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Abstract: Using Brain-Computer Interfaces (BCI) as an 
assistive technology aims at providing an innovative solution 
adapted to subjects’ disabilities. BCI either provide a new 
interface for controlling solution mobility (e.g. wheelchair) or 
monitoring the state of user during his/her journey. This would 
be possible by implementing these interfaces on Embedded 
Systems (ES). However, because of the BCI sophisticated data 
processing and the ES limited computation performances, the 
computation time for a real-time use of the BCI on an ES is a 
limitation. Hence in this work, we investigate and evaluate the 
parallelization and acceleration performances, on a Raspberry Pi 
2 model B (RPi) board, of an STFT-based algorithm for 
estimating cognitive workload from an Electroencephalographic 
(EEG) signal. This is done based on multi-core CPU and GPU 
architectures of the used RPi. Results show that the parallelized 
implementation using the CPU runs up to ×   faster than a 
simple implementation. Compared to CPU of intel-CORE i3 
processor, the GPU of the RPi revealed large difference in 
computation time. 

Keywords: BCI, embedded system, parallelization, CPU, 
GPU, multicore. 

I. INTRODUCTION 

Nowadays, embedded systems become the highlights of 
the artificial intelligence (AI) progress. These electronic 
and computer systems are designed to perform specific 
tasks while ensuring a high autonomy. This autonomy 
lies in their capacities to manage their available resources 
for interacting with all other systems comprising their 
environment. Although the use of these systems, in recent 
years, was limited to areas of military, currently the 
deployment of such systems is widely applied in many 
other fields, especially transport. Beyond this, ES 
integrate more and more the human everyday life by 
seeking to design new assistance tools for disabled people 
or in situations of extreme dependence. A crucial aspect 
is to take into account the specificities of each individual 
and propose technical solutions adapted to their residual 
motor capacities [1]. In this aspect which is sought to 
minimize decision errors, the development process is 
particularly harsh and hence involving more and more 
formal techniques. 

Mobility represents a basic need for people with motor 
deficiencies to integrate and participate in the social 

everyday life [2]. In this context, the wheelchair is the 
most commonly used assistive device to allow both 
internal and outside mobility. In often cases this device is 
controlled manually with a joystick. In the case where no 
residual motor ability is available, paradigms based on 
non-muscular flows can be used (e.g. eye movements, 
galvanic skin response and heart rate variation). 
However, regarding the variability of disabled users, the 
use of brain signals may represent the reliable control 
mean. In the context of assistive mobility, Brain-
Computer Interfaces (BCIs) provide systems of direct 
control through non-muscular channels based on brain 
signals [3],[4],[5]. In this realm, Rebsamen in [6] 
introduces a control strategy for wheelchair driving based 
on the P300 Event-Related Potential (ERP) component. 
Through a GUI, the BCI-based wheelchair system 
proposes to the user to select his/her decisions to move 
the wheelchair in a typical building. The paradigm used 
in this strategy exploits the generation of a positive 
deflection, P300, in the brain signal. This deflection is 
measured in the central brain area 300 milliseconds after 
the reception of a stimulus. This paradigm was introduced 
for the first time by Farwell and Donchine in their P300 
Speller [7]. In the same idea of developing technical 
solutions to assist mobility and increase motor capacities 
of disabled people, Tonin in [8] presents a BCI-based 
approach for controlling a telepresence robot by users 
with disabilities. Based on their spontaneous brain 
activity, users drove a telepresence robot from their clinic 
more than 100 Km away. In order to facilitate the 
navigation, this approach combines concepts of motor 
imagery and shared control. The developed system makes 
use of imagination of movements (e.g. imagining the 
movement of hands) and an obstacle detector for safety 
and helping users to keep full control on the robot 
driving. Results from this approach show that the 
incorporation of shared control reduces users’ mental 
efforts. 

A part from using BCI for controlling robotic devices 
[9],[10], [11], recent works were focused on assessing 
and evaluating mental efforts and workload while using 
mobility devices. In [12] authors developed an EEG-
based approach in order to assess and monitor changes in 
drivers’ cognitive states while using a virtual reality 



 
 

 

(VR)-based driving environment. This unsupervised 
approach generates, in every driving session, a statistical 
model of the alert state of the driver. Authors 
demonstrated that the deviation of drivers’ cognitive state 
from the alert model covaries with the driving 
performance. This approach, and many others, takes 
advantage of the spectral aspect of the brain electrical 
signal. It consists in computing the EEG power spectrum 
using a Short Time Fourier Transform (STFT). The STFT 
allows to calculate the relative energy into the different 
EEG bands [13], namely, Delta [0.5-3 Hz] ( ), Theta [4-7 
Hz] ( ), Alpha [8-11 Hz] ( ), Beta [12-30 Hz] ( ) and 
Gamma [>30 Hz] ( ). 

Despite the innovative aspect provided by BCI systems, 
their uses in the everyday life remain limited and suffer 
from several constraints. These constraints are due to the 
large number of sophisticated processings required for 
artefacts removal, calibration sessions and classifications. 
On another hand, incorporating BCI on ES is a promising 
perspective in the context of mobility assistance for 
people with limited motor capacities. But to achieve 
designing such solution while ensuring a reliable rate for 
use in everyday life, several factors must be taken into 
account carefully. The rigorous processings such as 
Independent Component Analysis (ICA) [14], Principal 
Component Analysis (PCA) [15] and regression [16] 
involves using ES with high computing performances (in 
term of memory). This constraint immediately implies the 
constraint of the solution cost. 

In this work we evaluate the usability of a low cost ES to 
design future BCI applications. Our investigation aims at 
studying, on a Raspberry Pi 2 B (RPi) board, the 
performances of parallelizing an STFT-based algorithm 
to estimate the subject’s cognitive workload from EEG 
recordings. The approach we propose overcomes the 
problem of weak computing performances that can make 
limitations of a real-time use of BCI on the RPi. Our idea 
consists in parallelizing the STFT-based algorithm 
computations based on multi-core, Central Processing 
Unit (CPU) and Graphical Processing Unit (GPU) 
architectures of the RPi. We focused our study on the 
STFT parallelizing since it is the most time-consuming 
part of the brain workload estimation process from a 
multi-channel EEG signal. This work exploits two BCI 
experimental protocols used in our previous works. The 
first protocol is based on a system which integrates BCI 
as a complementary communication channel [1]. This 
hybrid system integrates an SSVEP-based BCI and a 3D 
touchless interface based on IR-sensors [17]. In the 
second protocol we couple a passive BCI to an Intelligent 
Tutoring System (ITS). Experimental results of our 
investigation show that the parallelized computations on 
the used RPi board ensure high performance in terms of 
time computation in a real-time use. 

The paper is organized as follows. In section 2 we detail 
the Fourier transform algorithm. Section 3 presents our 

methodology for parallelization of the STFT algorithm. 
Experimental results are described and discussed in 
sections 4. Finally, conclusions are drawn in the last 
section. 

II. FOURIER TRANSFORM ALGORITHM 

Fourier transform is a widely used method for studying 
non-stationary signals as it gives the time-frequency 
distribution for many signals: 

( ) = ( )  (1) 

by approaching the integral by a sum of rectangular areas 
of time  and by limiting the integration time to the 
interval 0, ( − 1) ∗  we obtain: 

( ) ≈ ( )  (2) 

which gives for frequency values = : 

( ) ≈ ( )  

≈ ( ) 	 
(3) 

It is not a sophisticated approximation of ( ) but is used 
in practice, as Discrete Fourier Transform (DFT), since 
there is an effective computing algorithm known as Fast 
Fourier Transform (FFT) [18] . The computation of DFT 
requires  complex operations while using the FFT 
needs only . 

III. METHODS AND MATERIALS 

A. Experimental setups 

The first experimental protocol involves controlling an 
exoskeleton arm using a touchless interface with 5 IR-
sensors which allow the displacements in different spatial 
positions. The touchless interface is complemented by an 
SSVEP-based BCI. The experimentations rely on the 
ESTA robotic exoskeleton [19]. The EEG data 
acquisition system uses the g.Mobilab+ device using an 
acquisition frequency of 256 Hz. The acquisition device 
is based on 8 channels placed according to the 10-20 
international system. All electrodes refer to the right or 
left earlobe and the ground is placed on Fz as depicted in 
Figure 1. For SSVEP stimulations, a microcontroller is 
set up to flash stimuli light emitting diodes (LED) at 
frequencies 13 Hz, 17 Hz and 21 Hz. 

The second experimental protocol consists in measuring 
the brain activity during the use of an ITS. Equipped with 
a control tool, the user navigates on the ITS. The BCI-
based ITS adapts and presents the learning content to the 
user depending on his/her mental state and effort. EEG 
data are measured continuously basing on the g.Mobilab+ 



 
 

 

acquisition device with 8 channels (O , O1, O2, PO , 
	PO3, PO4, P , I ) and using a sampling rate of 256 Hz. 
The EEG data are filtered using a pass-band filter for 1-
30 Hz. 

 
Figure 1.  Placement of used electrodes. Green color: electrodes 
used in both the two experimental setups. Blue color: electrodes 
used in the ESTA-based experimentation. Yellow color: electrodes 
used in the ITS-based experimentation. 

On another hand, our study exploit a model 2 B RPi 
board with 1 GB of RAM. The system on chip RAM 
(Broadcom BCM2836) of the used RRi board contains 
both a CPU and GPU with independent performances to 
each other. We decided to use this RPi board model given 
the multicore architecture that it incorporates. 

B. CPU implementation 

Our parallelization approach on the CPU of the RPi is 
straight-forward. The implementation makes use of the 
multi-cores of the RPi. Thanks to the multi-threading 
architecture incorporated in the used RPi, The 8 EEG 
channels are distributed among  threads. On another 
hand, the implementation takes advantage of the OpenMP 
library in order to automatically distribute the execution 
of the STFT code on the used threads. Thus, each thread 
executes the code separately and calculates its own STFT. 
An overview of this process is presented in Figure 2. 

Figure 2.  Parallelization scheme on the CPU of RPi 

C. GPU implementation 

To our knowledge, there is no library or programming 
language, like CUDA or OpenCL, intended particularly 
for the parallelization on the GPU of RPi. Works from 

literature, and which exploited the RPi GPU, used 
optimized assembler codes. The RPi board has 12 cores 
inside its GPU, each known as QPU (for Quad Processing 
Unit). The STFT algorithm implementation could be 
optimized leveraging these QPUs. A QPU is a 16 Single 
Instruction Multiple Data (SIMD) processor which allows 
disposal of vectors of 16 values. Therefore an execution 
using vectors of 16 values can be done in parallel. On 
another hand, as the STFT computation uses complex 
numbers, this implementation requires only two registers 
to store 16 real number and 16 imaginary number. We 
denote by Step the computing time unit in which a QPU 
consumes 16 points. This implies that a QPU performs 
two steps (one for reals and another for imaginaries) 
when consuming the 16 points. Thus computing the 
STFT on 128 points requires = 128/16 = 8 QPUs. 
The computing time unit in which the 8 QPU consume 
the 128 points in parallel is denoted by Pass. Thus for 
computing the STFT on 256 points, 8 QPUs are required 
using two passes. At the end of each pass, each QPU 
accesses the Vertex Pipeline Memory (VPM) of the RPi 
memory in order to write its outcomes. 

Figure 3.  Parallelization scheme on the GPU of RPi. 

IV. RESULTS AND DISCUSSION 

Here we present results with particular attention on 
computation time. CPU implementation revealed reliable 
performances. The STFT algorithm was computed using 
signal windows with various lengths. We considered 
window lengths of 1 , 2  and 4 . Using EEG data of our 
experiments, these windows lengths respectively 
correspond to points numbers of 256, 512 and 1024. 
Figure 4 shows the gain in the computation time (per 
seconds) for these different window lengths while using 

 threads. There are 3 different parts on the chart. For 1 
to 4 threads, the gain in calculation time is very close 
from the theoretical gain which reflects excellent 
parallelization. All threads are processed by the processor 
cores. The system performs as a quad processor. Between 
5 and 7 threads, the curve does not follow the theoretical 
curve and the gain in computation time decreases. 
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Threads management takes too much time and slows the 
program. This is due to the fact that the number of 
threads is less than and not proportional to the number of 
cores. Beyond 8 threads the gain increases and remains 
the same even when using 12 threads. On another hand, 
results show that the gain in computation time increases 
when increasing the number of points on which the STFT 
is computed. This reflects that the parallelization is 
effective when working with window lengths larger than 
4 . 

Figure 4.  Comparison of gain in computation time while using 
different threads.  

A part from this, we measured the performance of the 
GPU implementation using 900 MB of the RPi memory. 
The implementation was tested with 5 different window 
lengths. Figure 5 shows resulting computation times from 
CPU of the RPi, CPU of intel-CORE i3 processor and 
GPU of the RPi. The -axis reports the different lengths 
on which the STFT was computed. The -axis indicates 
computation time of optimized implementations. Results 
illustrate important computational performances when 
using the RPi GPU. The execution time difference 
between the RPi CPU and GPU implementations is due to 
the effective access to the VPM using an assembler code.  

Figure 5.  Comparison of computation time (per seconds) of optimized 
implementations of the STFT algorithm on CPU of RPi, CPU of intel-
CORE i3, GPU of RPi, and the GeForce Titan GPU of intel-CORE i7. 

Comparing performances of the RPi GPU to those of the 
CPU of intel-CORE i3 processor revealed the huge gain 
in computation time offered by the RPi GPU when 
computing the STFT on larger time-windows. 

However the RPi GPU implementation offers promising 
optimization performances, its use in the design of 
innovative embedded solutions remains limited. This 
limitation is due to absence of libraries or programming 
languages, such as CUDA or OpenCL, which are 
designed specifically for parallelization on the RPi GPU. 
Therefore, at present, the development of ES that 
leverages the GPU of the RPi imposes very high skills in 
low-level programming using assembler. However, 
through findings presented in this work, we demonstrate 
that the parallelism on the CPU of the RPi using the 
OpenMP library is a robust and efficient alternative 
solution for accelerating real-time processing of data 
from time-windows of lengths between 1 and 2 seconds. 

CONCLUSION 
In this work we studied and assessed performances of 
parallelization and acceleration of computation on the 
RPi board for a reliable use of BCI applications. Our 
investigation consisted on parallelizing a STFT-based 
algorithm for estimating the brain workload. Our study 
focused on the STFT parallelizing since it is the most 
time-consuming part of the brain workload estimation 
process from a multi-channel EEG signal. Based on the 
multi-threading and multi-cores architectures included in 
the RPi, the optimized CPU implementation runs up to ×
4 faster. On another hand, based on assembler 
implementation, we evaluated computation performances 
of parallelizing the STFT algorithm on the RPi GPU. 
Compared to CPU of intel-CORE i3 processor the GPU 
of the RPi revealed large difference in computation time. 
The whole results are motivating to design future RPi-
based mobile systems which take advantage from BCIs 
innovative aspect (e.g. autonomous mobile robots). 
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