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Abstract— Assisting users and restoring human locomotion 
for patients with lower limb spasticity is a challenging task. 
Studies focusing on patients with abnormal walking behavior 
are scarce because there is an important variability from one 
patient to another. Those patients could benefit the most from 
rehabilitation and assistive mechatronic devices, there is no 
generic controlling scheme or any dynamical gain indicator. 
This contribution introduces a bio-kinematic index which is 
called Neuro-motor index (NMI), based on electromyographic 
(EMG) and joint angles measurements. NMI is derived from the 
nonlinear regression with a combination of two co-contraction 
indices (CCI), which allows addressing the variability of walking 
situations. This new index is evaluated on patients with cerebral 
palsy and a stroke. Then, the estimation error was calculated in 
comparison with the other co-contraction indices. This 
estimation shows that this index has the highest signification of 
joint angles prediction. Thus it can be suitable in adaptive 
rehabilitation control for spasticity cases. 

Keywords— Rehabilitation Exoskeleton, Spasticity, Bio-
kinematic, co-contraction, Neuro-motor. 

I. INTRODUCTION  
The neurological diseases, such as Cerebral Palsy (CP) 

and strokes (Cerebral Accident, CA), may lead to lower-limb 
spasticity which conducts to gait disorders. CP is a disorder 
that affects muscle tone and motor skills, inducing 
uncoordinated movements [1]. For CA, this disease causes 
death or spasticity due to low blood flow to brain cells [2]. 
Spasticity is an exaggerated contraction of the antagonist 
muscle, which generates an opposition couple or even an 
inversion of the desired movement [3]. This could affect all 
the walk phases which are first double support (DS1), single 
support (SS), second double support (DS2) and swing phase 
(SWP) that are detailed on  Fig.  1.  Mechatronic devices such 
as exoskeletons are one of the solutions for the rehabilitation 
process. However, they are difficult to control as each patient 
has specific motor capabilities and physical integrity should 
be ensured.  Control strategies rely on the fundamental 
assumption that the system should intervene if the patient is 
moving along a trajectory considered as “correct”. When 
deviating from this reference trajectory, the exoskeleton 
should generate a compensation force, through an adjustment 
of the mechanical impedance in the controller [4]. This kind 
of correction includes adjusting the walking speed or step 
length. There are two known control strategies for these 
devices (i) Interaction force controllers using impedance or 

admittance, which are generally predetermined and do not 
consider the user's physical condition [5],[6] (ii) 
Musculoskeletal model based on EMG signals which rely on 
the detection of muscle activation. But EMG signals are not 
effective while applying on patients having a muscular 
disorder[5],[6]. Consequently, the aforementioned strategies 
are inappropriate for patients with cerebral palsy (CP) or after 
stroke. The EMG signals not only contain data about patient 
intention but also give information about the muscle co-
contraction around the joint [7]. Co-contraction is an operation 
between a pair of muscles (agonist/antagonist). The 
quadriceps (contains rectus femoral muscle (RF)) and 
hamstring (contains biceps femoral muscle (BF)) are bi-
articular muscles for knee and hip joints. The angles of these 
joints result while movement due to the exchange of muscles 
roles between agonist and antagonist. Co-contraction is 
related to joint stability [8] and is an important factor which 
participates to the inefficiency of pathological movement [9] .  

 
Fig. 1: Illustration of the walk phase:  First double support (DS1), single 
support (SS), second double support (DS2) and swing phase (SWP). 

 The most three important approaches to estimate this co-
contraction are proposed by Falconer and Winter [9], Hessee 
et al.  [10]   and Unihan et al. [11]. These approaches are 
efficient for offline analysis and diagnosis but they are not 
appropriate for designing a control strategy. Consequently, a 
new index is needed which depends on physiological signals 
(Eelectromyography EMG) to estimate joint angles of 
walking. The strategy is to use the EMG as a proxy for 
determining the patient’s intention, initiating assistance when 
the muscular contraction is characteristic of a predefined 
move and detected with sufficient intensity. This approach 
stimulates movements initiated by the patient, which is an 
essential part of motor rehabilitation. The main objective of 
this work is to propose an approach suitable for people with 



cerebral palsy or strokes and can be used in the future for 
exoskeleton control. Where the patient is considered as an 
expert while moving. The contributions are the following: 

•A complete and uniform description for the most 
important co-contraction indices existing in the literature. 

•A novel index proposition to characterize the relation 
between electromyographic activity and kinematic 
parameters. 

•An evaluation on bio-kinematic recordings from 
20subjects (9 healthy, 6 strokes and 5 with cerebral palsy). 

Section II presents the materials and methods. Section III 
details the results by evaluating the proposed index. Section 
IV concludes this paper. 

II. MATERIALS AND METHODS  
   There were twenty subjects (9 healthy adults:  4 females 
and 5 males, aged 50 years±7; five kids with cerebral palsy:3 
females and 2 males, aged 10 years±2; 6 adults with stroke:  
3 females and 3 males, aged 50 years±7), were recorded in 
Gait Laboratory (Raymond Poincare Hospital, arches, 
France). 

A. Experimental protocol 
The normal gait for each subject was tested on the ground 

by  performing  11  trials.  The  activity  of  quadriceps  and 
hamstring  muscles  were  recorded  using  a  surface  EMG 
system  (MA311).  Using  a  3D  optoelectronic  system,  the 
gait  analysis  was  recorded  at  100  Hz  following  the  Helen 
Hayes model which is commonly used by the biomechanical 
community for gait analysis, a group of markers were placed 
on the lower part of the patient [12].The marker trajectories 
were then filtered using a Butterworth filter (4th order, 6 Hz 
cut-off  frequency) [13].The  peak  of  flexion  and  extension 
was  the  main  kinematic  parameters  as  appropriate  for  the 
hips and knees. For both lower limbs: a calculation was made 
for  spatiotemporal  parameters  (velocity,  cadence,  step  and 
stride  length,  step  width)  and  for  kinematic  parameters  on 
each sub-phase of the gait cycle. 

B. Signal Processing 
The processing of the raw EMG signals was divided into 

several  steps:  first  were  band-pass  filtered  (10–400  
Hz),second  were  rectified,  third  were  low-pass  filtered  
using  Butterworth  filter  (4th order)  from  4  till  6  Hz  cut-
off frequency  depends  on  the  subject  cadence  [14],  and  
finally normalized  by  the  detected  maximal  voluntary  
contraction value  (MVC)  of  each  muscle  on  gait  trials  [4].  
For  the kinematic data, the processing was begin by filtering 
using a Butterworth filter (4th order, 6 Hz cut-off frequency) 
which is  connected  to  the  acquisition  system,  then  these  
data  is segmented in 1001 values for knee and hip joints to 
obtain matrices with fixed dimensions which are equal to 
those of recorded  EMG  matrices.  After  that,  the  estimation  
of  their mean and variance was done. 

C. Co-contractions Indices  
     In the case of a normal walk, there is a very large literature 
on the CCI, which depends on numerous parameters such as 
the walking speed, inertia, considered muscle groups, age and 
sex [11].  The CCIs are always computed as a ratio between 
agonist and antagonist muscles, and as a function of the phase 
in the walking cycle. Among the various methodologies to 

compute CCI, three are more robust and accurate and will be 
detailed hereafter. 
 
The CCI1(t) is introduced by [9] and is computed as: 
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Where ENVemg·(t) is the normalized envelop of EMG 
signals, as shown on Fig.  3.  The period [t1, t2] denotes the 
time span where the envelop of Rectus Femoral (RF) is lower 
than the envelop of Biceps Femoral (BF), whereas [t2, t3] 
denote the period where the BF envelop is lower than the RF 
envelop. CCI1(t) is computed by finding the area of the total 
antagonistic activity (area under RF + BF) divided by the 
integral of the sum of the EMG envelop (area under RF + 
BF).  This method is commonly used in the literature, for 
quantifying the co-activation of muscle groups during 
multijoint movements, such as gait. However, it exhibits 
discontinuities in two points of the cycle, between the single 
support (SS) and the second double support (DS2) on the one 
hand and, on the other hand, between the 
 
The CCI2(t) is proposed by [10] and is defined as:  
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This method derived by the equation proposed by [15] and 
[9] The CCI2 (t)is evaluated by finding the overlap between 
the agonist and antagonist muscle (area under RF ∩ BF) 
curves and divided by the integral of the sum of the EMG 
envelop (area under RF + BF).  On could note thatCCI2(t)is 
continuous throughout a complete gait cycle. 
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The last co-contraction index is a reformulation of the index 
proposed by [15] and [11] .CCI3(t) is evaluated by finding the 
overlap between the agonist and antagonist (area under 
RF∩BF) curves and normalized by the area under RF∪BF.  

 
Fig. 2 Examples of muscles study, biceps femoral (BF) and rectus femoral 
(RF), conducted on one subject. a) normalized EMGs of the agonist and 
antagonist muscles. b) normalized EMGs of the antagonist and the total 



muscle activity used to calculate CCI1(t).  c) normalized EMGs of the agonist 
and antagonist muscles, and the overlap between the two muscles used to 
calculate CCI2(t). d) normalized EMGs of the agonist union the antagonist 
muscles, and the overlap between the two muscles used to calculate CCI3(t). 

As CCI2(t), CCI3(t) is also continuous during the gait cycle. 
Nonetheless, CCI2(t) andCCI3(t) relies on the arbitrary 
definition of the peak co-contractions, that is the precise value 
of t1, t2 and t3which could be set priori for normal walk but is 
not suitable for abnormal walk without manual annotations of 
the data. They are thus not appropriate for the control of 
rehabilitation or assistive exoskeleton. 

D. Proposed Index 
Even with this ensured continuity for CCI2(t) and CCI3(t), the 
gait angles and the CCI varies independently along the walk 
cycle.  It is difficult to find a mapping from the joint angle 
variation to the CCI, thus to propose a mapping function for 
the control process. We address this problem by defining a 
regression from the CCI to the angle variation of the 
considered articulation, that preserve the necessary 
information and act as a smoothing function. We use a Hermit 
polynomial to combine the CCI that are estimated from the 
EMGs recorded from the quadriceps and the hamstrings 
muscles. The proposed neuro-motor index is built on the care-
full detection of user-specific peak co-contraction activities 
which are then injected in non-linear combination of two co-
contraction indices [10],[16]. The NMI allows to characterize 
the envelop peak of a muscle pair during each 
flexion/extension of a walk cycle, and to estimate the joint 
angular trajectory. The first step is to detect the peak of f(t) 
defined as:  
 
NMI (t) = 

?
7
  {CCI1 (t ) + Rx (t) CCI2 (t ) }               (4) 

 
Where, Rx (t) is a nonlinear regression based on Hermitian 
function  
 
     Rx (t) = h1 (t) f0 + h2 (t) p0 + h3(t) f1 + h4 (t) p1     

 

The peaks are identified with:   argmin t | f’(t)| 
 
 f (t) = EMGantago (t) ∩ EMGago (t)       
 
   h1, h2, h3, h4 ∈ He (t); p0   and p1   are tangent to f0 and f1. 

   The NMI is determined based on the flexion/extension of a 
joint and does not depend on the definition of a standard gait 
cycle, a requirement for working with cerebral palsy and 
stroke patients.  The non-linear regression ensures that this 
method could be applied for an abnormal walk, either for 
adult or children.  Starting from a minimal calibration to 
reduce the patient fatigue, in order to provide comfortable, 
stable and secure rehabilitation for the patient, the NMI 
allows a direct prediction of the patient intention because it 
depends on his EMG, and since it is derived from the co-
contraction index, its results rely on the residual capabilities 
of the patient. 

III. RESULTATS 
The  evaluation  is  conducted  on  all  20  subjects. CCI1(t), 

CCI2(t) ,CCI3(t) and NMI(t) are calibrated for one walking 
cycle of each  subject and evaluated on the 10 other cycles. 

Each index allows to estimate the angular value of the knee, 
and  an  estimation  error  is  computed  using  kinematics  data 
as  ground  truth. To  proceed  this  evaluation,  we  manually 
annotate the dataset to indicate the t1, t2 and t3 time values  
corresponding  to  each  phase  of  the  walking  cycle  (first  
double  support,  single  support,  second  double  support, and 
swing phase). Healthy  subjects  that  have  a  normal  walking  
cycle  do not  present  any  change.  However  this  provides  
a  valuable information for assisting patients with an abnormal 
walk, as the CCIs are not appropriate for the latter case.  
Moreover, it  should  be  mentioned  that  the Θ(t) angular  
value  of  the knee, which is to be predicted, is used only 
during training for NMI (calibration phase on 1 cycle) and is 
not provided to the algorithm during the rest of the test 
(evaluation phase on 11 cycles). Fig.3 shows the relation 
between the joint angles and the CCIs during the gait cycle. It 
shows that the CCI do not provide a reliable or proper  
function to predict the joint angle for the control of an  
actuator. However, the determination of these angles is 
possible using NMI, which is a surjective function that is valid 
for control. It could be seen that each input corresponds to a 
single output, that is crucial requirement for designing a 
control function. As  it  could  be  seen  on  Fig.4, the NMI 
consistently achieved the best prediction for the knee angle, 
based on the ground truth and only after a short calibration. 
The CCIs performed well for subjects with a normal walk but 
the main source of error was with  patients  suffering  from  
cerebral palsy or stroke. 

 

 
Fig.3. Knee joint angle variation Θ(t) computed for CCI1, CCI2, CCI3 and 
NMI as a function of walk cycle. 

 
Fig.4 Comparison of error estimation for CCI1, CCI2, CCI3 and NMI of 
stroke patient. Walking phases are DS1 (first double support), SS (single 
support), DS2 (second double support) and SWP (swing phase). 



 
Table 1: Comparison results between CCIs and NMI. 

Estimation 
error 

DS1 SS DS2 SWP 

𝜺	[CCI1=f(𝜽)] 48.1±2.2 26.8±1.6 66.9±3.1 40.9±2 

𝜺 [CCI2=f(𝜽)] 1.9±2.9 37.9±2.3 30.9±1.7 13.2±3 

𝜺 [CCI3=f(𝜽)] 2.1±2.5 57±2.9 48.9±1.8 21±2.5 

𝜺 [NMI=f(𝜽)] 1±0.6 0.6±0.4 2.9±1.1 0.5±0.4 

    The estimation error, in Table 1, shows a big variability for 
CCIs in function of Knee angles for 11 gait cycle of a stroke 
subject, where the estimation error of CCI1 reaches (48. 1 ±
2.2 ) in DS1, for each CCI  between (26.8±1.6 to 57±2.9)  in 
SS, (30.9 ± 1.7 to 66.9 ± 3.1) in DS2, and (13.2±3 to 40.9 ±2) 
in SWP, however, this estimation reaches a maximum value 
( 2.9±1.1 ) for NMI in all the phases of the gait cycle. 

IV. CONCLUSION  
The NMI is a new bio-kinematic index, focused on 

producing a reliable and generic estimation of the  articulation 
flexion/extension using EMG to determine muscle co-
contraction. The  main  contribution  of  this  new  index  is  to 
provide  a  model-free  estimation  of  the  walk  cycle,  without 
imposing a pre-defined trajectory on the patient. The patient 
is thus considered as an expert, providing a personal optimal 
walk  cycle  for  calibration,  and  the  NMI  yields  a  robust 
index  for  designing  an  exoskeleton  controller. This  index 
evaluated on a dataset of 20 subjects, some  with  normal walk 
cycle and others with abnormal ones, using kinematic data as 
ground truth. The NMI largely outperforms existing CCIs. 
Following this work, the NMI will be integrated in the control 
scheme for a lower limb exoskeleton used as walking 
assistance for people suffering of spasticity. 
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