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We discuss a two-dimensional model that leads to a phase diagram which reproduces at least qualitatively that of a pure substance. It is known that a spring between two atoms is due to a bond created by the interaction between the electrons of both atoms. Consequently a variation of the quantum state of the electrons involved in the bond can modify the elastic force constant of the spring. That is a kind of atom-phonon coupling.

We consider a square lattice of N identical atoms linked by springs between atoms …rst and second nearest neighbors. We assume that the elastic force constants of all the springs can vary. The system is studied by using a variational method. First order phase transitions are obtained. The phase diagram of the system displays the features observed in the phase diagram of a pure substance: three thermodynamic phases, three coexistence curves, one triple point and one critical point. Applied pressure can be introduced in the model.

Introduction

In this study we can reproduce at least qualitatively the features of the phase diagram of a pure substance, that is : three thermodynamic phases, three coexistence curves, one triple point and one critical point. This study is inspired by that of molecules with two electronic energy levels [1].

When there is an electronic bond between two atoms the potential energy of interaction of both atoms V (r) displays a minimum at r 0 , r being the distance between both atoms. The molecule vibrates around this minimum. For small displacements the vibrations are harmonic. Then, we can say that there is an harmonic spring between both atoms. The force constant of this spring k is the second derivative of V (r) and the vibrational energy varies as p k. In the adiabatic approximation [2; 3], the potential energy V (r) is the sum of the electrostatic repulsion of the nuclei of both atoms and of E (r), one eigenvalue of the electronic Hamiltonian. This electronic Hamiltonian is obtained by neglecting the kinetic energy and the electrostatic repulsion of both nuclei. We neglect the possible variation of r 0 with the eigenvalue. So, for the fundamental level E 1 (r), V (r) can be written

V (r) = E 1 + 1 2 k 1 (r r 0 )
2 and for the …rst excited level, V (r) can be written

V (r) = E 2 + 1 2 k 2 (r r 0 ) 2
At low temperature the electronic system is in the fundamental energy level E 1 and the force constant is k 1 . Heating the molecule it can pass in an excited level E 2 and the force constant becomes k 2 . If k 2 < k 1 the vibrational energy is lower in the excited level than in the fundamental one. Consequently, when the electrons are in the fundamental level the electronic energy is small but the vibrational energy is large while when they are in the excited level the electronic energy is large but the vibrational energy is small. So there is a competition between the electronic interactions which favour the fundamental level and the vibrational interaction which favours the excited one. In solid state this competition can lead to a …rst order phase transition between the phase where all the molecules are in the fundamental level and that where they are all ( or nearly all) in the excited one [START_REF] Nasser | [END_REF]. The previous discussion made with energy can be made with the free energy.

Let us consider a square lattice of N identical atoms where each atom is linked by springs with its …rst nearest neighbors and with its second nearest neighbors. Up to now the only case studied is that where the force constant of springs which link two atoms …rst nearest neighbors can have two values k 1 or k 2 [5; 6]. In this study we are concerned with the case where the force constant of all the springs can have two values.

In Section 2, we present the crystal Hamiltonian and the variational method used to study it. In Section 3, we give the results obtained by numerical calculations and the last Section is devoted to discussion and conclusion.

2 Theoretical study

Lattice Hamiltonian

Let us consider a square lattice of N identical atoms. Each atom l moves around a lattice point l. The position vector of the lattice point l is

! R l = l 1 ! a 1 + l 2 ! a 2 (1) 
where ! a 1 and ! a 2 , the basis vectors of the lattice, are orthogonal and have the same length a 0 , and where l 1 = 0; 1; 2; :::N 1 1 and l 2 = 0; 1; 2; :::N 2 1. So the lattice point l is de…ned by the set (l 1 ; l 2 ), and we can write l = (l

1 ; l 2 ). It is clear that N = N 1 N 2 .
For studying the atoms movements, we introduce the orthogonal axes ! Ox and ! Oy which are parallel to ! a 1 and ! a 2 , respectively, the origin, O; being at the lattice point (0; 0). We assume that each atom is linked to its …rst nearest neighbors and to its second nearest neighbors by harmonic springs.

The four …rst nearest neighbors of the atom l = (l 1 ; l 2 ), are the atoms :

l (1) = (l 1 + 1; l 2 ), l (2) = (l 1 ; l 2 + 1), l (3) = (l 1 1; l 2
) and l (4) = (l 1 ; l 2 1). We call e ll ( ) , the elastic force constant of the spring linking the atoms l and l ( ) , with = 1; 2; 3; 4. The potential energy of the elastic interaction between the atom l and its four …rst nearest neighbors is E p1 (l) given by

E p1 (l) = 1 2 (e ll (1) (u l u l (1) ) 2 + e ll (3) (u l u l (3) ) 2 + e ll (2) (v l v l (2) ) 2 + e ll (4) (v l v l (4) ) 2 ) (2) 
where u l and v l are the components, on the respective axes ! Ox and ! Oy, of the displacement of the atom l around the lattice point l. So, the total elastic interaction between pairs of atoms …rst nearest neighbors is

E p1tot = 1 2 X (l) E p1 (l) (3) 
P (l)
is the sum over the N lattice points. Periodic boundary conditions are assumed.

The four second nearest neighbors of the atom l = (l 1 ; l 2 ) are the atoms:

L (1) = (l 1 + 1; l 2 + 1), L (2) = (l 1 1; l 2 + 1), L (3) = (l 1 1; l 2 1
) and L (4) = (l 1 + 1; l 2 1). We call e e l;L ( ) , the elastic force constant of the spring which links the atoms l and L ( ) , with = 1; 2; 3; 4. The potential energy of the elastic interaction between the atom l and its four second nearest neighbors is then 2

(e e lL 

with b lL (1) = 1 2 u L (1) u l + v L (1) v l 2 (5) b lL (2) = 1 2 (u l u L (2) + v L (2) v l ) 2 (6) b lL (3) = 1 2 (u L (3) u l + v L (3) v l ) 2 (7) b lL (4) = 1 2 (u l u L (4) + v L (4) v l ) 2 (4) 
So, the total elastic interaction between pairs of atoms second nearest neighbors is

E p2tot = 1 2 X (l) E p2 (l) (9) 
The Hamiltonian of the crystal vibrations is

H ph = E c + E p1tot + E p2tot (10) 
where E c is the kinetic energy of the atoms. Now we introduce the following assumptions : i) Each atom l contains two electronic subsystems (1) and (2). The electronic subsystem (1) contains the electrons which are involved in the bond between the atom l and its four …rst nearest neighbors and the electronic subsystem (2) contains the electrons which are involved in the bond between the atom l and its four second nearest neighbors. The electronic subsystem (i) (i = 1; 2) has two energy levels separated by i : the fundamental level, called (a i ) is not degenerated while the excited one, called (b i ) has the degeneracy r i . To the subsystem (i) is associated the …ctitious spin b il which has two eigenvalues il = 1. In others words, each subsystem (i) has its own space of quantum states and its physical observable b il . And we work in the tensorial ( or direct) product of both spaces.

The electronic Hamiltonian of the atom l can be written

H e (l) = 1 2 b 1l + 2 2 b 2l (11) 
and the electronic Hamiltonian of the crystal is

H e = X (l) 1 2 b 1l + 2 2 b 2l (12) 
ii) The value of the spring constant e ll ( ) , with = 1; ::4, depends only on the quantum states of the electronic subsystems (1). This spring constant takes three di¤erent values , or , following the relation

e ll ( ) = + 2 + 4 + 4 ( 1l + 1l ( ) ) + 2 + 4 1l 1l ( ) (13) 
We can verify that the above formula gives e ll ( ) = when 1l = 1l 

We can verify that the above formula gives e e l;L ( ) = e when 2l = 2L ( ) = 1, e e l;L ( ) = e when 2l = 2L ( ) = +1 and e e l;L ( ) = when 2l 6 = 2L ( ) . Moreover, we assume that e e e

Ultimately, H, the Hamiltonian of the crystal is

H = E c + E p1tot + E p2tot + X (l) 1 2 b 1l + 2 2 b 2l (17)

Reduced parameters

It is interesting to take as the unit of elastic force constant and to introduce the sets of reduced parameters (x; y) and (e x; e y) de…ned by

x = (18) e x = e e ( 19 
)
2 = ( + ) + y ( ) (20) 
2e = e + e + e y e e (21)

From the relations (14) and (16), the parameters x and e x are comprised between 0 and 1, and the parameters y and e y must be comprised between 1 and +1.

With these new parameters, e ll ( ) and e e lL ( ) can be written

e ll ( ) = (a + b ( 1l + 1l ( ) ) + c 1l 1l ( ) ) (22) 
and e e lL ( ) = e e a + e b ( 2l

+ 2L ( ) ) + e c 2l 2L ( ) (23) 
with a = 1 + x 2 c (24) b = x 1 4 (25) c = yb (26) 
and

e a = 1 + e x 2 e c ( 27 
) e b = e x 1 4 (28) 
e c = e y e b (29) 
It is worth to notice that the parameters b and e b are negative or equal to zero.

Phonon -atom interaction

By inserting relation ( 22) in the expression of E p1 (l), equation ( 2), the potential energy E p1tot can be writen

E p1tot = 1 4 a X (l) A l + V Z + V Ex (30) with A l = (u l u l (1) ) 2 + (u l u l (3) ) 2 + (v l v l (2) ) 2 + (v l v l (4) ) 2 (31) 
V Z = 1 2 b X (l) A l 1l (32) 
and

V Ex = c 2 X (l) ((u l u l (1) ) 2 1l 1l (1) + (u l u l (3) ) 2 1l 1l (3) 
(33)

+ (v l v l (2) ) 2 1l 1l (2) + (v l v l (4) ) 2 1l 1l (4) )
The energy term V Z is a Zeeman-like interaction which can be written

V Z = X (l) h l b 1l (34) 
with

h l = 1 2 bA l (35)
As the parameter b is negative, the …eld-like h l which acts on the …ctitious spins b 1l favours the eigen value 1l = +1. The energy term V Ex is an exchange-like interaction between the …ctitious spin b 1l and its …rst nearest neighbors b 1l ( ) ( = 1; ::4). When the parameter c is positive, this interaction favours the case 1l = 1l ( ) when this parameter is negative this interaction favours the case 1l = 1l ( ) and when it is equal to zero, the exchange-like interaction is equal to zero.

For the folIowing we assume y = 0 (36) which implies that the exchange-like interaction V Ex is equal to zero. By inserting relation ( 23) in the expression of E p2 (l), equation ( 4), the potential energy E p2tot can be written

E p2tot = 1 4 e e a X (l) B l + e V Z + e V Ex ( 37 
) with B l = b lL (1) + b lL (2) + b lL (3) + b lL (4) (38) e V Z = 1 2 e e b X (l) B l b 2l (39) 
and

e V Ex = e e c 2 
X (l) (b lL (1) 2l 2L (1) + b lL (2) 2l 2L (2) + b lL (3) 2l 2L (3) + b lL (4) 2l 2L (4) )
(40) As previously, the energy term e V Z is a Zeeman-like interaction. As the parameter e b is negative, the …eld-like which acts on the …ctitious spin b 2l favours the eigenvalue 2l = +1. The energy term e V Ex is an exchange-like interaction between the …ctitious spin b 2l and its second nearest neighbors b 2L ( ) ( = 1; ::4).

When the parameter e c is positive, this interaction favours the case 2l = 2L ( ) when this parameter is negative this interaction favours the case 2l = 1L ( ) and when it is equal to zero, the exchange-like interaction is equal to zero.

For the following we assume that

e y = 0 (41) 
which implies that the exchange-like interaction e V Ex is equal to zero.

Variational method: e¤ective parameters

For the variational Hamiltonian H 0 [7; 8], we take the sum of a phonon Hamiltonian H 0ph and of a spin Hamiltonian H 0sp

H 0 = H 0ph + H 0sp (42) 

Variational phonon Hamiltonian H 0ph

We introduce two parameters E and e E. The …rst one, E, is an e¤ective spring constant that replaces the spring constants e ll ( ) , and the second one is an e¤ective spring constant that replaces the spring constants e e lL ( ) . Those E and e E do not depend on the electronic states of the subsystems (1) and (2). The phonon Hamiltonian H 0ph E; e E is then

H 0ph E; e E = E c + E p10 (E) + E p20 e E (43) 
with

E p10 (E) = 1 2 X (l) 1 2 EA l (44) E p20 e E = 1 2 
X (l) 1 2 e EB l (45) 
The Hamiltonian H 0ph E; e E is the Hamiltonian of vibrations of a square lattice of atoms linked by springs between atoms …rst and second nearest neighbors , the spring constants being E and e E, respectively. It is known that there are two dispersion relations

! = ! 1 ! k and ! = ! 2 ! k
which correspond to two acoustic branches of the crystal. In the previous relations the vector ! k is the phonons wave vector. The previous dispersion relations are given in the Appendix.

The free energy associated to the Hamiltonian H 0ph E; e E is

F 0ph = k B T X ! k 0 ln 0 @ 2 sinh 0 @ ~! ! k 2 1 A 1 A (46)
where k B is the Boltzmann constant, = 1 k B T and

X ! k 0
is the sum over the two phonons branches. Using the matrix density of H 0ph E; e E the thermal mean values of the parameters A l and B l are hA l i 0 and hB l i 0 , respectively. We have

hA l i 0 = 4 N X ! k 0 coth 0 @ ~! ! k 2 1 A 2 @! @E (47) 
and

hB l i 0 = 4 N X ! k 0 coth 0 @ ~! ! k 2 1 A 2 @! @ e E ( 48 
)
where @! @E and @! @ e E are the partial derivatives of the dispersion relations. The expressions of @! @E and @! @ e E are given in the Appendix.

Variational spin Hamiltonian H 0sp

We consider the case where the exchange-like interactions V Ex and e V Ex are equal to zero. We introduce two …elds-like h 1 and h 2 which act over the …ctitious spin b 1l and b 2l , respectively. Those …elds-like are uniform.

The spin Hamiltonian H 0sp is

H 0sp = H 0sp1 + H 0sp2 (49) 
with

H 0sp1 = X (l) h 1 b 1l (50) 
and

H 0sp2 = X (l) h 2 b 2l (51) 
With this spin Hamiltonians, all the …ctitious spins of the electronic subsystem i, (i = 1; 2), have the same thermal mean value m i given by

m i = exp( h i ) + r i exp( h i ) exp( h i ) + r i exp( h i ) (52) 
Equations ( 52) are called self-consistent equations.

The free energy related to H 0sp is

F 0sp = N k B T (ln z 0sp1 + ln z 0sp2 ) (53) 
where the partition function z 0spi is given by

z 0spi = exp( h i ) + r i exp( h i ) (54) 
Ultimately the variational Hamiltonian is given by

H 0 = E c + E p10 (E) + E p20 e E + X (l) h 1 b 1l + X (l) h 2 b 2l (55) 
The free energy associated with H 0 is given by

F 0 = F 0ph + F 0sp (56) 
that is

F 0 = k B T X ! k 0 ln 0 @ 2 sinh 0 @ ~! ! k 2 1 A 1 A N k B T ln z 0sp1 N k B T ln z 0sp2
(57) At the …rst order of a perturbation calculation we obtain

E = a + 2bm 1 + cm 2 1 (58) e E = e e a + 2 e bm 2 + e c m 2 2 (59) h 1 = 1 2 1 2 hA l i 0 (b + cm 1 ) (60) 
h 2 = 2 2 1 2 hB l i 0 e e b + e cm 2 (61) 
In the present study the parameters c and e c are equal to zero.

Thermodynamic Parameters

The crystal free energy, at the thermodynamic equilibrium, is

F = F 0 + N 1 2 + h 1 m 1 + N 2 2 + h 2 m 2 (62) 
The fraction of atoms in the excited level (b 1 ) is

n 1 = 1 + m 1 2 (63) 
and the fraction of atoms in the excited level (b 2 ) is

n 2 = 1 + m 2 2 (64) 
When the parameter m i is equal to 1, the fraction n i is equal to zero and the electronic subsystems (i) are in the fundamental level (a i ) and when m i = +1, they are in the excited level (b i ).

By taking the in…nitesimal variation of F (eq. 62) we obtain

dF = SdT + N m 1 d 1 2 + N m 2 d 2 2
We can calculate the crystal entropy by using the relation

S = @F @T (65) 
So we obtain

S = S ph + S sp (66) 
with

S ph = 1 T X ! k 0 coth 0 @ ~! ! k 2 1 A ~! ! k 2 k B X ! k 0 ln 0 @ 2 sinh 0 @ ~! ! k 2 1 A 1 A (67) 
and

S sp = N k B (ln z 0sp1 + ln z 0sp2 ) N 1 T (m 1 h 1 + m 2 h 2 ) (68) 
From the relation

F = U T S (69) 
we deduce

U = X ! k 0 coth 0 @ ~! ! k 2 1 A ~! ! k 2 + N 1 2 m 1 + N 2 2 m 2 (70)

Numerical study

The numerical study consists essentially in solving the self-consistent equations (52) by taking into account the relations (58) to (61) . For that, it is interesting to use the reduced parameters previously introduced. Moreover, we take ~!M ( ) as the unit of energy with

! M ( ) = 2 r m a (71) 
where m a is the mass of the atoms. The value of ~!M ( ) is roughly estimated to 1000K or 695 cm 1 . With this unit of energy, we introduce the following reduced parameters:

the reduced temperature t t = kT ~!M ( ) (72) 
the reduced energy gaps

1 = 1 ~!M ( ) (73) 
and

2 = 2 ~!M ( ) (74) 
the reduced free energy per atom

f = F N ~!M ( ) (75) 
The crystal entropy can then be written

s mol = R @f @t (76) 
for one mole, where R is the gas constant.

Study of the self-consistent equations

We …x the values of the temperature and that of all the model parameters and we look for the values of m 1 and m 2 which satisfy the self-consistent equations (52). A solution is a set (m 1 ; m 2 ). For each solution we can calculate the values of the crystal free energy f and that of the parameters n 1 and n 2 .

If there is only one solution, this solution is the thermodynamic state of the crystal. If there are several solutions, the free energy values of those solutions must be compared. The solution which has the lowest free energy value is the thermodynamic state of the crystal. When the free energy value of two solutions (m 1 ; m 2 ) and (m 0 1 ; m 0 2 ) are equal and are the lowest, both solutions are thermodynamic states of the crystal which then displays a …rst order phase transition between both thermodynamic states.

At the transition there is an entropy discontinuity, that means that the value of the crystal entropy is not the same for both solutions. The entropy discontinuity is de…ned by S = S 0 S, where S 0 and S are the values of the entropy for the soutions (m 0 1 ; m 0 2 ) and (m 1 ; m 2 ), respectively. Similarly, the parameters n 1 and n 2 can be discontinuous. The discontinuity in n i (i = 1; 2) is de…ned by n i = n 0 i n i . When the transition temperature increases the magnitudes of those discontinuities decrease. At the critical temperature T C ( or t C ) the magnitudes of those discontinuities are equal to zero. We have used this property for …nding the critical temperature value.

Results

In this study N 1 = 40, N 2 = 50, r 1 = r 2 = 4, y = e y = 0, x = 10 5 and z = e = 0:2. So, the results depend on the temperature t and on the three parameters 1 , 2 and e x. One can expect that the stable state at very low temperature is (0:; 0:), that is (m 1 = 1; m 2 = 1) and (1; 1), that is (m 1 = 1; m 2 = 1), at high temperature. Between the brackets, the …rst number corresponds to the value of n 1 and the second one to that of n 2 .

We have particularly studied the cases where 1 is equal to 0:5, 0:7, 0:9 and 1:3.

Thermodynamic phases and discontinuities

When we …x the values of e

x, 1 and 2 , the thermal variation of the solutions shows the presence of one or two …rst order phase transitions depending on whether 2 is small or large. When 2 is large there are two …rst order phase transitions at the thermodynamic states A 1 and A 2 . When 2 is small there is one …rst order phase transition at the thermodynamic states A 3 . Let us call t 1 , t 2 and t 3 the temperature of the states A 1 , A 2 and A 3 , respectively, we have

t 2 = t 1 = t 3 (77) 
For each thermodynamic state A 1 , A 2 and A 3 there are two stable solutions with the same free energy value (or two thermodynamic states). The thermodynamic states A 1 , A displays a discontinuity at t 1 , t 2 and t 3 . At the thermodynamique state A 1 (or at the temperature t 1 ) of Fig. 1 the two stable solutions are (0:039; 0:000) and (1; 0:000). In the state (0:039; 0:000), the majority of the electronic subsystems (1) and (2) are in their fundamental level (a 1 ) and (a 2 ), respectively. We say that this state belongs to the thermodynamic phase (a; a). In the state (1:; 0:000), all the electronic subsystems (1) are in the excited level (b 1 ) and all the electronic subsystems (2) are in the fundamental level (a 2 ). We say that this state belongs to the thermodynamic phase (b; a). So, at A 1 there is a …rst order phase transition between the phases (a; a) and (b; a). The discontinuity in n 1 is n 1 = 0:961 and that in n 2 is n 2 = 0:000.

At the thermodynamique state A 2 (or at the temperature t 2 ) of Fig. 1 the two stable solutions are (1; 0:002) and (1; 1). The state (1; 0:002) belongs to the phase (b; a). In the state (1; 1), all the electronic subsystems (1) and (2) are in their excited level (b 1 ) and (b 2 ), respectively. We say that this state belongs to the thermodynamic phase (b; b). At A 2 there is a …rst order phase transition between the phases (b; a) and (b; b). The discontinuity in n 1 is n 1 = 0:000 and that in n 2 is n 2 = 0:998.

For other values of the parameters 1 , e x and 2 , the states which belong to the phase (a; a) are of the form (n 1 ; n 2 ), with n 1 and n 2 lower than 0:5; those which belong to the phase (b; a) are of the form (1; n 0 2 ) and those which belong to the phase (b; b) are of the form (1; 1) or (1; n 00

2 ), with n 00 2 near the unit. As for the discontinuities they are n 1 > 0:6 and n 2 < 0:2 at A 1 and n 1 = 0 at A 2 . The value of the discontinuity n 2 at A 2 varies but must be equal to zero at the critical point. We have used this property for …nding the critical point.

We have veri…ed that the states of the (a; a) phase are stable below t 1 , those of the (b; a) phase are stable between t 1 and t 2 and those of the (b; b) phase are stable above t 2 .

At the thermodynamic state A 3 (or at the temperature t 3 ) of Fig. 1, the two stable solutions are (0:018; 0:000) and (1; 1). So, at A 3 there is a …rst order phase transition between the phases (a; x. The reduced temperatures of the thermodynamic states A 1 , A 2 and A 3 are t 1 , t 2 and t 3 , respectively. The slope of the curves is discontinuous at A 1 , A 2 and A 3 . Consequently the entropy of the crystal is discontinuous at t 1 , t 2 and t 3 .

Triple point

The values of t 1 , t 2 and t 3 vary with the change of 2 at …xed values for 1 and e

x. The plot of those values in a diagram ( 2 ; t) allows to obtain the phase diagram of the crystal for 1 and e x …xed. The phase diagram for e x = 10 3 and 1 = 0:50 is shown in Fig. 2. In this Figure, the value of t 2 minus that of t 1 , t 2 t 1 , is equal to 0:029680 for 2 = 0:7 and decreases when the value of 2 decreases. There is a value of 2 such as t 2 is equal to t 1 . Let us call 2T this value. Similarly let us call t T the value of t 1 when t 1 and t 2 are equal. The set ( 2T ; t T ) are the coordinates of the triple point T in the diagram ( 2 ; t) :The triple point T is a thermodynamic state where the free energy values of three states are equal, one state belonging to the (a; a) phase, another to the (b; a) phase and the last one to the (b; b) phase.

For a given value to 1 and e x, the crystal displays one …rst order phase transition for 2 lower than 2T and two …rst order phases transition for 2 larger than 2T .

In the case of Fig. 2, the coordinates of the triple point are (0:499; 0:044876). In fact, it is di¢ cult to obtain the condition t 1 = t 2 . We consider that this condition is reached when t 2 t 1 3 10 4 . We then take for t T the value of t 1 and for 2T the corresponding value of 2 .

We have calculated the values of the triple point coordinates 2T and t T for di¤erent values of 1 and e

x. The results are shown in Fig. 3 and Fig. 4. The variation of t T with e

x is very small, less that one per cent, when e x varies from 10 3 to 10 2 . x for which the discontinuity n 2 is equal to zero. This value that we call e

x C is, from Fig. 5, lower than 0:18. So, for e x higher than e x C the …rst order phase transition (b; a) (b; b) does not exist for any value of the set ( 1 ; 2 ). That means that for e

x higher than e x C the temperature t 2 and the state A 2 do not exist, the crystal passes from the phase (b; a) to the phase (b; b) continuously. The value of t 2 for e

x = e x C is the critical temperature t C of the crystal. This temperature varies with the values of the set ( 1 ; 2 ).

We can obtain the value of e x C by increasing slowly or continuously the value of e

x from the value 0:166. This procedure makes di¢ cult to obtain e x C . In Fig. 5, for e x equal to 0:166 and 0:169 the discontinuity n 2 is equal to 0:170 and 0:102, respectively. Taking into account the di¢ culty for …nding e

x C and t C , we take in this study e

x C = 0:166. We then can calculate the value of t C which depends on those of ( 1 ; 2 ). So, for ( 1 = 1:3; 2 = 3:6) and ( 1 = 0:7; 2 = 1:) t C is equal to 1:437067 and 0:39268, respectively. x. The discontinuity does not depend on the values of the set ( 1 ; 2 ).

Phase diagram

In order to obtain a phase diagram which presents a critical point we have to take into account di¤erent values of the parameter e

x. The phase diagram of the crystal in the (e x; t) diagram for 1 = 0:8 and 2 = 0:7 is shown in Fig. 6. The numbers in the brackets are the values of the discontinuity n 2 along the (b; a) (b; b) coexistence curve.

We call e

x T the value of the parameter e x for the triple point T . In Fig. 6, e x T = 0:096 and t T = 0:194896. We know that e

x C = 0:166. In Fig. 6, t C = 0:269601 and t 1C , that is the value of t 1 for e

x = e x C is t 1C = 0:197445. For e x = 0:18 we are sure that the temperature t 2 does not exist.

The ratio t 1C =t T is 1:01. That shows that the variation of the temperature of the transition (a; a) (b; a) between the triple point and the critical point is small. The ratio t C =t T is equal to 1:38.

If we want to obtain a phase diagram in the diagram (P; t), where P is the applied pressure, we must assume that the parameter e

x varies with the pressure. Assuming a linear relation between P and e

x, we can write e x = e x T + c e x (P P T )

In the above relation P T is the value of the applied pressure at the triple point and c e x is a parameter that we consider as constant. From Fig. 6, we see that if we know n 2 we can obtain the correspondant value of e

x. Consequently, if , by experimental studies, we can obtain the relation between n 2 and P , then we can deduce that between e

x and P . Then we can calculated the values e

x T , c e x and P T of relation ( 78): Here we introduce an arbitrary unit of Pressure by the relation f or (P P T ) = 1 e x = 0:12

From this relation we deduce c e x = 0:024. We then can obtain in the (P; t) diagram a phase diagram which looks like that of Figure 6. 

Conclusion

The assumption that in an atom there are two subsytems of electrons with their own space of quantum states leads to very interesting results. This assumption is very often used in physics and in quantum chemistry. As for the results, they have been obtained by using only three parameters of the model 1 , 2 and e

x . In this study we have found that the value of e

x C does not depend on that of the set ( 1 ; 2 ). We have given to the parameter z the value 0:2 following the study of Blackman [START_REF] Blackman | [END_REF]. It could be interesting to see if the value of e

x C depends on that of z.

We have given to the parameter x the value 10 5 in order to prevent the presence of a critical point on the (a; a) (b; a) coexistence curve. This small value of x means that in the (b; a) phase the bonds between an atom and its …rst nearest neighbors are broken. Indeed, we consider that the electronic bond disappears when the elastic force constant disappears.

In the phase diagram of Fig. 6 the parameters 1 and 2 are constant. We can try to obtain a phase diagram where the three parameters 1 , 2 and e

x vary. For that, we can assume that the variations of those parameters are linked to the applied pressure P by the linear relations 

1 = 10 + c 1 P (80) 
where c 1 , c 2 and c e x are constant.

In the Fig. 6, the ratio t C =t T is equal to 1:38. In the case of the carbon dioxide CO 2 this ratio is near 1:41. Moreover by changing the values of the parameters 1 and 2 it is possible to obtain very di¤erent values for t C and t T . In the case of pure substances the values of t C and t T are very varied. From those reasons we think that this model can describe the phase diagram of a pure substance. In that case, the phases (a; a), (b; a) and (b; b) are the solid, liquid and gas phases, respectively. From our results, in the liquid and gas phases all the electronic bond between an atom and its …rst nearest neighbors are broken while the bonds between an atom and its second nearest neighbors are still present. Concerning the gas phase, this last result is contained in the van der Waals equation.

Phonon dispersion relations for the square lattice

The dispersion relations for the two acoustics branches are 4.2 Calculation of the partial derivatives @! @E and @! @ e E
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 3 are shown in Fig.1. This Figure is obtained with 1 = 0:5, e x = 10 3 and 2 = 0:6 and 0:45. In this Figure the slope of the curves f (t)

  a) and (b; b). The discontinuities are n 1 = 0:982 and n 2 = 1 . For other values of the parameters 1 , e x and 2 those discontinuities are always near the unit. At the states A 1 , A 2 and A 3 of Fig.1, the slope of the curves f (t) displays a discontinuity which corresponds to the discontinuity in the entropy. The approximative values of the slope of the curves are: 0:1901 and 1:6683 at A 1 ; 1:7638 and 8:7084 at A 2 and 1:0358 10 4 and 7:7855 at A 3 . To sum up there are three thermodynamic phases (a; a), (b; a) and (b; b) and three …rst order phase transitions (a; a) (b; a), (b; a) (b; b) and (a; a) (b; b).

Figure 1 .

 1 Figure 1. Thermal variation of the reduced free energy per atom. In the Figure, xtd stands for ex. The reduced temperatures of the thermodynamic states A 1 , A 2 and A 3 are t 1 , t 2 and t 3 , respectively. The slope of the curves is discontinuous at A 1 , A 2 and A 3 . Consequently the entropy of the crystal is discontinuous at t 1 , t 2 and t 3 .

Figure 2 .

 2 Figure 2. The values of t 1 , t 2 and t 3 as functions of the energy gap 2 . In the Figure, xtd stands for e x. The value of t 2 minus that of t 1 , t 2 t 1 , decreases when 2 decreases. It is equal to zero at the triple point T . In the Figure the values of 1 and e x are constant.

Figure 3 .

 3 Figure 3. Value of the triple point coordinate 2T as a function of the parameters 1 and e x. In the Figure xtd stands for e x. As shown in the Figure, 2T decreases when e x increases.
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 4323 Figure 4. Value of the triple point coordinate t T as a function of the parameters 1 and e x: In the Figure xtd stands for e x. As shown in the Figure, t T does not depend on ex.

Figure 5 .

 5 Figure 5. Value of the discontinuity n 2 as a function of e x. In the Figure xtd stands for e x. The discontinuity does not depend on the values of the set ( 1 ; 2 ).

Figure 6 .

 6 Figure 6. Phase diagram of the crystal in the (e x; t) diagram for 1 = 0:8 and 2 = 0:7. In the Figure, xtd stands for e x. The number between the brackets is the discontinuity n 2 along the (b; a) (b; b) coexistence curve. This discontinuity is equal to zero at the critical point C.
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k x a cos k y a) c 2 = 2E m a (1 cos k y a) + 2 e E m a (1 cos k x a cos k y a) c 3 = 2 e E m a sin k x a sin k y a! k are k x = x 2 N 1 a and k y = y 2 2 :

 22 In the above relations, m a is the atoms mass, a is the distance of the equilibrium positions of the atoms, E and e E are the elastic force constants for atoms pairs …rst neighbors and second neighbors, respectively.With the boundary periodic conditions, the components k x and k y of the wave vectors The wave vector ! k (0; 0) corresponds to a translation mode. So, there are N 1 N 2 1 di¤erent wave vectors which correspond to phonon frequency values.The parameters N 1 ; N 2 and a are de…ned in the text.
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