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Abstract

We discuss a two-dimensional model that leads to a phase diagram
which reproduces at least qualitatively that of a pure substance. It is
known that a spring between two atoms is due to a bond created by the
interaction between the electrons of both atoms. Consequently a variation
of the quantum state of the electrons involved in the bond can modify
the elastic force constant of the spring. That is a kind of atom-phonon
coupling.

We consider a square lattice of N identical atoms linked by springs
between atoms first and second nearest neighbors. We assume that the
elastic force constants of all the springs can vary. The system is studied
by using a variational method. First order phase transitions are obtained.
The phase diagram of the system displays the features observed in the
phase diagram of a pure substance: three thermodynamic phases, three
coexistence curves, one Triple point and one Critical point. Applied pres-
sure can be introduced in the model.

key words: phase transition

1 Introduction

In this study we can reproduce at least qualitatively the features of the phase
diagram of a pure substance, that is : three thermodynamic phases, three co-
existence curves, one Triple point and one Critical point. This study is inspired
by that of molecules with two electronic energy levels [1].

When there is an electronic bond between two atoms the potential energy of
interaction of both atoms V (r) displays a minimum at r0, r being the distance
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between both atoms. The molecule vibrates around this minimun. For small
displacements the vibrations are harmonic. Then, we can say that there is an
harmonic spring between both atoms. The force constant of this spring k is
the second derivative of V (r) and the vibrational energy varies as

√
k. In the

adiabatic approximation[2, 3], the potential energy V (r) is the sum of the elec-
trostatic repulsion of the nuclei of both atoms and of E (r), one eigenvalue of the
electronic Hamiltonian. This electronic Hamiltonian is obtained by neglecting
the Kinetic energy of both nuclei. We neglect the possible variation of r0 with
the eigenvalue. So, for the fondamental level E1 (r), V (r) can be written

V (r) = E1 +
1

2
k1 (r − r0)2

and for the first excited level, V (r) can be written

V (r) = E2 +
1

2
k2 (r − r0)2

At low temperature the electronic system is in the fundamental energy level
E1 and the force constant is k1. Heating the molecule it can pass in an excited
level E2 and the force constant becomes k2. If k2 < k1 the vibrational energy
is lower in the excited level than in the fundamental one. Consequently, when
the electrons are in the fundamental level the electronic energy is small but
the vibrational energy is large while when they are in the excited level the
electronic energy is large but the vibrational energy is small. So there is a
competition between the electronic interactions which favour the fundamental
level and the vibrational interaction which favours the excited one. In Solid
state this competition can lead to a first order phase transition between the
phase where all the molecules are in the fundamental level and that where they
are all ( or nearly all) in the excited one[4]. The previous discussion made with
energy can be made with the free energy.
Let us consider a square lattice of N identical atoms where each atom is

linked by springs with its first nearest neighbors and with its second nearest
neighbors. Up to now the only case studied is that where the force constant of
springs which link two atoms first nearest neighbors can have two values k1 or
k2 [5, 6]. In this study we are concerned with the case where the force constant
of all the springs can have two values.
In section 2, we present the crystal Hamiltonian and the variational method

used to study it. In Section 3, we give the results obtained by numerical calcu-
lations and the last Section is devoted to discussion and conclusion.
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2 Theoretical study

2.1 Lattice Hamiltonian

Let us consider a square lattice of N identical atoms. Each atom l moves around
a lattice point l. The position vector of the lattice point l is

−→
Rl = l1

−→a1 + l2
−→a2 (1)

where −→a1 and −→a2 , the basis vectors of the lattice, are orthogonal and have the
same length a, and where l1 = 0, 1, 2, ...N1 − 1 and l2 = 0, 1, 2, ...N2 − 1. So the
lattice point l is defined by the set (l1, l2), and we can write l = (l1, l2). It is
clear that N = N1N2.
For studying the atoms movements, we introduce the orthogonal axes

−→
Ox

and
−→
Oy which are parallel to −→a1 and −→a2, respectively, the origin, O, being at

the lattice point (0, 0). We assume that each atom is linked to its first nearest
neighbors and to its second nearest neighbors by harmonic springs.
The four first nearest neighbors of the atom l = (l1, l2), are the atoms :

l(1) = (l1 + 1, l2), l(2) = (l1, l2 + 1), l(3) = (l1 − 1, l2) and l(4) = (l1, l2 − 1). We
call ell(α) , the elastic force constant of the spring linking the atoms l and l

(α),
with α = 1, 2, 3, 4. The potential energy of the elastic interaction between the
atom l and its four first nearest neighbors is Ep1(l) given by

Ep1(l) =
1

2
(ell(1) (ul − ul(1))

2
+ ell(3)(ul − ul(3) )

2

+ ell(2) (vl − vl(2))
2

+ ell(4) (vl − vl(4))
2
) (2)

where ul and vl are the components, on the respective axes
−→
Ox and

−→
Oy, of

the displacement of the atom l around the lattice point l. So, the total elastic
interaction between pairs of atoms first nearest neighbors is

Ep1tot =
1

2

∑
(l)

Ep1(l) (3)

∑
(l)

is the sum over the N lattice points. Periodic boundary conditions are

assumed.
The four second nearest neighbors of the atom l = (l1, l2) are the atoms:

L(1) = (l1 + 1, l2 + 1), L(2) = (l1 − 1, l2 + 1), L(3) = (l1 − 1, l2 − 1) and L(4) =

(l1 + 1, l2 − 1). We call ẽl,L(α) , the elastic force constant of the spring which
links the atoms l and L(α), with α = 1, 2, 3, 4. The potential energy of the
elastic interaction between the atom l and its four second nearest neighbors is
then
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Ep2(l) =
1

2
(ẽlL(1)blL(1) + ẽlL(2)blL(2) + ẽlL(3)blL(3) + ẽlL(4)blL(4)) (4)

with
blL(1) =

1

2

(
uL(1) − ul + v

L
(1) − vl

)2
(5)

blL(2) =
1

2
(ul − uL(2) + vL(2) − vl)

2 (6)

blL(3) =
1

2
(uL(3) − ul + vL(3) − vl)

2 (7)

blL(4) =
1

2
(ul − uL(4) + vL(4) − vl)

2 (8)

So, the total elastic interaction between pairs of atoms second nearest neighbors
is

Ep2tot =
1

2

∑
(l)

Ep2(l) (9)

The Hamiltonian of the crystal vibrations is

Hph = Ec + Ep1tot + Ep2tot (10)

where Ec is the kinetic energy of the atoms.

Now we introduce the following assumptions :
i) Each atom l contains two electronic subsystems (1) and (2). The electronic

subsystem (1) contains the electrons which are involved in the bond between
the atom l and its four first nearest neighbors and the electronic subsystem
(2) contains the electrons which are involved in the bond between the atom l

and its four second nearest neighbors. The electronic subsystem (i) (i = 1, 2)

has two energy levels separated by ∆i: the fundamental level, called (ai) is
not degenerated while the excited one, called (bi) has the degeneracy ri. To
the subsystem (i) is associated the fictitious spin σ̂il which has two eigenvalues
σil = ±1. In others words, each subsystem (i) has its own space of quantum
states and its physical observable σ̂il. And we work in the tensorial ( or direct)
product of both spaces.
The electronic Hamiltonian of the atom l can be written

He (l) =
∆1

2
σ̂1l +

∆2

2
σ̂2l (11)

and the electronic Hamiltonian of the crystal is

He =
∑
(l)

(
∆1

2
σ̂1l +

∆2

2
σ̂2l

)
(12)
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ii) The value of the spring constant ell(α) , with α = 1, ..4, depends only on
the quantum states of the electronic subsystems (1). This spring constant takes
three different values λ, µ or ν, following the relation

ell(α) =
λ+ 2µ+ ν

4
+
ν − λ

4
(σ1l + σ1l(α)) +

λ− 2µ+ ν

4
σ1lσ1l(α) (13)

We can verify that the above formula gives ell(α) = λ when σ1l = σ1l(α) = −1,
ell(α) = ν when σ1l = σ1l(α) = +1 and ell(α) = µ when σ1l 6= σ1l(α) . Moreover,
we assume that

λ ≥ µ ≥ ν (14)

iii) The value of the spring constant ẽlL(α) , with α = 1, ..4, depends only on
the quantum states of the electronic subsystems (2). This spring constant takes
three different values λ̃, µ̃ or ν̃, following the relation

ẽlL(α) =
λ̃+ 2µ̃+ ν̃

4
+
ν̃ − λ̃

4
(σ2l + σ2L(α)) +

λ̃− 2µ̃+ ν̃

4
σ2lσ2L(α) (15)

We can verify that the above formula gives ẽl,L(α) = λ̃ when σ2l = σ2L(α) =

−1, ẽl,L(α) = ν̃ when σ2l = σ2L(α) = +1 and ẽl,L(α) = µ when σ2l 6= σ2L(α) .
Moreover, we assume that

λ̃ ≥ µ̃ ≥ ν̃ (16)

Ultimately, H, the Hamiltonian of the crystal is

H = Ec + Ep1tot + Ep2tot +
∑
(l)

(
∆1

2
σ̂1l +

∆2

2
σ̂2l

)
(17)

2.2 Reduced parameters

It is interesting to take λ as the unit of elastic force constant and to introduce
the sets of reduced parameters (x, y) and (x̃, ỹ) defined by

x =
ν

λ
(18)

x̃ =
ν̃

λ̃
(19)

2µ = (λ+ ν) + y (λ− ν) (20)

2µ̃ =
(
λ̃+ ν̃

)
+ ỹ

(
λ̃− ν̃

)
(21)

From the relations (14) and (16), the parameters x and x̃ are comprised
between 0 and 1, and the parameters y and ỹ must be comprised between −1

and +1.
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With these new parameters, ell(α) and ẽlL(α) can be written

ell(α) = λ (a+ b (σ1l + σ1l(α)) + c σ1lσ1l(α)) (22)

and
ẽlL(α) = λ̃

(
ã+ b̃ (σ2l + σ2L(α)) + c̃ σ2lσ2L(α)

)
(23)

with
a =

1 + x

2
− c (24)

b =
x− 1

4
(25)

c = yb (26)

and
ã =

1 + x̃

2
− c̃ (27)

b̃ =
x̃− 1

4
(28)

c̃ = ỹb̃ (29)

It is worth to notice that the parameters b and b̃ are negative or equal to
zero.

2.3 Phonon - atom interaction

By inserting relation (22) in the expression of Ep1 (l), equation (2), the potential
energy Ep1tot can be writen

Ep1tot =
1

4
λa
∑
(l)

Al + VZ + VEx (30)

with
Al = (ul − ul(1))

2
+ (ul − ul(3) )

2 + (vl − vl(2))
2

+ (vl − vl(4))
2 (31)

V1Z =
1

2
λb
∑
(l)

Al σ1l (32)

and

V1Ex =
λc

2

∑
(l)

((ul − ul(1))
2
σ1lσ1l(1) + (ul − ul(3))

2
σ1lσ1l(3) (33)

+ (vl − vl(2))
2
σ1lσ1l(2) + (vl − vl(4))

2
σ1lσ1l(4))
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The energy term V1Z is a Zeeman-like interaction which can be written

V1Z =
∑
(l)

− hlσ̂1l (34)

with
hl = −1

2
λbAl

As the parameter b is negative, the field-like hl which acts on the fictitious spins
σ̂1l favours the eigen value σ1l = +1. The energy term VEx is an exchange-like
interaction between the fictitious spin σ̂1l and its first nearest neighbors σ̂1l(α)
(α = 1, ..4). When the parameter c is positive, this interaction favours, the case
σ1l = −σ1l(α) when this parameter is negative this interaction favours the case
σ1l = σ1l(α) and when it is equal to zero, the exchange-like interaction is equal
to zero.
For the folIowing we assume

y = 0 (35)

which implies that the exchange-like interaction VEx is equal to zero.
By inserting relation (23) in the expression of Ep2 (l), equation (4), the

potential energy Ep2tot can be written

Ep2tot =
1

4
λ̃ã
∑
(l)

Bl + Ṽ2Z + Ṽ2Ex (36)

with
Bl = blL(1) + blL(2) + blL(3) + blL(4) (37)

Ṽ2Z =
1

2
λ̃ b̃
∑
(l)

Bl σ̂2l (38)

and

Ṽ2Ex =
λ̃c̃

2

∑
(l)

(blL(1)σ2lσ2L(1) + blL(2)σ2lσ2L(2) + blL(3)σ2lσ2L(3) + blL(4)σ2lσ2L(4))

(39)
As previously, the energy term ṼZ is a Zeeman-like interaction. As the para-

meter b̃ is negative, the field-like which acts on the fictitious spin σ̂2l favours the
eigenvalue σ2l = +1. The energy term ṼEx is an exchange-like interaction be-
tween the fictitious spin σ̂2l and its second nearest neighbors σ̂2L(α) (α = 1, ..4).
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When the parameter c̃ is positive, this interaction favours the case σ2l = −σ2L(α)
when this parameter is negative this interaction favours the case σ2l = σ1L(α)

and when it is equal to zero, the exchange-like interaction is equal to zero.
For the following we assume that

ỹ = 0 (40)

which implies that the exchange-like interaction ṼEx is equal to zero.

2.4 Variational method: effective parameters[7, 8]

For the variational Hamiltonian H0 we take the sum of a phonon Hamiltonian
H0ph and of a spin Hamiltonian H0sp

H0 = H0ph +H0sp (41)

2.4.1 Variational phonon Hamiltonian H0ph

We introduce two parameters E and Ẽ. The first one, E, is an effective spring
constant that replaces the spring constants ell(α) , and the second one is an
effective spring constant that replaces the spring constants ẽlL(α) . Those E and
Ẽ do not depend on the electronic states of the subsystems (1) and (2). The
phonon Hamiltonian H0ph

(
E, Ẽ

)
is then

H0ph

(
E, Ẽ

)
= Ec + Ep10 (E) + Ep20

(
Ẽ
)

(42)

with

Ep10 (E) =
1

2

∑
(l)

1

2
EAl (43)

Ep20

(
Ẽ
)

=
1

2

∑
(l)

1

2
ẼBl (44)

The Hamiltonian H0ph

(
E, Ẽ

)
is the Hamiltonian of vibrations of a square lat-

tice of atoms linked by springs between atoms first and second nearest neigbors
, the spring constants being E and Ẽ, respectively. It is known that there are
two dispersion relations

ω = ω1

(−→
k
)

and
ω = ω2

(−→
k
)
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which correspond to two acoustic branches of the crystal. In the previous rela-
tions the vector

−→
k is the phonons wave vector. The previous dispersion relations

are given in the Appendix.
The free energy associated to the Hamiltonian H0ph

(
E, Ẽ

)
is

F0ph = kBT
∑
(−→
k
)
′

ln

2 sinh

β ~ω
(−→
k
)

2

 (45)

where kB is the Boltzmann constant, β = 1
kBT

and
∑
(−→
k
)
′

is the sum over the

two phonons branches. Using the matrix density of H0ph

(
E, Ẽ

)
the thermal

mean values of the parameters Al and Bl are 〈Al〉0 and 〈Bl〉0, respectively. We
have

2.5

〈Al〉0 =
4

N

∑
(
−→
k )

′

coth

β~ω
(−→
k
)

2

 ~
2

∂ω

∂E
(46)

and

〈Bl〉0 =
4

N

∑
(
−→
k )

′

coth

β~ω
(−→
k
)

2

 ~
2

∂ω

∂Ẽ
(47)

where ∂ω
∂E and ∂ω

∂Ẽ
are the partial derivatives of the dispersion relations. The

expressions of

∂ω
∂E and ∂ω

∂Ẽ
are given in the Appendix.

2.5.1 Variational spin Hamiltonian H0sp

We consider the case where the exchange-like interactions V1Ex and V2Ex are
equal to zero. We introduce two fields-like h1 and h2 which act over the fictitious
spin σ̂1l and σ̂2l, respectively. Those fields-like are uniform.
The spin Hamiltonian H0sp is

H0sp = H0sp1 +H0sp2 (48)

with
H0sp1 =

∑
(l)

− h1σ̂1l (49)
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and
H0sp2 =

∑
(l)

− h2σ̂2l (50)

With this spin Hamiltonians, all the fictitious spins of the electronic subsystem
i, (i = 1, 2), have the same thermal mean value mi given by

mi =
− exp(−βhi) + ri exp(βhi)

exp(−βhi) + r exp(βhi)
(51)

Equations (52) are called self-consistent equations.
The free energy related to H0sp is

F0sp = −NkBT (ln z0sp1 + ln z0sp2) (52)

where the partition function z0spi is given by

z0spi = exp(−βhi) + ri exp(βhi) (53)

Ultimately the variational Hamiltonian is given by

H0 = Ec + Ep10 (E) + Ep20

(
Ẽ
)

+
∑
(l)

− h1σ̂1l +
∑
(l)

− h2σ̂2l (54)

The free energy associated with H0 is given by

F0 = F0ph + F0sp (55)

that is

F0 = kBT
∑
(−→
k
)
′

ln

2 sinh

β ~ω
(−→
k
)

2

−NkBT ln z0sp1 −NkBT ln z0sp2

(56)
At the first order of a perturbation calculation we obtain

E = λ
(
a+ 2bm1 + cm2

1

)
(57)

Ẽ = λ̃
(
ã+ 2b̃m2 + c̃ m2

2

)
(58)

h1 = −∆1

2
− 1

2
〈Al〉0 λ (b+ cm1) (59)

h2 = −∆2

2
− 1

2
〈Bl〉0 λ̃

(
b̃+ c̃m2

)
(60)

In the present study the parameters c and c̃ are equal to zero.
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2.6 Thermodynamic Parameters

The crystal free energy, at the thermodynamic equilibrium, is

F = F0 +N

(
∆1

2
+ h1

)
m1 +N

(
∆2

2
+ h2

)
m2 (61)

The fraction of atoms in the excited level (b1) is

n1 =
1 +m1

2
(62)

and the fraction of atoms in the excited level (b2) is

n2 =
1 +m2

2
(63)

When the parameter mi is equal to −1, the fraction ni is equal to zero and the
electronic subsystems (i) are in the fundamental level (ai) and when mi = +1,
they are in the excited level (bi).
By taking the infinitesimal variation of F (eq. 62) we obtain

dF = −SdT +Nm1d
∆1

2
+Nm2d

∆2

2

We can calculate the crystal entropy by using the relation

S = −∂F
∂T

(64)

So we obtain
S = Sph + Ssp (65)

with

Sph =
1

T

∑
(−→
k
)
′
coth

β ~ω
(−→
k
)

2

 ~ω
(−→
k
)

2
− kB

∑
(−→
k
)
′
ln

2 sinh

β ~ω
(−→
k
)

2


(66)

and
Ssp = NkB (ln z0sp1 + ln z0sp2)−N

1

T
(m1h1 +m2h2) (67)

From the relation
F = U − TS (68)

we deduce

U =
∑
(−→
k
)
′
coth

β ~ω
(−→
k
)

2

 ~ω
(−→
k
)

2
+N

∆1

2
m1 +N

∆2

2
m2 (69)
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3 Numerical study

The numerical study consists essentially in solving the self-consistent equations
(52) by taking into account the relations (58) to (61) . For that, it is interesting
to use the reduced parameters previously introduced. Moreover, we take ~ωM (λ)

as the unit of energy with

ωM (λ) = 2

√
λ

ma
(70)

wherema is the mass of the atoms. The value of ~ωM (λ) is roughly estimated
to 1000K or 695 cm−1. With this unit of energy, we introduce the following
reduced parameters:

• the reduced temperature t

t =
kT

~ωM (λ)
(71)

• the reduced energy gaps
δ1 =

∆1

~ωM (λ)
(72)

and
δ2 =

∆2

~ωM (λ)
(73)

• the reduced free energy per atom

f =
F

N ~ωM (λ)
(74)

The crystal entropy can then be written

smol = −R∂f
∂t

(75)

for one mole, where R is the gaz constant.

3.1 Study of the self-consistent equations

We fix the values of the temperature and that of all the model parameters and
we look for the values of m1 and m2 which satisfy the self-consistent equations
(52). A solution is a set (m1,m2). For each solution we can calculate the values
of the crystal free energy f and that of the parameters n1 and n2 .

If there is only one solution, this solution is the thermodynamic state of the
crystal. If there are several solutions, the free energy values of those solutions
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must be compared. The solution which has the lowest free energy value is
the thermodynamic state of the crystal. When the free energy value of two
solutions (m1,m2) and (m′1,m

′
2) are equal and are the lowest, both solutions

are thermodynamic states of the crystal which then displays a first order phase
transition between both thermodynamic states.
At the transition there is an entropy discontinuity, that means that the

value of the crystal entropy is not the same for both solutions. The entropy
discontinuity is defined by ∆S = S

′ − S, where S
′
and S are the values of

the entropy for the soutions (m′1,m
′
2) and (m1,m2), respectively. Similarly, the

parameters n1 and n2 can be discontinuous. The discontinuity in ni (i = 1, 2)
is defined by ∆ni = n

′

i − ni. When the transition temperature increases the
magnitudes of those discontinuities decrease. At the Critical temperature TC (
or tC) the magnitudes of those discontinuities are equal to zero. We have used
this property for finding the Critical temperature value.

3.2 Results

In this study N1 = 40, N2 = 50, r1 = r2 = 4, y = ỹ = 0, x = 10−5 and z = 0.2.
So, the results depend on the temperature t and on the three parameters δ1,
δ2 and x̃. One can expect that the stable state at very low temperature is
(0., 0.), that is (m1 = −1,m2 = −1) and (1, 1), that is (m1 = 1,m2 = 1), at
high temperature. Between the brackets, the first number corresponds to the
value of n1 and the second one to that of n2.
We have particularly studied the cases where δ1 is equal to 0.5, 0.7, 0.9 and

1.3.

3.2.1 Thermodynamic phases and discontinuities

When we fix the values of x̃, δ1 and δ2, the thermal variation of the solutions
shows the presence of one or two first order phase transitions depending on
whether δ2 is small or large. When δ2 is large there are two first order phase
transitions at the thermodynamic states A1 and A2. When δ2 is small there is
one first order phase transition at the thermodynamic states A3. Let us call t1,
t2 and t3 the temperature of the states A1, A2 and A3, respectively, we have

t2 = t1 = t3 (76)

For each thermodynamic state A1, A2 and A3 there are two stable solutions with
the same free energy value (or two thermodynamic states). The thermodynamic
states A1, A2 and A3 are shown in Fig.1. This Figure is obtained with δ1 = 0.5,
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x̃ = 10 −3 and δ2 = 0.6 and 0.45. In this Figure the slope of the curves f (t)

displays a discontinuity at t1, t2 and t3.
At the thermodynamique state A1 (or at the temperature t1) of Fig.1 the two

stable solutions are (0.039, 0.000) and (1, 0.000). In the state (0.039, 0.000), the
majority of the electronic subsystems (1) and (2) are in their fundamental level
(a1) and (a2), respectively. We say that this state belongs to the thermodynamic
phase (a, a). In the state (1., 0.000), all the electronic subsystems (1) are in the
excited level (b1) and all the electronic subsystems (2) are in the fundamental
level (a2). We say that this state belongs to the thermodynamic phase (b, a).
So, at A1 there is a first order phase transition between the phases (a, a) and
(b, a). The discontinuity in n1 is ∆n1 = 0.961 and that in n2 is ∆n2 = 0.000.

At the thermodynamique state A2 (or at the temperature t2) of Fig.1 the
two stable solutions are (1, 0.002) and (1, 1). The state (1, 0.002) belongs to the
phase (b, a). In the state (1, 1), all the electronic subsystems (1) and (2) are in
their excited level (b1) and (b2), respectively. We say that this state belongs to
the thermodynamic phase (b, b). At A2 there is a first order phase transition
between the phases (b, a) and (b, b). The discontinuity in n1 is ∆n1 = 0.000 and
that in n2 is ∆n2 = 0.998.
For other values of the parameters δ1, x̃ and δ2, the states which belong to

the phase (a, a) are of the form (n1, n2), with n1 and n2 lower than 0.5; those
which belong to the phase (b, a) are of the form (1, n′2) and those which belong
to the phase (b, b) are of the form (1, 1) or (1, n′′2), with n′′2 near the unit. As
for the discontinuities they are ∆n1 > 0.6 and ∆n2 < 0.2 at A1 and ∆n1 = 0 at
A2. The value of the discontinuity ∆n2 at A2 varies but must be equal to zero
at the Critical point. We have used this property for finding the Critical point.
We have verified that the states of the (a, a) phase are stable below t1, those

of the (b, a) phase are stable between t1 and t2 and those of the (b, b) phase are
stable above t3.
At the thermodynamic state A3 (or at the temperature t3) of Fig.1, the two

stable solutions are (0.018, 0.000) and (1, 1). So, at A3 there is a first order
phase transition between the phases (a, a) and (b, b). The discontinuities are
∆n1 = 0.982 and ∆n2 = 1 . For other values of the parameters δ1, x̃ and δ2
those discontinuities are always near the unit.
At the states A1, A2 and A3 of Fig.1, the slope of the curves f (t) displays

a discontinuity which corresponds to the discontinuity in the entropy. The
approximative values of the slope of the curves are: −0.1901 and −1.6683 at
A1; −1.7638 and −8.7084 at A2 and −1.0358 10−4 and −7.7855 at A3.
To sum up there are three thermodynamic phases (a, a), (b, a) and (b, b) and
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three first order phase transitions (a, a)− (b, a), (b, a)− (b, b) and (a, a)− (b, b).

Figure 1. Thermal variation of the reduced free energy per atom. In the
Figure, xtd stands for x̃. The reduced temperatures of the thermodynamic
states A1,A2 and A3 are t1, t2 and t3, respectively. The slope of the curves
is discontinuous at A1,A2 and A3. Consequently the entropy of the crystal is
discontinuous at t1, t2 and t3.

3.2.2 Triple point

The values of t1, t2 and t3 vary with the change of δ2 at fixed values for δ1
and x̃. The plot of those values in a diagram (δ2, t) allows to obtain the phase
diagram of the crystal for δ1 and x̃ fixed.
The phase diagram for x̃ = 10 −3 and δ1 = 0.50 is shown in Fig. 2. In this

Figure, the value of t2 minus that of t1, t2− t1, is equal to 0.029680 for δ2 = 0.7

and decreases when the value of δ2 decreases. There is a value of δ2 such as t2
is equal to t1. Let us call δ2T this value. Similarly let us call tT the value of
t1 when t1 and t2 are equal. The set (δ2T , tT ) are the coordinates of the Triple
point T in the diagram (δ2, t) .The Triple point T is a thermodynamic state
where the free energy values of three states are equal, one state belonging to
the (a, a) phase, another to the (b, a) phase and the last one to the (b, b) phase.

For a given value to δ1 and x̃, the crystal displays one first order phase
transition for δ2 lower than δ2T and two first order phases transition for δ2
larger than δ2T .
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In the case of Fig. 2, the coordinates of the Triple point are (0.499, 0.044876).
In fact, it is diffi cult to obtain the condition t1 = t2. We consider that this
condition is reached when t2 − t1 ≤ 3 10−4. We then take for tT the value of
t1 and for δ2T the corresponding value of δ2.

We have calculated the values of the Triple point coordinates δ2T and tT
for different values of δ1 and x̃. The results are shown in Fig.3 and Fig.4. The
variation of tT with x̃ is very small, less that one per cent when x̃ varies from
10−3 to 10−2.

Figure 2. The values of t1, t2 and t3 as functions of the energy gap δ2. In
the Figure, xtd stands for x̃. The value of t2 minus that of t1, t2 − t1, decreases
when δ2 decreases. It is equal to zero at the Triple point T . In the Figure the
values of t1 and x̃ are constant.

Figure 3. Value of the Triple point coordinate δ2T as a function of the
parameters δ1 and x̃. In the Figure xtd stands for x̃. As shown in the Figure,
δ2T decreases when x̃ increases.
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Figure 4. Value of the Triple point coordinate t2T as a function of the
parameters δ1 and x̃. In the Figure xtd stands for x̃. As shown in the Figure,
t2T does not depend on x̃.

3.2.3 Critical point

In the phase diagram shown in Fig.2, the discontinuity in n2 along the (b, a)−
(b, b) coexistence curve is constant and equal to 0.998 when δ2 ( or t2) increases.
So this phase diagram has not a Critical point or this Critical point is at infinite.
We have verifies that the discontinuity ∆n2 at A2, that is along the (b, a)−

(b, b) coexistence curve, does not depend on the values of the parameters δ1 and
δ2 and depends only on the values of the parameter x̃. The variations of ∆n2

with the values of x̃ for the sets (δ1 = 0.7, δ2 = 1.) and (δ1 = 1.3, δ2 = 3.6) are
shown in Fig.5. From this Figure, It is clear that the value of ∆n2 does not
depend of the values of the set (δ1, δ2). Moreover, it is clear that there is a value
of x̃ for which the discontinuity ∆n2 is equal to zero. This value that we call x̃C
is, from Fig.5, lower than 0.18. So, for x̃ higher than x̃C the first order phase
transition (b, a) − (b, b) does not exist for any value of the set (δ1, δ2). That
means that for x̃ higher than x̃C the temperature t2 and the state A2 do not
exist, the crystal passes from the phase (b, a) to the phase (b, b) continuously.
The value of t2 for x̃ = x̃C is the critical temperature tC of the crystal. This
temperature varies with the values of the set (δ1, δ2).
We can obtain the value of x̃C by increasing slowly or continuously the value

of x̃ from the value 0.166. This procedure makes diffi cult to obtain x̃C . In Fig.5,
for x̃ equal to 0.166 and 0.169 the discontinuity ∆n2 is equal to 0.170 and 0.102,
respectively. Taking into account the diffi culty for finding x̃C and tC , we take in
this study x̃C = 0.166. We then can calculate the value of tC which depends on
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those of (δ1, δ2). So, for (δ1 = 1.3, δ2 = 3.6) and (δ1 = 0.7, δ2 = 1.) tC is equal
to 1.437067 and 0.39268, respectively.

Figure 5. Value of the discontinuity ∆n2 as a function of x̃. In the Figure
xtd stands for x̃. The discontinuity does not depend on the values of the set
(δ1, δ2).

3.2.4 Phase diagram

In order to obtain a phase diagram which present a Critical point we have to
take into account different values of the parameter x̃. The phase diagram of
the crystal in the (x̃, t) diagram for δ1 = 0.8 and δ2 = 0.7 is shown in Fig.6.
The numbers in the brackets are the values of the discontinuity ∆n2 along the
(b, a)− (a, a) coexistence curve.

We call x̃T the value of the parameter x̃ for the Triple point T . In Fig.6,
x̃T = 0.096 and tT = 0.194896. We know that x̃C = 0.166. In Fig.6, tC =

0.269601 and t1C , that is the value of t1 for x̃ = x̃C is t1C = 0.197445. For
x̃ = 0.18 we are sure that the temperature t2 does not exist.
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The ratio t1C/tT is 1.01. That shows that the variation of the temperature
of the transition (a, a) − (b, a) between the Triple point and the Critical point
is small. The ratio tC/tT is equal to 1.38.
If we want to obtain a phase diagram in the diagram (P, t), where P is the

applied pressure, we must assume that the parameter x̃ varies with the pressure.
Assuming a linear relation between P and x̃, we can write

x̃ = x̃T + cx̃ (P − PT ) (77)

In the above relation PT is the value of the applied pressure at the Triple point
and cx̃ is a parameter that we consider as constant.
From Fig.6, we see that if we know ∆n2 we can obtain the correspondant

value of x̃. Consequently, if , by experimental studies, we can obtain the relation
between ∆n2 and P , then we can deduce that between x̃ and P , Then we can
calculated the values x̃T , cx̃ and PT of relation (77).

Here we introduce an arbitrary unit of Pressure by the relation

for (P − PT ) = 1 x̃ = 0.12 (78)

From this relation we deduce cx̃ = 0.024. We then can obtain in the (P, t)

diagram a phase diagram which looks like that of Figure 6.

Figure 6. Phase diagram of the crystal in the (x̃, t) diagram. In the Figure,
xtd stands for x̃. The number between the brackets is the discontinuity ∆n2

along the (b, a)− (b, b) coexistence curve. This discontinuity is equal to zero at
the Critical point C.
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4 Conclusion

The assumption that in an atom there are two subsytems of electrons with their
own space of quantum states leads to very interesting results. This assumption
is very often used in Physics and Quantum Chemistry. As for the results, they
have been obtained by using only three parameters of the model δ1, δ2 and x̃ .
In this study we have found that the value of x̃C does not depend on that

of the set (δ1, δ2). We have given to the parameter z the value 0.2 following the
study of Blackman[9]. It could be interesting to see if the value of x̃C depends
on that of z.
We have given to the parameter x the value 10 −5 in order to prevent the

presence of a Critical point on the (a, a) − (b, a) coexistence curve. This small
value of x means that in the (b, a) phase the bonds between an atom and its
first nearest neighbors are broken. Indeed, we consider that the electronic bond
disappears when the elastic force constant disappears.
In the phase diagram of Fig.6 the parameters δ1 and δ2 are constant. We

can try to obtain a phase diagram where the three parameters δ1, δ2 and x̃ vary.
For that, we can assume that the variations of those parameters are linked to
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the applied pressure P by the linear relations

δ1 = δ10 + c1P (79)

δ2 = δ20 + c2P (80)

and
x̃ = x̃0 + cx̃P (81)

where c1, c2 and cx̃ are constant.
In the Fig.6, the ratio tC/tT is equal to 1.38. In the case of the carbon

dioxide CO2 this ratio is near 1.41. Moreover by changing the values of the
parameters δ1 and δ2 it is possible to obtain very different values for tC and tK
.In the case of pure substances the values of tC and tT are very varied. From
those raisons we think that this model can describe the phase diagram of a
pure substance. In that case, the phases (a, a), (b, a) and (b, b) are the Solid,
Liquid and Gaz phases, respectively. From our results, in the Liquid phase
all the electronic bond between an atom and its first nearest neighbours are
broken while the bonds between an atom and its second nearest neighbours is
still present. Concerning the Gaz phase, this last result is contained in the van
der Waals equation.

APPENDIX

4.1 Phonon dispersion relations for the square lattice

The dispersion relations for the two acoustics branches are

ω1 =

(
1

2

(
c1 + c2 +

√
(c1 − c2)2 + 4c23

))1/2

ω2 =

(
1

2

(
c1 + c2 −

√
(c1 − c2)2 + 4c23

))1/2
with

c1 =
2E

ma
(1− cos kxa) +

2Ẽ

ma
(1− cos kxa cos kya)

c2 =
2E

ma
(1− cos kya) +

2Ẽ

ma
(1− cos kxa cos kya)

c3 =
2Ẽ

ma
sin kxa sin kya
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In the above relations, ma is the atoms mass, E and Ẽ are the elastic force
constants for atoms pairs first neighbours and second neighbours, respectively.
With the boundary periodic conditions, the components kx and ky of the

wave vectors
−→
k are

kx = αx
2π

N1a
and ky = αy

2π

N2a

with αx = 0,±1,±2, ..,±
(
N1

2 − 1
)
, N1

2 and αy = 0,±1,±2, ..,±
(
N2

2 − 1
)
, N2

2 .

The wave vector
−→
k (0, 0) corresponds to a translation mode. So, there are

N1N2 − 1 different wave vectors which correspond to phonon frequency values.
The parameters N1, N2 and a are defined in the text.

4.2 Calculation of the partial derivatives ∂ω
∂E
and ∂ω

∂Ẽ

We introduce r by
ω =
√
r

with

r =
1

2

(
(c1 + c2)±

√
(c1 − c2)2 + 4c23

)
We can write

r =
1

2

 2E

ma
d1 +

4Ẽ

ma
d2 ±

√√√√( 2E

ma

)2
d23 + 4

(
2Ẽ

ma

)2
d24


or

r =
E

ma
d1 +

2Ẽ

ma
d2 ±

√
E2

m2
a

d23 +
4Ẽ2

m2
a

d24

where

d1 = 2− cos kxa− cos kya

d2 = 1− cos kxa cos kya

d3 = cos kya− cos kxa

d4 = sin kxa sin kya

So we have
∂ω

∂E
=

1

2ω

∂r

∂E

with

∂r

∂E
=

1

ma

d1 ± E

ma

d23√
E2

m2
a
d23 + 4Ẽ2

m2
a
d24


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and
∂ω

∂Ẽ
=

1

2ω

∂r

∂Ẽ

with

∂r

∂Ẽ
=

1

ma

2d2 ±
4Ẽ

ma

d24√
E2

m2
a
d23 + 4Ẽ2

m2
a
d24


For some values of wave vector components (kx, ky) the parameter d4 is equal

to zero. In that case the above relations are modified. So, r becomes

r =
E

ma
d1 +

2Ẽ

ma
d2 ±

E

ma
|d3|

the parameters ∂r
∂E and ∂r

∂Ẽ
become

∂r

∂E
=

d1
ma
± |d3|
ma

and
∂r

∂Ẽ
=

2d2
ma

where |d3| is the absolute value of d3.
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6 Figure Caption

• Figure 1. Thermal variation of the reduced free energy per atom. In the
Figure xtd represents x̃. The reduced temperatures of the thermodynamic
states A1,A2 and A3 are t1, t2 and t3, respectively. The slope of the curves
is discontinuous at A1,A2 and A3. Consequently the entropy of the crystal
is discontinuous at t1, t2 and t3.

• Figure 2. Variation with δ2 of the values of t1, t2 and t3. In the Figure xtd
represents x̃. Three thermodynamic phases (a, a), (b, a) and (b, b), three
coexistence curves and a triple point T are shown.

• Figure 3. Variation with the energy gap δ1 of the Triple point coordinate
δ2T . In the Figure xtd represents x̃. As shown in the Figure, δ2T depends
on δ1 and x̃.

• Figure 4. Variation with the energy gap δ1 of the Triple point coordinate
t2T . In the Figure xtd represents x̃. As shown in the Figure, t2T does not
depend on x̃.

• Figure 5. Variation with x̃ of the discontinuity ∆n2 at the first order
phase transition between the phases (b, a) and (b, b). In the Figure xtd
represents x̃. The discontinuity does not depend on the values of the set
(δ1, δ2).

• Figure 6. Phase diagram of the crystal in the (x̃, t) diagram. In the
Figure xtd represents x̃. The number between the brackets is the discon-
tinuity ∆n2 along the (b, a)− (b, b) coexistence curve. This discontinuity
is equal to zero at the Critical point C.
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