�2/�1)

kπ
g0,k

)2

then we have
c1 ‖(f0, g0)‖2

∗ ≤ ‖u‖2
H1(Ω) ≤ c2 ‖(f0, g0)‖2

∗. (4.24)

Remark 4.7. It is important to point out a particular feature of the above compatibility condition (4.23) on the
Cauchy boundary data f0 ∈ H1/2(Γ0) and g0 ∈ H−1/2(Γ0). Indeed, this condition contains in a hidden and subtle
way the homogeneous Neumann boundary condition ∂u/∂n = 0 on Γ , through the Steklov eigenfunctions ψj,k,
and therefore the Fourier coefficients f0,k and g0,k.

To be more specific, for a real parameter α ∈ [0, 1] let us consider the following equation with Cauchy
boundary data on Γ0: find u ∈ H1(Ω) such that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−Δu = 0 in Ω

u = f0 on Γ0

∂u

∂n
= g0 on Γ0

α
∂u

∂n
+ (1 − α)u = 0 on Γ.

(4.25)
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For α = 0 we have a homogeneous Dirichlet boundary condition on Γ , while for α = 1 the boundary condition
is of Neumann type. For 0 < α < 1, the boundary condition on Γ is a Fourier boundary condition (sometimes
named Robin boundary condition).

This equation can be solved in a similar manner by considering the following Steklov eigenfunctions. For
j = 0 or j = 1 consider the functions ψj,k solutions to the Steklov eigenvalue problem⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−Δψj,k = 0 in Ω
∂ψj,k
∂n

= μj,kψj,k on Γj

ψj,k = 0 on Γ1−j

α
∂ψj,k
∂n

+ (1 − α)ψj,k = 0 on Γ

(4.26)

with the usual normalization
∫
Γj
ψj,k(σ)ψj,k′ (σ) dσ = δk′k. It is not difficult to see that ψ1,k(x, y) = ψ0,k(x, �2−y)

and that

ψ0,k(x, y) = ϕk(x)
sinh(

√
λk (�2 − y))

sinh(k�2)

where ϕk solves the Sturm–Liouville eigenvalue problem on (0, �1):⎧⎪⎨⎪⎩
−ϕ′′

k = λkϕk in (0, �1)
−αϕ′

k(0) + (1 − α)ϕk(0) = 0
αϕ′

k(�1) + (1 − α)ϕk(�1) = 0.
(4.27)

Now it is clear that λk depends on α and that λk ∼ c∗(�1)k2 as k → +∞. One may compute also the Steklov
eigenvalues μj,k which are

μ0,k = μ1,k := μk :=
√
λk cotanh(

√
λk �2).

We then define the coefficients f0,k, g0,k as in (4.21), with the new eigenfunctions ψ0,k, and in a manner strictly
identical to what we have seen above, one finds that a necessary and sufficient condition on (f0, g0) is given by

∞∑
k=1

√
λk cosh2(

√
λk �2)

(
f0,k − tanh(

√
λk �2)√
λk

g0,k

)2

<∞. (4.28)

Denote also by ‖(f0, g0)‖∗,α the norm defined by the quantity

‖(f0, g0)‖2
∗,α :=

∞∑
k=1

√
λk |f0,k|2 +

√
λk cosh2(

√
λk �2)

(
f0,k − tanh(

√
λk �2)√
λk

g0,k

)2

,

which can be considered as a norm defined by an appropriate scalar product, at least when 0 ≤ α < 1 (for
α = 1 one has to add the constants |f0,0|2 + |g0,0|2 as in (4.24)). Let Hα be the space

Hα :=
{

(f0, g0) ∈ H1/2(Γ0) ×H−1/2(Γ0) ; ‖(f0, g0)‖∗,α <∞
}
. (4.29)

One may verify that for each α the space Hα endowed with the norm

(f0, g0) �→
(
‖f0‖2

H1/2(Γ0) + ‖(f0, g0)‖2
∗,α

)1/2

is a Hilbert space.
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Now we claim that if 0 ≤ α1 < α2 ≤ 1, we have Hα1 ∩Hα2 = {0}. Indeed, if (f0, g0) ∈ Hα1 ∩Hα2 , and u1 and
u2 solve (4.25) for the values α1 and α2 respectively, then v := u1−u2 satisfies Δv = 0 in Ω and v = ∂v/∂n = 0
on Γ0. The unique continuation principle implies that v ≡ 0 in Ω, and in particular ∂v/∂n = v = 0 on Γ , that
is we have

α1
∂u1

∂n
+ (1 − α1)u1 = 0, α2

∂u1

∂n
+ (1 − α2)u1 = 0 on Γ.

Since α1 �= α2, we infer that ∂u1/∂n = u1 = 0 on Γ , and again by the unique continuation principle we have
u1 ≡ 0 on Ω, which yields f0 = g0 = 0.

One sees that the space of Cauchy datas (f0, g0) on Γ0 for which one may solve uniquely, and in a well-posed
manner the Cauchy problem

−Δu = 0 in Ω, u = f0 and
∂u

∂n
= g0 on Γ0

contains Hα for all 0 ≤ α ≤ 1. However it is also clear that one can exhibit many other subspaces of compatible
Cauchy datas in order to solve the above equation.

5. Remarks on numerical simulations

We should mention that, according to the construction given in this paper, numerical simulations have been
performed and other numerical experiments are under way.

The construction here as well as in [3] or [4] is of an open-loop type. Indeed, the construction of the vector
field X is given a priori, and is the basis of all the subsequent analysis.

For the time being, numerical simulations based on this open-loop control fail to be satisfactory. To compen-
sate the open-loop strategy, Legendre and Vialard (both from Université Paris-Dauphine, France) have suggested
to compute a new vector field X at each time step. However, despite the fact that significant improvements
were made, the instability pointed out in the previous sections seems to play a crucial role in the numerical
difficulties in the tracking of the motion of the curve γ0.

Other options in order to compensate these behaviours are currently being experimented, and their description
and mathematical treatment are postponed to future reports and papers.
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