
HAL Id: hal-02541485
https://hal.uvsq.fr/hal-02541485

Submitted on 13 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Embedded-BCI: assessment of parallelizing
computations on an embedded system

Amin Zammouri, Abdelaziz Ait Moussa, Sylvain Chevallier

To cite this version:
Amin Zammouri, Abdelaziz Ait Moussa, Sylvain Chevallier. Embedded-BCI: assessment of paralleliz-
ing computations on an embedded system. IEEE Last Mile Smart Mobility, Nov 2016, Vélizy, France.
�hal-02541485�

https://hal.uvsq.fr/hal-02541485
https://hal.archives-ouvertes.fr

Embedded-BCI: assessment of parallelizing
computations on an embedded system

Amin Zammouri1,2,*, Abdelaziz Ait Moussa1, Sylvain Chevallier2

1 Department of Computer Science, Faculty of Sciences, Mohammed First University,

60000 Oujda, Morocco
2 Laboratoire d’Ingénierie des Systèmes de Versailles, Université de Versailles Saint-Quentin-en-Yvelines,

78140, Vélizy, France
a.zammouri@ump.ac.ma, a_aitmoussa@yahoo.fr, sylvain.chevallier@uvsq.fr

Abstract: Using Brain-Computer Interfaces (BCI) as an
assistive technology aims at providing an innovative solution
adapted to subjects’ disabilities. BCI either provide a new
interface for controlling solution mobility (e.g. wheelchair) or
monitoring the state of user during his/her journey. This would
be possible by implementing these interfaces on Embedded
Systems (ES). However, because of the BCI sophisticated data
processing and the ES limited computation performances, the
computation time for a real-time use of the BCI on an ES is a
limitation. Hence in this work, we investigate and evaluate the
parallelization and acceleration performances, on a Raspberry Pi
2 model B (RPi) board, of an STFT-based algorithm for
estimating cognitive workload from an Electroencephalographic
(EEG) signal. This is done based on multi-core CPU and GPU
architectures of the used RPi. Results show that the parallelized
implementation using the CPU runs up to × faster than a
simple implementation. Compared to CPU of intel-CORE i3
processor, the GPU of the RPi revealed large difference in
computation time.

Keywords: BCI, embedded system, parallelization, CPU,
GPU, multicore.

I. INTRODUCTION

Nowadays, embedded systems become the highlights of
the artificial intelligence (AI) progress. These electronic
and computer systems are designed to perform specific
tasks while ensuring a high autonomy. This autonomy
lies in their capacities to manage their available resources
for interacting with all other systems comprising their
environment. Although the use of these systems, in recent
years, was limited to areas of military, currently the
deployment of such systems is widely applied in many
other fields, especially transport. Beyond this, ES
integrate more and more the human everyday life by
seeking to design new assistance tools for disabled people
or in situations of extreme dependence. A crucial aspect
is to take into account the specificities of each individual
and propose technical solutions adapted to their residual
motor capacities [1]. In this aspect which is sought to
minimize decision errors, the development process is
particularly harsh and hence involving more and more
formal techniques.

Mobility represents a basic need for people with motor
deficiencies to integrate and participate in the social

everyday life [2]. In this context, the wheelchair is the
most commonly used assistive device to allow both
internal and outside mobility. In often cases this device is
controlled manually with a joystick. In the case where no
residual motor ability is available, paradigms based on
non-muscular flows can be used (e.g. eye movements,
galvanic skin response and heart rate variation).
However, regarding the variability of disabled users, the
use of brain signals may represent the reliable control
mean. In the context of assistive mobility, Brain-
Computer Interfaces (BCIs) provide systems of direct
control through non-muscular channels based on brain
signals [3],[4],[5]. In this realm, Rebsamen in [6]
introduces a control strategy for wheelchair driving based
on the P300 Event-Related Potential (ERP) component.
Through a GUI, the BCI-based wheelchair system
proposes to the user to select his/her decisions to move
the wheelchair in a typical building. The paradigm used
in this strategy exploits the generation of a positive
deflection, P300, in the brain signal. This deflection is
measured in the central brain area 300 milliseconds after
the reception of a stimulus. This paradigm was introduced
for the first time by Farwell and Donchine in their P300
Speller [7]. In the same idea of developing technical
solutions to assist mobility and increase motor capacities
of disabled people, Tonin in [8] presents a BCI-based
approach for controlling a telepresence robot by users
with disabilities. Based on their spontaneous brain
activity, users drove a telepresence robot from their clinic
more than 100 Km away. In order to facilitate the
navigation, this approach combines concepts of motor
imagery and shared control. The developed system makes
use of imagination of movements (e.g. imagining the
movement of hands) and an obstacle detector for safety
and helping users to keep full control on the robot
driving. Results from this approach show that the
incorporation of shared control reduces users’ mental
efforts.

A part from using BCI for controlling robotic devices
[9],[10], [11], recent works were focused on assessing
and evaluating mental efforts and workload while using
mobility devices. In [12] authors developed an EEG-
based approach in order to assess and monitor changes in
drivers’ cognitive states while using a virtual reality

(VR)-based driving environment. This unsupervised
approach generates, in every driving session, a statistical
model of the alert state of the driver. Authors
demonstrated that the deviation of drivers’ cognitive state
from the alert model covaries with the driving
performance. This approach, and many others, takes
advantage of the spectral aspect of the brain electrical
signal. It consists in computing the EEG power spectrum
using a Short Time Fourier Transform (STFT). The STFT
allows to calculate the relative energy into the different
EEG bands [13], namely, Delta [0.5-3 Hz] (), Theta [4-7
Hz] (), Alpha [8-11 Hz] (), Beta [12-30 Hz] () and
Gamma [>30 Hz] ().

Despite the innovative aspect provided by BCI systems,
their uses in the everyday life remain limited and suffer
from several constraints. These constraints are due to the
large number of sophisticated processings required for
artefacts removal, calibration sessions and classifications.
On another hand, incorporating BCI on ES is a promising
perspective in the context of mobility assistance for
people with limited motor capacities. But to achieve
designing such solution while ensuring a reliable rate for
use in everyday life, several factors must be taken into
account carefully. The rigorous processings such as
Independent Component Analysis (ICA) [14], Principal
Component Analysis (PCA) [15] and regression [16]
involves using ES with high computing performances (in
term of memory). This constraint immediately implies the
constraint of the solution cost.

In this work we evaluate the usability of a low cost ES to
design future BCI applications. Our investigation aims at
studying, on a Raspberry Pi 2 B (RPi) board, the
performances of parallelizing an STFT-based algorithm
to estimate the subject’s cognitive workload from EEG
recordings. The approach we propose overcomes the
problem of weak computing performances that can make
limitations of a real-time use of BCI on the RPi. Our idea
consists in parallelizing the STFT-based algorithm
computations based on multi-core, Central Processing
Unit (CPU) and Graphical Processing Unit (GPU)
architectures of the RPi. We focused our study on the
STFT parallelizing since it is the most time-consuming
part of the brain workload estimation process from a
multi-channel EEG signal. This work exploits two BCI
experimental protocols used in our previous works. The
first protocol is based on a system which integrates BCI
as a complementary communication channel [1]. This
hybrid system integrates an SSVEP-based BCI and a 3D
touchless interface based on IR-sensors [17]. In the
second protocol we couple a passive BCI to an Intelligent
Tutoring System (ITS). Experimental results of our
investigation show that the parallelized computations on
the used RPi board ensure high performance in terms of
time computation in a real-time use.

The paper is organized as follows. In section 2 we detail
the Fourier transform algorithm. Section 3 presents our

methodology for parallelization of the STFT algorithm.
Experimental results are described and discussed in
sections 4. Finally, conclusions are drawn in the last
section.

II. FOURIER TRANSFORM ALGORITHM

Fourier transform is a widely used method for studying
non-stationary signals as it gives the time-frequency
distribution for many signals:

() = () (1)

by approaching the integral by a sum of rectangular areas
of time and by limiting the integration time to the
interval 0, (− 1) ∗ we obtain:

() ≈ () (2)

which gives for frequency values = :

() ≈ ()

≈ () 	
(3)

It is not a sophisticated approximation of () but is used
in practice, as Discrete Fourier Transform (DFT), since
there is an effective computing algorithm known as Fast
Fourier Transform (FFT) [18] . The computation of DFT
requires complex operations while using the FFT
needs only .

III. METHODS AND MATERIALS

A. Experimental setups

The first experimental protocol involves controlling an
exoskeleton arm using a touchless interface with 5 IR-
sensors which allow the displacements in different spatial
positions. The touchless interface is complemented by an
SSVEP-based BCI. The experimentations rely on the
ESTA robotic exoskeleton [19]. The EEG data
acquisition system uses the g.Mobilab+ device using an
acquisition frequency of 256 Hz. The acquisition device
is based on 8 channels placed according to the 10-20
international system. All electrodes refer to the right or
left earlobe and the ground is placed on Fz as depicted in
Figure 1. For SSVEP stimulations, a microcontroller is
set up to flash stimuli light emitting diodes (LED) at
frequencies 13 Hz, 17 Hz and 21 Hz.

The second experimental protocol consists in measuring
the brain activity during the use of an ITS. Equipped with
a control tool, the user navigates on the ITS. The BCI-
based ITS adapts and presents the learning content to the
user depending on his/her mental state and effort. EEG
data are measured continuously basing on the g.Mobilab+

acquisition device with 8 channels (O , O1, O2, PO ,
	PO3, PO4, P , I) and using a sampling rate of 256 Hz.
The EEG data are filtered using a pass-band filter for 1-
30 Hz.

Figure 1. Placement of used electrodes. Green color: electrodes
used in both the two experimental setups. Blue color: electrodes
used in the ESTA-based experimentation. Yellow color: electrodes
used in the ITS-based experimentation.

On another hand, our study exploit a model 2 B RPi
board with 1 GB of RAM. The system on chip RAM
(Broadcom BCM2836) of the used RRi board contains
both a CPU and GPU with independent performances to
each other. We decided to use this RPi board model given
the multicore architecture that it incorporates.

B. CPU implementation

Our parallelization approach on the CPU of the RPi is
straight-forward. The implementation makes use of the
multi-cores of the RPi. Thanks to the multi-threading
architecture incorporated in the used RPi, The 8 EEG
channels are distributed among threads. On another
hand, the implementation takes advantage of the OpenMP
library in order to automatically distribute the execution
of the STFT code on the used threads. Thus, each thread
executes the code separately and calculates its own STFT.
An overview of this process is presented in Figure 2.

Figure 2. Parallelization scheme on the CPU of RPi

C. GPU implementation

To our knowledge, there is no library or programming
language, like CUDA or OpenCL, intended particularly
for the parallelization on the GPU of RPi. Works from

literature, and which exploited the RPi GPU, used
optimized assembler codes. The RPi board has 12 cores
inside its GPU, each known as QPU (for Quad Processing
Unit). The STFT algorithm implementation could be
optimized leveraging these QPUs. A QPU is a 16 Single
Instruction Multiple Data (SIMD) processor which allows
disposal of vectors of 16 values. Therefore an execution
using vectors of 16 values can be done in parallel. On
another hand, as the STFT computation uses complex
numbers, this implementation requires only two registers
to store 16 real number and 16 imaginary number. We
denote by Step the computing time unit in which a QPU
consumes 16 points. This implies that a QPU performs
two steps (one for reals and another for imaginaries)
when consuming the 16 points. Thus computing the
STFT on 128 points requires = 128/16 = 8 QPUs.
The computing time unit in which the 8 QPU consume
the 128 points in parallel is denoted by Pass. Thus for
computing the STFT on 256 points, 8 QPUs are required
using two passes. At the end of each pass, each QPU
accesses the Vertex Pipeline Memory (VPM) of the RPi
memory in order to write its outcomes.

Figure 3. Parallelization scheme on the GPU of RPi.

IV. RESULTS AND DISCUSSION

Here we present results with particular attention on
computation time. CPU implementation revealed reliable
performances. The STFT algorithm was computed using
signal windows with various lengths. We considered
window lengths of 1 , 2 and 4 . Using EEG data of our
experiments, these windows lengths respectively
correspond to points numbers of 256, 512 and 1024.
Figure 4 shows the gain in the computation time (per
seconds) for these different window lengths while using

 threads. There are 3 different parts on the chart. For 1
to 4 threads, the gain in calculation time is very close
from the theoretical gain which reflects excellent
parallelization. All threads are processed by the processor
cores. The system performs as a quad processor. Between
5 and 7 threads, the curve does not follow the theoretical
curve and the gain in computation time decreases.

STFT

STFT

STFT

STFT

STFT

… … …

EEG channels Parallelized STFT on
 threads

QPU0 … QPU1 QPU7 QPU11 …

GPU

rei+0 imi+0

rei+1 imi+1

rei+15 imi+15

.

.

.

.

.

.

rei+16 imi+16

rei+17 imi+17

rei+31 imi+31

.

.

.

.

.

.

rei+112 imi+112

rei+113 imi+113

rei+127 imi+127

.

.

.
.
.
.

…

…

…

M
em

or
y

V
PM

…

Threads management takes too much time and slows the
program. This is due to the fact that the number of
threads is less than and not proportional to the number of
cores. Beyond 8 threads the gain increases and remains
the same even when using 12 threads. On another hand,
results show that the gain in computation time increases
when increasing the number of points on which the STFT
is computed. This reflects that the parallelization is
effective when working with window lengths larger than
4 .

Figure 4. Comparison of gain in computation time while using
different threads.

A part from this, we measured the performance of the
GPU implementation using 900 MB of the RPi memory.
The implementation was tested with 5 different window
lengths. Figure 5 shows resulting computation times from
CPU of the RPi, CPU of intel-CORE i3 processor and
GPU of the RPi. The -axis reports the different lengths
on which the STFT was computed. The -axis indicates
computation time of optimized implementations. Results
illustrate important computational performances when
using the RPi GPU. The execution time difference
between the RPi CPU and GPU implementations is due to
the effective access to the VPM using an assembler code.

Figure 5. Comparison of computation time (per seconds) of optimized
implementations of the STFT algorithm on CPU of RPi, CPU of intel-
CORE i3, GPU of RPi, and the GeForce Titan GPU of intel-CORE i7.

Comparing performances of the RPi GPU to those of the
CPU of intel-CORE i3 processor revealed the huge gain
in computation time offered by the RPi GPU when
computing the STFT on larger time-windows.

However the RPi GPU implementation offers promising
optimization performances, its use in the design of
innovative embedded solutions remains limited. This
limitation is due to absence of libraries or programming
languages, such as CUDA or OpenCL, which are
designed specifically for parallelization on the RPi GPU.
Therefore, at present, the development of ES that
leverages the GPU of the RPi imposes very high skills in
low-level programming using assembler. However,
through findings presented in this work, we demonstrate
that the parallelism on the CPU of the RPi using the
OpenMP library is a robust and efficient alternative
solution for accelerating real-time processing of data
from time-windows of lengths between 1 and 2 seconds.

CONCLUSION
In this work we studied and assessed performances of
parallelization and acceleration of computation on the
RPi board for a reliable use of BCI applications. Our
investigation consisted on parallelizing a STFT-based
algorithm for estimating the brain workload. Our study
focused on the STFT parallelizing since it is the most
time-consuming part of the brain workload estimation
process from a multi-channel EEG signal. Based on the
multi-threading and multi-cores architectures included in
the RPi, the optimized CPU implementation runs up to ×
4 faster. On another hand, based on assembler
implementation, we evaluated computation performances
of parallelizing the STFT algorithm on the RPi GPU.
Compared to CPU of intel-CORE i3 processor the GPU
of the RPi revealed large difference in computation time.
The whole results are motivating to design future RPi-
based mobile systems which take advantage from BCIs
innovative aspect (e.g. autonomous mobile robots).

REFERENCES
[1] E. K. Kalunga, S. Chevallier, O. Rabreau, and E. Monacelli.

“Hybrid interface: Integrating BCI in multimodal human-
machine interfaces,” in Proc. AIM, 2014, pp. 530–535.

[2] R. Rupp, S. C. Kleih, R. Leeb, J. del R. Millan, A. Kübler, and
G. R. Müller-Putz. “Brain–Computer Interfaces and Assistive
Technology,” in Brain-Computer-Interfaces in their ethical,
social and cultural contexts, vol. 12, G. Grübler and E. Hildt,
Eds. Dordrecht: Springer Netherlands, 2014, pp. 7–38.

[3] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller,
and T. M. Vaughan. “Brain-computer interfaces for
communication and control.” Clin. Neurophysiol., vol. 113, no.
6, pp. 767–791, Jun. 2002.

[4] G. Pfurtscheller, D. Flotzinger, and J. Kalcher. “Brain-Computer
Interface—a new communication device for handicapped
persons.” J. Microcomput. Appl., vol. 16, no. 3, pp. 293–299,
Jul. 1993.

[5] T. Castermans, M. Duvinage, G. Cheron, and T. Dutoit.
“Towards Effective Non-Invasive Brain-Computer Interfaces
Dedicated to Gait Rehabilitation Systems.” Brain Sci., vol. 4,
no. 1, pp. 1–48, Dec. 2013.

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12

ga
in

 in
 c

om
pu

ta
tio

n
tim

e
[s

]

N=256

N=512

N=1024

Theoritical gain

Threads

256 512 1024 2048

CPU RPi 0.065 0.372 1.044 4.652

CPU i3 0.0147 0.0531 0.147 0.805

GPU RPi 3,000E-08 4,300E-08 6,200E-08 001E-04

GPU i7 2,627E-08 2,629E-08 3,447E-08 3,448E-08

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5 time(s)

points

[6] B. Rebsamen, E. Burdet, C. Guan, C. L. Teo, Q. Zeng, M. Ang,
and C. Laugier. “Controlling a wheelchair using a BCI with low
information transfer rate,” in Proc. ICORR, 2007, pp. 1003–
1008.

[7] L. A. Farwell and E. Donchin. “Talking off the top of your
head: toward a mental prosthesis utilizing event-related brain
potentials.” Electroencephalogr. Clin. Neurophysiol., vol. 70,
no. 6, pp. 510–523, Dec. 1988.

[8] L. Tonin, T. Carlson, R. Leeb, and J. del R Millan. “Brain-
controlled telepresence robot by motor-disabled people,” in
Proc. EMBC 2011, pp. 4227–4230.

[9] C. J. Bell, P. Shenoy, R. Chalodhorn, and R. P. N. Rao.
“Control of a humanoid robot by a noninvasive brain–computer
interface in humans.” J. Neural Eng., vol. 5, no. 2, pp. 214–220,
Jun. 2008.

[10] R. Tomari, R. R. A. Hassan, W. N. W. Zakaria, and R.
Ngadengon. “Analysis of Optimal Brainwave Concentration
Model for Wheelchair Input Interface,” Procedia Comput. Sci.,
vol. 76, pp. 336–341, 2015.

[11] G. Cisotto, S. Pupolin, M. Cavinato, and F. Piccione. “An EEG-
Based BCI Platform to Improve Arm Reaching Ability of
Chronic Stroke Patients by Means of an Operant Learning
Training with a Contingent Force Feedback.” Int. J. E-Health
Med. Commun., vol. 5, no. 1, pp. 114–134, 2014.

[12] N. R. Pal, C.-Y. Chuang, L.-W. Ko, C.-F. Chao, T.-P. Jung, S.-
F. Liang, and C.-T. Lin. “EEG-Based Subject- and Session-
independent Drowsiness Detection: An Unsupervised

Approach.” EURASIP J. Adv. Signal Process., vol. 2008, no. 1,
pp. 519-480, 2008.

[13] A. Picot, S. Charbonnier, and A. Caplier. “On-line automatic
detection of driver drowsiness using a single
electroencephalographic channel,” in Proc. EMBC 2008, pp.
3864–3867.

[14] W. Zhou and J. Gotman. “Automatic removal of eye movement
artifacts from the EEG using ICA and the dipole model.” Prog.
Nat. Sci., vol. 19, no. 9, pp. 1165–1170, Sep. 2009.

[15] O. G. Lins, D. T. W. Picton, P. Berg, and M. Scherg. “Ocular
artifacts in recording EEGs and event-related potentials II:
Source dipoles and source components.” Brain Topogr., vol. 6,
no. 1, pp. 65–78, Sep. 1993.

[16] A. Schlögl, C. Keinrath, D. Zimmermann, R. Scherer, R. Leeb,
and G. Pfurtscheller. “A fully automated correction method of
EOG artifacts in EEG recordings.” Clin. Neurophysiol., vol.
118, no. 1, pp. 98–104, Jan. 2007.

[17] H. Martin, S. Chevallier, and E. Monacelli. “Fast calibration of
hand movement-based interface for arm exoskeleton control,” in
Proc. ESANN, 2012, pp. 573–578.

[18] P. Duhamel and M. Vetterli. “Fast fourier transforms: A tutorial
review and a state of the art.” Signal Process., vol. 19, no. 4, pp.
259–299, Apr. 1990.

[19] M. Baklouti, P.-A. Guyot, E. Monacelli, and S. Couvet. “Force
controlled upper-limb powered exoskeleton for rehabilitation,”
in Proc. IROS, 2008, pp. 4202–4202.

