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Abstract—Rehabilitation exoskeletons require a control 

interface for the direct transfer of mechanical power and 

exchange of information in order to assist the patient in his/her 

movements. By using co-contraction indexes (CCI), it is possible 

to accurately characterize human movement and joint stability. 

But when dealing with human movement disorders, no existing 

index allows to achieve neuro-motor control with bio-kinematic 

sensors. Thus, we propose a neuro-motor interactive method for 

lower-body exoskeleton control. A novel dynamic index called 

neuro-motor index (NMI) is introduced to estimate the relation 

between muscular co-contraction derived from 

electromyography signals (EMG) and joint angles. To estimate 

the correlation in the state space and enhance the precision of the 

NMI, we describe an estimation method relying on a two-way 

analysis of canonical correlation (CCA). A thorough assessment 

is presented, by conducting two studies on control subjects and 

on patients with abnormal gait in a medical environment. i) An 

offline study on control patients showed that NMI captures the 

complex variation induced by changing walking speed more 

accurately than CCI, ii) an online study, applied on successive 

gait cycles of patients with abnormal walk indicates that the 

existing CCI have a low accuracy related with joint angles while 

it is significantly higher with NMI. 

 
Index Terms—Exoskeleton for rehabilitation, co-contraction 

index, neuro-motor control, bio kinematic.  

 

I. INTRODUCTION 

The rehabilitation exoskeleton is a mechatronic device, 

worn by the neurological patient, designed to increase physical 

performance and fitted to the shape and function of the human 

body. This prosthesis is used to provide a high-intensity 

training for human limbs on user-specific basis, to help the 

recovery of a neurological disease or disorder [1], [2]. The 

exoskeleton works mechanically in parallel with the human 

body [1] and can be controlled in a passive or active way. 

Typically, a complete exoskeleton, consists of a sensory 

system that acquires the physiological signals of interest, a 

processing stage to extract the relevant parameters that can be 

used to control the exoskeleton accordingly. The main 
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challenge faced by interactive exoskeleton is the direct 

relationship between the physiological signals and the desired 

behavior of the exoskeleton. To yield the complete control to 

the patient, most of the existing approaches are following 

another approach. The exoskeleton is programed with a 

predefined behavior that the patient should follow. One of the 

most difficult cases addressed by researchers in rehabilitation 

robotics is the training of ground running with exoskeleton, 

such as HAL [3] of the University of Tsukuba, EXPOS of 

Sogang University [4]. ReWalk [5], Rex Bionics [6], Indigo 

[7], Exoatlet [8], Wandercraft [9], among others. There are 

two known control strategies for these devices (i) impedance 

or admittance control, which are generally predetermined and 

do not consider the user's physical condition [10], [11] (ii) 

electromyogram (EMG)-based control which rely on the 

detection of muscle activation. But existing approaches are not 

satisfying in that EMG signals recorded from users with 

muscular disorder lead to improper operation [10]-[12]. Thus, 

these two control strategies are not suitable for patients with 

cerebral palsy (CP) or recovering after stroke, which are two 

common target populations for rehabilitation exoskeletons. 

Here, we are interested in an interactive exoskeleton that 

encompasses a control system driven by the patient. This 

requires continuous measurements of biological and 

mechanical signals. The acquired signals are analyzed, 

interpreted, and used to drive the trajectory of an exoskeleton. 

This approach relies on physiological signals 

(electromyography EMG) and kinematic recording (joint 

angles of walking). The traditional method to quantify the 

walking movements is based on monitoring the kinematic, 

EMG and spatio-temporal parameters to assist a patient in his 

movement [13]. However, this method suffers from several 

limitations, as it requires off-line measurement, it limits the 

patient in his own movement, and it does not take into account 

the variability of the patient's walk [14]. This leads to patient 

fatigue and pain during rehabilitation session with the 

exoskeleton [15]. In addition, this method does not allow to 

distinguish between the deviations and the compensations due 

to the influence of walking speed [14].     

Our approach is based on recording the EMG signals from 

hamstring and quadriceps muscles due to their bi-articular 

nature for the knee and the hip [16]. These signals contain 

information about the intention of the patient [17] and allow to 

evaluate the muscle co-activation around the joint [18]. It has 

been suggested that muscle co-activation indicates the 

achievement of a motor skill [19], [20]. Co-activation is also 

related to joint stability [20] and is considered as an important 

factor which contributes to the inefficiency of pathological 

movement [21]. Most researchers and clinicians rely on EMG 

measurements to express co-activation [18]. Muscle 

co-activation has been expressed as a comparison between the 
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measured EMGs for the involved muscles and the reference 

EMG values [18], [22]-[25]. A different approach was 

followed by Falconer and Winter [26], Hessee et al.  [27] and 

for another index proposed by Frost et al. [28], Unihan et al. 

[29]. Those works examine the co-activation around a joint 

based on the co-contraction index. While it is adequate for 

offline analysis and diagnosis, these are not suitable for 

designing a control strategy. 

In this paper, we propose to modify those co-contraction 

indexes for exoskeleton control and we propose a new 

framework to design a controller based on EMG and 

kinematics. The proposed approach allows to encompass the 

patient-specific walking behavior to offer a new interactive 

control, without any reference to a reference walking cycle. 

The contributions are the following: 

• Introduction of a new index based on the results of the 
regression in combination with CCI. 

• A new methodology of assessment relying on canonical 
correlation analysis. 

• Evaluation of the new index for generalization of 
walking behavior 

• Assessment of the new index for characterizing abnormal 
walk 

The next section of this paper provides the required 

background, regarding the computation of the co-contraction 

indexes, the experimental data acquisition and the 

preprocessing applied on the signal. Section III introduces the 

neuro-motor index and the adequate tools for its assessment. 

The experimental results are provided in section IV along with 

some detailed explanation. Section V concludes this paper. 

 

II. EXPERIMENTAL FRAMEWORK 

To incorporate intention information in a control strategy, 

one could rely on co-contraction indexes. Several indexes are 

described in the literature; we provide here a unified 

description of these indexes.   

A. Estimating the Co-contraction 

 A modified version of the method Frost et al. [28] and 

Unnithan et al. [29] could be written as: 

 

       CCI1 (t)=                 (1) 

 

The method by Hessee et al. [31] is rewritten as: 

 

      CCI2 (t)=                (2) 

 

  The method by Falconer and Winter [30] proposes an index 

that could be reformulated as 

 

       CCI3 (t)=     (3) 

 

   For the knee study, EMG antago is the envelop of muscles 

that cause knee flexion movement (quadriceps) and EMG ago is 

the envelop of muscles that cause knee extension movement of 

(hamstring). For the hip study, EMG antago is the envelop of 

muscles that causes hip flexion movement (hamstring) and 

EMG ago is the envelop of muscles that cause hip extension 

movement of (quadriceps). The CCI1 and CCI2, t1 and t2 

denote the period of one complete gait cycle. The CCI3: t1 and 

t2 denote the period where the agonist EMG is less than the 

antagonist EMG, whereas t2 and t3 denote the period where 

the antagonist EMG is less than agonist EMG 

B. Subjects and Measurements 

Patients have been recorded in Gait Laboratory, Raymond 

Poincaré Hospital, Garches, France. There were twenty 

subjects; nine healthy adults: four females and five males, 

aged 50 years ±7; five kids with cerebral palsy: three females 

and two males, aged 10 years ±2; six adults with stroke: three 

females and three males, aged 50 years ±7. Each subject was 

tested for his gait on the ground at different walking velocities, 

with each subject performing eleven trials for each velocity. 

The gait analysis was recorded at 100 Hz with a 3D 

optoelectronic system (Motion Analysis Corporation, Santa 

Rosa, CA, USA) using eight optoelectronic cameras. 

Twenty-three markers were placed on the patient’s lower body, 

following the Helen Hayes model commonly used by the 

biomechanical community for gait analysis [30]. The relative 

displacement of each segment was estimated from this 

coordinate system (flexion / extension, abduction / adduction, 

internal / external rotation). The marker trajectories were then 

filtered using a fourth-order zero-lag Butterworth 

low-pass-filter, with a 6-Hz cut-off frequency [31]. The main 

kinematic parameters were peak flexion, extension, as 

appropriate for hips and knees. Spatio-temporal parameters 

were calculated for both lower limbs, including gait velocity, 

cadence, step and stride length, step width, and the duration of 

the single support phase. Kinematic and kinetic parameters 

were calculated for both lower limbs for each sub-phase of the 

gait cycle: first double support phase (DS1), the first single 

phase (SS), second double support phase (DS2) and the swing 

phase (SWP). The activity of eight muscles were also recorded 

using a surface EMG system (MA311, Motion Lab Systems, 

Baton Rouge; band-pass 15-3000 Hz): biceps femoris 

(Bic-Fem), gastrocnemius lateralis (GasLat), gastrocnemius 

medialis (Gas-Med), rectus femoris (Rec-Fem), 

semi-membranous (Semi-Mem), soleus (Soleus), tibialis 

anterior (Tib-Ant), and vastus lateralis (Vas-Lat) for both legs. 

The main EMG measurements of quadriceps (Rec-Fem, 

Vas-Lat) and hamstring (Bic-Fem, Semi-Mem). 

C. Processing of Recorded Signals  

The EMG raw data were full-wave filtered with a 

Butterworth 4-band band pass filter and cut-off frequencies at 

10 and 400 Hz, rectified and low pass filtered by a Butterworth 

filter of order 4 at between 4 to 6 Hz according to the cadence 

of the subject [32] yielding the linear envelopes of each muscle 

EMG. The EMG of each muscle were then expressed as a 

percentage of the EMG value during the MVC [33]. The 

kinetic data were segmented in 1001 values for knee and hip 

joints to obtain matrices with fixed dimensions, equal to those 

of recorded EMG matrices and their mean and variance were 

estimated. The CCIs have been continuously computed with a 

sliding window with an overlap of 10 points and with a single 

point increment. 

 

   ∫ 𝐸𝑀𝐺𝑎𝑔𝑜
𝑡1

𝑡2
 ∩ 𝐸𝑀𝐺𝑎𝑛𝑡𝑎𝑔𝑜 𝑑𝑡

∫ 𝐸𝑀𝐺𝑎𝑔𝑜 ∪ 
𝑡1

𝑡2
 𝐸𝑀𝐺𝑎𝑛𝑡𝑎𝑔𝑜 𝑑𝑡

 × 100   

 2  ∫ 𝐸𝑀𝐺𝑎𝑔𝑜
𝑡1

𝑡2
 ∩ 𝐸𝑀𝐺𝑎𝑛𝑡𝑎𝑔𝑜 𝑑𝑡

∫ 𝐸𝑀𝐺𝑎𝑔𝑜+ 
𝑡1

𝑡2
 𝐸𝑀𝐺𝑎𝑛𝑡𝑎𝑔𝑜 𝑑𝑡

 × 100

 2  ∫ 𝐸𝑀𝐺𝑎𝑛𝑡𝑎𝑔𝑜 
𝑡1

𝑡2
  𝑑𝑡+ ∫ 𝐸𝑀𝐺𝑎𝑛𝑡𝑎𝑔𝑜 𝑑𝑡 

𝑡2

𝑡3

∫ 𝐸𝑀𝐺𝑎𝑔𝑜+ 
𝑡1

𝑡3
 𝐸𝑀𝐺𝑎𝑛𝑡𝑎𝑔𝑜 𝑑𝑡

  100   ×
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Fig. 1.  Example for one healthy adult subject. Upper graph: normalized 

EMG of the antagonist and antagonist muscles total muscle activity used to 

calculate the CCIs. Medial graph: union and intersection for normalized 
envelop EMGs of the agonist and antagonist muscles used to calculate CCI1. 

Lower graph: sum and intersection for normalized envelop EMGs of the 

agonist and antagonist muscles used to calculate CCI2(t). Vertical lines 
indicate the under-phases gait for one leg: DS1, SS, DS2, SWP) CCI values 

are the estimated values across each phase. 

 

 
Fig. 2.  Example for illustration of the gait angles for a healthy subject and 

another stroke: upper graph: the mean and variance for hip and knee 
(flexion/extension) angles of healthy subject; lower graph: the mean and 

variance for hip and knee (flexion / extension) angles of stroke subject. This 

graph shows that the gait cycle phases are destroyed in the stroke subject as 
well the variance between cycles is high. 

III. NEURO-MOTOR INDEX AND EVALUATION STRATEGIES 

We proposed a neuro-motor index to determine the control 

function. This index is a sliding evaluation of muscle 

co-contraction derived from the combination between two 

co-contraction indexes used by Frost et al. [28], Unnithan et al. 

[29] and Hessee et al. [27], combined together by a nonlinear 

regression of the quadriceps and hamstring EMGs. The 

regression was estimated with a Hermitian polynomial model 

He(t). 

 

NMI (t) =   {  CCI1 (t ) +   Rm(t) CCI2 (t ) }         (5) 

 

where, Rm (t) is a nonlinear regression based on Hermitian 

function  

 

Rm (t) = h1 (t) f0 + h2 (t) p0 + h3(t) f1 + h4 (t) p1 

 

The peaks are identified with the following optimization 

problem:      

argmin t | f’(t)| 

 

f (t) = EMGantago (t) ∩ EMGago emgAGO(t) 

 

h1, h2, h3, h4 ∈ He (t); p0   and p1 are tangent to f0 and f1. 

     

NMI is an index, derivable from co-activation that indicates 

achievement of motor skill and that is also related to joint 

stability. It is considered to be an important factor contributing 

to the ineffectiveness of human movement. The NMI is a 

continuous index that could be computed on any acquired 

EMG and it could help to detect the patient's intention for a 

given movement. This NMI is based on the detection of the 

flexion / extension of a joint during a given movement. It does 

not depend on the definition of a standard cycle (such gait 

cycle), which is a necessary requisite to work with cerebral 

palsy patients and patients with stroke. Nonlinear regression 

ensures that this method can be applied in case of abnormal 

walking, whether for an adult or for a child. Starting from a 

minimal calibration to reduce patient fatigue, the NMI allows 

for direct prediction of patient movement, reliance on residual 

capacity, and avoidance of pre-recorded control. 

A. Validation with Canonical Correlation Analysis  

The canonical correlation (CCA) is a multivariable 

statistical method used to extract the underlying correlation of 

two sets of data. It finds a pair of linear combinations such that 

the correlation between the two canonical variables is 

maximized. CCA extends ordinary correlation for any two sets 

of variables and is widely used in statistical and information 

mining [34], [35]. 

To test the reliability of the NMI, a canonical correlation 

analysis is applied in the two following studies. 

1) First study: Offline assessment of reliability  

In order to test the effectiveness of the NMI in the case of 

speed change, the CCA is applied at the angles, on one hand, 

and each ICC or/and NMI on the other hand on data extracted 

for the knee and hip (left and right) walking movement, from 

healthy subjects, during three velocities with average (slow: 

0.59 m/s, normal: 1.18 m/s and fast:1.75) at eleven gait cycles 

for each velocity, as illustrated in Fig. 3. 
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Fig. 3. An illustration for usage the correlation by two successive steps.  
First step: CCA applied at joint angles and in index based in EMG signals. 
Second step: at the result for CCA in different cases (different velocities). 

For three functions Ɵi indicates the angles measured at each 

gait cycle at different velocities (for 11 gait cycles), IK is the 

studied indices (CCI1, CCI2, CCI3 and NMI), and Vj 

symbolizes the three types of velocity (slow, normal and fast) 

for finding linearly correlated features from Ɵ and I : 

 

Corr ( Ik , Ɵi)      

                         (6) 

 

where  is the correlation between two random 

variables Θ and I  with standard deviations    and   and   

expected values μƟ and μI to determine the correlation 

coefficient between result groups. CORR (CCAik)j is the 

correlation coefficient between the canonical correlation 

applied between Ɵ1, Ɵ2, ..., Ɵi and I1, I2, …., Ik at V1, V2……, Vj  

  

 For three velocities:   

CORR(CCAik)j = 

              (7) 

 

2) Second study: Online control assessment 

    In order to test the effectiveness of the MNI for several 

successive input of the data, as illustrated in Fig. 4, the CCA is 

applied between the angles of the walk on each ICC and the 

MNI, on the data extracted for the movement of the knee and 

the hip (left and right) of healthy subjects and patients 

neurological disorders (CP and stroke). Here, I denotes the 

index determined from the EMGs for the Hamstring and 

quadriceps muscle groups, and Θ represents the gait angles 

(for hip or knee). The linear combinations of I and Θ are I = IT 

Wx and Ɵ = Θ T WƟ, respectively. CCA finds the weight vectors, 

WI and WƟ, which maximize the correlation between I and Ɵ, 

by solving the following optimization problem.  

 

 

                              

                                               (8) 

 

where ρn are the CCA coefficients obtained with the angle of 

reference signals being Ɵ1, Ɵ2, ..., Ɵn. The maximum of ρ with 

respect to WI and WƟ is the maximum canonical correlation. 

Projections onto WI and WƟ, i.e. I and Ɵ, are called canonical 

variants. 

 

 
Fig. 4. An illustration for usage of CCA applied at I based in EMG signals 

and joint angles. I, is the multi-channel of index. Ɵref is the reference joint 

angles for complete gait cycle. 

 

TABLE I: NORMALIZED AVERAGED CCA VALUES APPLIED AT JOINT ANGLES: 
HIP / INDICES STUDIED, IN THREE VELOCITIES 

Vj Slow Normal Fast Corr(CCAjK)  

Ɵ hip 

Ik  \ 

CCAjk 

CCA1k CCA2k CCA3k 

I1=CCI1 20.28 9.1 25.28  20  58.5 % 

I2=CCI2 19.23  20.23  22.02  71.9 % 

I3=CCI3 18.12  18.98  19.21  70.9 % 

I4=NMI 86.92  86.12  85.82  98.1 % 

 

 
Fig. 5. Illustration of correlation applied at three groups (Θ, I); Θ represents 
the knee joint angle during complete gait cycle, and   I represents the index 

used in this study: a) ICC1, b) ICC2, c) ICC3 and d) NMI, after testing the 

correlation between his variants (Ɵi, Ik). I1 vs Θ1 test average correlation: 
corr1=0.88, and I2 vs Θ2 corr2=0.88, and I3 vs Θ3 test correlation corr3 = 0.87; 

type =quasi-linear; corr (CCA)V=0.99.  
 

IV. RESULTS AND DISCUSSION  

In the first study on data from healthy subjects, with three 

velocities (slow, normal, and fast), CCA was applied for knee 

and hip gait angles (right and left). The correlation points show 

𝑐𝑜𝑣 (𝐶𝐶𝐴1,𝐶𝐶𝐴2 ,𝐶𝐶𝐴3)

√𝑐𝑜𝑣 (𝐶𝐶𝐴1,𝐶𝐶𝐴1,𝐶𝐶𝐴3).𝑐𝑜𝑣(𝐶𝐶𝐴2,𝐶𝐶𝐴2,𝐶𝐶𝐴3)
  

             
max

(𝑊𝐼, 𝑊Ɵ)  𝜌(𝐼, Θ) =  
𝐸 (𝐼𝑇 Θ)

√𝐸(𝐼𝑇 𝐼)𝐸(Θ
𝑇 

Θ)

= 
𝐸( 𝑊𝐼  

𝑇𝐼 𝐼𝑇 𝑊Ɵ )

√𝐸 (𝑊𝐼
𝑇 𝐼 𝐼𝑇𝑊𝐼 ) 𝐸 (𝑊Ɵ

𝑇ΘΘ𝑇 𝑊Ɵ)

 

  = 𝜌( 𝐼, Θ)  =
𝑐𝑜𝑣( Θ,I)  

𝜎Ɵ 𝜎𝐼

= 
𝐸[( Θ−μƟ )(I−𝜇𝐼)]  

𝜎Ɵ 𝜎𝐼
         

𝜌( 𝛩, 𝐼)
𝜎Ɵ   𝜎𝐼  
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an important variability from one velocity to another, 

moreover, the percentage of correlation was weak and far from 

a linear relation. When the CCA was applied at MNI and the 

gait angles of the same subject, for the three velocities (slow, 

normal and fast), knee and hip (right and left), the correlation 

points showed strong similarity for the three velocities. The 

percentage of correlation is very high; the correlation is almost 

linear, as shown in Fig. 5. For one healthy subject, during 

walking, Fig. 5a, b and c, CCA applied to ICCs and the knee 

angle was low and nonlinear, in addition there was a clear 

variation from a velocity to another. While, in Fig. 5.d, for 

CCA applied at NMI and knee angles this correlation had a 

linear type and was mostly similar at the three different 

velocities.  

 

 
Fig. 6. CCA applied at the joint angles and the indexes (CCI1, CCI2, CCI3 and 

MNI), for three different velocities during eleven complete gait cycles. Upper 
graph: CCA estimated for hip (flexion /extension) angles for one healthy 

subject. Lower graph: CCA estimated for knee (flexion /extension) angles for 

one healthy subject. Error bars indicate standard deviation. 
 

 

     Tables I and II, present the normalized averaged CCA 

values between joint angles and indices studied (CCI1, CCI2, 

CCI3 and NMI) during the gait cycle for three different 

velocities: SV: slow, NV: normal and FV: fast). These tables 

detail the data presented in histograms of Fig. 6. based on an 

offline study, eleven gait cycles and three velocities. The CCA 

applied on one healthy subject indicates that the CCIs have a 

low relation to angles (average: 18.12 % to 22.02% for 

hip ;8.45% to 24.32 % for knee; p>0.05) with high variation. 

While this relation is higher with NMI (average: 85.82 % to 

86.92% for hip; 86.67% to 88.89 % for knee) with low 

variation. The average correlation for CCIs studies are 71.9% 

for hip; 60.9% for knee, NMI indicates high significance at 

three velocities (with correlation: average 98.1% for hip; 

98.3% for knee; p<0.05). 
 

TABLE II: NORMALIZED AVERAGED CCA VALUES APPLIED AT JOINT 

ANGLES: KNEE / INDICES STUDIED, IN THREE VELOCITIES 

Vj Slow Normal Fast Corr(CCAjK)  

Ɵ knee 

Ik\ CCAjk CCA1k CCA2k CCA3k 

I1=CCI1 8.87  11.7  24.32  58.8 4% 

I2=CCI2 10.76  11.3  18.78 .7 60.9 % 

I3=CCI3 8.45  12.1  22.76 .1 57.1 % 

I4=NMI 88.24  88.89  86.67  98.3 % 

 

In the second study, a data from healthy subject was used as 

a reference, to test the ability in determining the control 

margin angle desired. This was evaluated as much as possible 

by calculating the difference between joint angles of a 

reference and others from stroke subject, for the hip and the 

knee.  

 

 
Fig. 7. CCA applied at joint angles and the indexes (NMI and CCI using 

three different methods for eleven complete gait cycles. Upper graph: CCA 

estimated for hip flexion /extension angles for one healthy subject. Lower 
graph: CCA estimated for knee flexion /extension angles for one healthy 

subject and one patient with stroke. Error bars indicate standard deviation. 

 

TABLE III: NORMALIZED AVERAGED CCA VALUES APPLIED AT JOINT ANGLES 

(KNEE AND HIP) / INDICES STUDIED, FOR STROKE SUBJECT AND HEALTHY DATA. 

  Healthy subject (ref) Stroke subject (p)  

CCA(Ɵ,IK) Hip Knee CCA(Ɵ,IK) Hip Knee 

I1=CCI1 21.25 .6 12.5 .9 I1=CCI1 21.25 .6 10.91 8.7 

I2=CCI2 22.12  13.82 10.1 I2=CCI2 22.12  11.91 .1 

I3=CCI3 18.81 .6 14.11 .1 I3=CCI3 18.81 .6 11.67 .2 

I4=NMI 92.65  91.85 3.8 I4=NMI 92.65  90.15 3.6 
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     Table III compares successive eleven gait cycles for 

healthy and stroke subjects (Fig. 7). Based on an online study, 

the CCA applied on successive gait cycles indicates that the 

CCIs have a low association to joint angles (i) healthy subject 

(average: 18.81% to 21.25% for hip; 12.5% to 14.11% for 

knee); (ii) stroke subject (average: 17.17% to 21.91% for hip; 

10.91% to 11.91% for knee) with high variation. However, 

this relation is significantly higher (p<0.05) with NMI (i) for 

healthy subject (average 92.65% for hip; 91.85% for knee), 

than  (ii) for stroke subject (average 91.45% for hip; 90.15% 

for knee ). The normalized averaged CCA values between 

joint angles and indices, studied (CCI1, CCI2, CCI3 and NMI) 

during 11 successive gait cycles for stroke subject with 

comparison with another healthy data, show no access to a 

control signal from ICCs. The detection of the control margin 

angle ∆Ɵ wasn’t accomplished in a control function, it was only 

achieved in the case of correlation with  NMI canonical 

correlation. 

 

V. CONCLUSION 

The effectiveness of using the new neuro-motor index (NMI) 

for bio kinematic-based control strategy for user-lead 

rehabilitation exoskeleton was investigated. This index was 

derived from a combination of two co-contraction indices and 

the nonlinear regression from a Hermitian function. The 

results of the studies reported here indicate that the NMI 

contributed to find a relation between contraction and joint 

angles. The CCA method is used for extracting angle 

information from the multi EMG signals. The offline analysis 

showed that only the coefficient of correlation INM-joint 

angles at different velocities were important when compared 

to the correlation CCI- joint angles. With an online test, which 

introduces successively bio-kinematic stroke data, results in a 

precise angle margin corrective function. 

This approach will have an impact on the development of 

control for online rehabilitation and for a good coordination 

patient - exoskeleton in cases of neurological disorders 

resulting in muscle spasticity such as CP and stroke. This 

index based on the joint muscular co-contraction, yielding a 

very good stability. As it estimated from EMG signals, it offers 

a better detection of the patient intention. The study of the 

flexion/extension without complying with the gait cycle 

phases makes it an effective indicator of the different 

movements around the joints, and not just walking movement. 

Future work will focus on real-time testing this index on an 

exoskeleton setting.  
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