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Abstract. Anomaly detection is of crucial importance in industrial en-
vironment, especially in the context of predictive maintenance. As it is
very costly to add an extra monitoring layer on production machines,
non-invasive solutions are favored to watch for precursory clue indicat-
ing the possible need for a maintenance operation. Those clues are to be
detected in evolving and highly variable working environment, calling for
online and unsupervised methods. This contribution proposes a frame-
work grounded in optimal transport, for the specific characterization of
a system and the automatic detection of abnormal events. This method
is evaluated on acoustic dataset and demonstrate the superiority of met-
rics derived from optimal transport on the Euclidean ones. The proposed
method is shown to outperform one-class SVM on real datasets, which
is the state-of-the-art method for anomaly detection.

Keywords: Predictive maintenance · Optimal transport · Anomaly de-
tection · Unsupervised learning.

1 Introduction

In the industrial field, the equipment operational readiness is a central and un-
avoidable challenge. This is a key parameter in the production budgeting or in
the solution development projects. The concept of operational readiness mainly
covers the preventive maintenance which corresponds to systematic or periodic
operations defined for each type of equipment, and/or the corrective maintenance
which concerns operations to remedy the damage that has occurred during op-
eration. But with these two kinds of maintenance, some unnecessary actions
are performed or the equipment breaks down unexpectedly, moreover, these two
kinds of maintenance do not take into account the specific characteristics of real
operating conditions [5].

The predictive maintenance anticipates the needs and remedies its weaknesses
by reducing prevention costs and avoiding unplanned downtime [15]. It becomes
increasingly important in recent years, and is linked to terms such as the Internet
of Things(IOT), big data and industry 4.0.



Predictive maintenance requires continuous monitoring of the components
directly on the machine or on the installation, such as for wind turbines [8], or
for aircraft engines [1], power plants, solar fields, etc. This is achieved by sensors
that report information about the periphery and environmental characteristics
such as temperature, vibration, noise or humidity, but also by looking at the
historical and conceptual data of the equipment. These data are then recorded
and evaluated by correlations, compared with models through well-targeted al-
gorithms. In particular, anomaly detection aims to identify failing components
and replace them before the occurrence of a failure.

A crucial step in predictive maintenance is the anomaly detection. It is a ma-
jor challenge in industrial applications, especially for the identification of manu-
facturing defects or component failure. Whichever method is used, an anomaly is
always defined, either implicitly or explicitly with respect to a model. The choice
of the method and of the model depends entirely on the context, the objective,
the available data, and their properties.

Theoretically, an observation is considered as abnormal or atypical compared
to a given model, this model can be parametric, assuming a specific statistical
law distribution, or non-parametric defined directly from the data. Without any
assumption on the law governing the data, the model can be chosen in relation
with the presence of a target variable to explain, to model, or to predict by
regression or discrimination. In the opposite case, it can be related to presence
of the probability density or multidimensional distribution of variables.

In the parametric cases, the law of the explanatory variables, or that of the
residuals, is usually supposed to be Gaussian multidimensional. Relative to a
target variable model, when considering a Gaussian linear model, the atypical or
poorly adjusted observations are those diverging from the estimated variance [2].
Nevertheless, the detection of atypical observations is more similar to that of
influential observations, for example using Cook’s distance, well known in simple
linear regression [3].

Without target variable to model, the abnormality at a multidimensional
density can be characterized by the Mahalanobis distance, as used in [1] for the
detection of anomalies in an aircraft engine. This distance is estimated from the
inverse of the empirical covariance of the distribution.

In the non-parametric cases, there is no assumption about the multidimen-
sional distribution of variables, it is estimated locally in different ways. Relative
to a target variable model, Random forest [17] includes an original solution
adapted to the taking into account of mixed variables.

Without target variable to model, this is the case with the most extensive
literature with many proposed methods. A comprehensive review is proposed
in [10], most notable methods are Local Outlier Factor [4] and Isolation For-
est [11]. Nonetheless, these methods are applicable in situations where abnormal
observations are frequent and where all data are corrupted with a low density
noise. Here, the situation is different as the monitored components are first as-
sumed to operate correctly. The abnormal events could be identified as a novelty,
a sensible variation from the clean reference data. The most know algorithm in



novelty detection is the One-Class SVM [13, 12], which is the current state of
the art.

The shift in the observed distribution could be quantified, calling for met-
rics and topological spaces for handling probability measures [16]. These metrics
follow from the Kantorovitch problem, that define a transport plan (couplings)
which is the solution of transportation problem defined by a cost matrix. Com-
mon applications are image processing, shape interpolation, similar terms in text
documents [14]. The computation of this transport plan often requires a large
amount of computational resources and is not feasible in high dimensions.

Recent advances yield new algorithms for fast computation of transportation
distance, such as the Sinkhorn distance [6]. Adding entropic regularization to
transportation distance, the Sinkhorn distance has several interesting properties
as it is a scale free, non-Euclidean formulation which is less subject to the curse
of dimensionality. Also, clever implementation that makes use of parallelization
and GPU computation are available [9].

In this contribution, we propose to formulate a straightforward algorithm for
anomaly detection in a predictive maintenance context. We consider the case of a
system to monitor with non-invasive sensors, where a large amount of data from
a normal behavior is available. This algorithm should be able to identify novel
behavior or abnormal samples, that will be eventually process to determine if
a predictive maintenance is required. Drawing on optimal transport framework,
our contributions are the following:

– A novel unsupervised method for anomaly detection
– Evaluation with Euclidean methods on toy data set
– Application to real data, comparison with state-of-the-art
– Possible extension for online implementation

The rest of this paper is organized as follows. Section 2 describes the proposed
model and provides a formal description of the system. In Sect. 3, the model is
evaluated on a toy data set and on real acoustic data set and compared with
Euclidean methods and one-class SVM. The Sect. 4 concludes this paper.

2 Optimal transport for anomaly detection

This section first provides some insight on transport algorithms, with details on
the Sinkhorn algorithm. The rest of the section goes through the explanation on
the proposed algorithm.

2.1 Optimal transport with entropic regularization

We consider two metric spaces X and Y, and M(X) is the set of Radon prob-
ability measures on X . Whereas we focus on discrete measures, the proposed
approach could be extended to the continuous case without any specific prob-
lem. With discrete measure α with weight a defined on X in n locations and β



Fig. 1. Illustration of a coupling P solving the optimal transport from measures a on
left to measures b on top.

with weight b defined on Y in m locations, we could consider the set of coupling
matrices defined by:

U(a, b) =
{
P ∈ Rn×m+ : P1m = a and PT1n = b

}
(1)

where 1n is the vector of ones with n dimensions.

If we consider a cost matrix C ∈ Rn×m, the cost of the mapping from a to b
using a transport matrix P is 〈P,C〉, with 〈·, ·〉 is the Euclidean dot product.

dC(a, b) = min
P∈U(a,b)

〈P,C〉, (2)

is called the optimal transport problem between a and b given cost C.



Defining the entropy of the coupling matrix as

H(P ) = −
∑
i,j

Pi,j(log(Pi,j)− 1), (3)

it is possible to add an entropic regularization term to the optimal transport
problem (2):

dεC(a, b) = min
P∈U(a,b)

〈P,C〉 − εH(P ). (4)

This problem admit a unique solution of the form Pi,j = uiKi,jvj , with scaling
variables ui and vj belonging respectively to Rn+ and Rm+ . When conforming to
mass conservation, the solution of (4) could be written as:

u ∗ (Kv) = a and v ∗ (KTu) = b (5)

where ∗ is the element-wise vector multiplication. By alternatively solving the
following update, an iteration l of the Sinkhorn algorithm is:

u(l+1) =
a

Kv(l)
and v(l+1) =

b

KT v(l)
, (6)

starting with an arbitrary initialization.
An illustration of the obtained coupling when solving Problem 4 is shown on

Fig. 1

2.2 Anomaly detection with optimal transport

The proposed detection algorithm is designed to model normal behaviors and
identify abnormal behavior. We focus in this contribution on acoustic signals
or vibration, as it is easy to embed such sensors in a non-invasion monitoring
system. Nonetheless, the described approach could be adapted to various prob-
lems, as any sample distribution could act as an input feature. An abnormal
signal can be defined by the distance between its own representation and the
representation of another signal defined as a reference. Noisy signals show the
highest distance from the reference representation.

Assuming a set of initial signals X = {Xi}i=1...k, X ∈ Rt, and a signal
containing abnormal events, denoted X̃ = X + ηN , where N is the abnormal
component and η is the component level. The signals are considered in the
frequency domain, by estimating the power spectral density. For each signal,
the power spectral density is evaluated with the Welch estimator F (·), that is
the signals are split into several partially overlapping segments, a windowing
function is applied (here Hamming) before computing their Fourier transform,
and averaging the results for each segment. The resulting signals are F (X) ∈ Rn.

The initial signals are then averaged, using a Euclidean mean, to obtain a
barycenter acting as reference F (X̄) = 1

k

∑
k F (Xk). During preliminary tests,

we have evaluated the opportunity to use Wasserstein barycenter [7] but it
turned out that it yield poorer results. The distances from individual PSD



Algorithm 1 Anomaly detection with OT

Input: set of reference signals X, signal to evaluate X̂
Output: binary classification, 1 if normal signal, -1 if abnormal

1: procedure Predict anomaly(X, X̂)
2: F (X̄)← 1

k

∑
k F (Xk)

3: for i in 1 .. k do
4: di ← dεC(F (X̄), F (Xi))

5: Set threshold ϑ from LogNormal fit on {di}i=1...k

6: d̂← dεC(F (X̄), F (X̂))
7: if d̂ > ϑ then
8: return −1 . Anomaly
9: else

10: return 1 . Normal

F (Xk) and the reference barycenter F (X̄) is computed with the Sinkhorn dis-
tance dεC(F (X̄), F (Xk)), using a Chebyshev cost function. The same is done for
signals with anomalies dεC(F (X̄), F (X̃).

A distribution following a Log-Normal distribution is then obtained from the
histogram of distances. This distribution allowed us to set a distance threshold
which was used to design a classifier in order to predict the tested signal as strict
less than normal or abnormal. The different steps of the algorithm are shown in
Algorithm 1.

The evaluation of the method by two performance metrics and its comparison
with an Euclidean baseline and the one-class SVM is detailed in the following
section.

3 Experimental analysis

3.1 Datasets description

This study is a part of a ongoing project aiming to implement a predictive main-
tenance solution based on the test bench monitoring of an electro-mechanical
aircraft actuator. Unfortunately experiments related to this test bench are con-
fidential and dataset from this experiment could not be shared.

To ensure the reproducibility of this study, we decided to apply our approach
on public data. A first batch of data is chosen to demonstrate the robustness of
the method. It also offers the possibility to compare with a Euclidean approach,
to verify that the optimal transport distance has a real positive influence. We
selected a sound recording of a working day in an open space4 as reference
data and different levels of pink noise are blended to simulate noisy data in a
controlled way.

To further test our approach on realistic data, we also evaluated the method
on a dataset similar to the private, industrial data. We selected a recording of

4 The selected sound recordings are available upon request.



Fig. 2. ROC estimation for detecting peak noise

the rotating industrial machine sound for the reference acoustic signal, which is
close to the one encountered in the industrial situation. We also selected some
recordings of some abnormal event sounds to represent the anomalies that are
also similar to those occurring on test bench5. The results of these experiments
are presented in the following subsections.

3.2 Robustness and comparison with Euclidean metrics

To test the robustness of the anomaly detection method, it is evaluated on a
monoraul track recording encoded at 44100 Hz of office open space sounds. The
recording is 15 minutes long. The reference is computed on the first 7 minutes,
the remaining audio is either left as it or corrupted with pink noise. Two different
types of abnormal noise are considered: a large broadband noise is added to the
signal or a sharp peak noise.

The algorithm of Alg. 1 is evaluated with various thresholds to compute a
ROC estimation. As it is shown on Fig. 2, when the power of the noise signal
is strong (SNR 3.65 dB), the algorithm easily detect the anomaly in the signal.
As expected, the detection is harder when the noise peak is weaker, with a SNR
of 0.55, the Area Under Curve (AUC) is 0.62 which is above chance level (here
0.5) but of limited precision.

5 All of these recordings are available as well upon request



Fig. 3. Detection of broadband noise, SNR values are matching those of the peak noise
experiment.

The second experiment rely on the same kind of experiment, but with a
broadband noise. The Fig. 3 show that with equivalent SNR, the proposed al-
gorithm is able to detect anomalous event with more easiliy than in the case of
the peak noise. This reflects on the AUC values which are of 0.72 for a low SNR
of 0.55 dB, 0.79 for SNR of 1.71 dB and 0.88 for 3.65 dB.

This experiment on a toy dataset demonstrates the feasibility of anomaly
detection with optimal transport metrics. These results show that it is possi-
ble to detect a noise when the algorithm is calibrated with real sound. The
proposed algorithm shows a limited sensitivity to anomalies concentrated on a
narrow frequency peak but performed well with broadband change, even if the
modifications are subtle.

3.3 Evaluation on real dataset

In these experiments, a reference signal similar to the noise of an industrial bench
test is chosen. The signal is recorded in monaural, at 44100 Hz for 15 minutes
long. Two qualitatively different kinds of faulty mechanical parts are considered:
the sound of a light, high pitched whistling (dataset 1) and a cyclical low-pitched
sound, similar to a faulty ball bearing (dataset 2). These two datasets are also
15 minutes long of 44100 Hz monaural recording.



Fig. 4. Spectrum of the reference dataset is on the top plot. The PSD of the combined
reference and anomalous sound is shown on the bottom.

The algorithm described in Alg. 1 is compared to a Euclidean baseline. In
this baseline, this is the same algorithm but the Sinkhorn metrics are replaced
with a Euclidean one on lines 4 and 6.

The state-of-the-art algorithm, one-class SVM, for novelty detection is bench-
marked against the proposed algorithm. The one-class SVM relies on a Radial
Basis Function (RBF) kernel and the ν value is set to reflect the ratio of anoma-
lies.

The datasets are separated in training (500 samples) and test data (500
samples) using a repeated k-fold split, the training data are used to train the
SVM and the compute the reference signal F (X̄). The algorithms (SVM, OT
and Euclidean) are then evaluated on test data: half of the test data are mixed
with the faulty mechanisms sound of dataset 1 and 2.

To illustrate the input features of the algorithm, the Fig. 4 shows the PSD
of the 500 training signal on the top plot. The reference computed on these
training signal is shown as a thick black line. On the bottom plot, one could see
the mix of the 250 test signal unmodified and of the 250 test signal mixed with
the anomalous sound of dataset 1. The reference indicated in black is the same
as the one on the top plot.

The results are shown on Fig. 5, for the datasets 1 with light, high pitched
whistling anomalies. As the results are qualitatively similar for dataset 2, the
results for the dataset 1 and 2 are summarized in the Table 1. The left part



Fig. 5. Accuracy and F1-measure estimated on the first dataset for different noise
levels. One-class SVM, Optimal Transport (OT) and Euclidean baseline are evaluated
on this dataset.

of Fig. 5 shows the accuracy for 3 different noise levels. The one-class SVM
(OCSVM) achieves good results but misses several anomalies lowering its score
around 70-75 %. The Euclidean method demonstrates lower performance than
OCSVM for low SNR but outperforms OCSVM for high SNR. The optimal
transport algorithm yields the higher results, with 90-98 % accuracy.

We also evaluated the F1-score to take into account the precision and the
recall for the anomaly. These scores are shown on the right part and one could
see that the optimal transport outperforms all the methods.

4 Discussion and conclusion

Anomaly detection is a complex problem with no uniformly better solution be-
cause the choice of which method to use depends largely on the context, the
properties of the variables and data observed, and also on the objective pursued.
This paper focuses on a new method of anomaly detection in acoustic signals
by comparing them with reference signals through the calculation of Sinkhorn
distances in optimal transport. The choice fell on an unsupervised detection
method, because there are no anomalies a priori defined, common in industrial
equipment operating mode. This allows us an online implementation in order to
an industrial deployment.

In the experimental analysis section, the robustness of the OT method has
been demonstrated by observing the ROC estimation. It distinguished itself from
the One Class-SVM and Euclidean methods by showing a high level of accuracy
for different datasets through its evaluation by two performance metrics, accu-
racy and F1 measures.



Accuracy F1
Noise level OT OCSVM Baseline OT OCSVM Baseline

Dataset 1 0.8 0.89 0.70 0.63 0.90 0.60 0.69
0.9 0.95 0.72 0.75 0.95 0.62 0.76
1.0 0.97 0.72 0.85 0.97 0.62 0.84

Dataset 2 1.0 0.54 0.5 0.5 0.90 0.60 0.62
1.5 0.64 0.5 0.5 0.94 0.61 0.62
2.0 0.84 0.5 0.5 0.97 0.62 0.62

Table 1. Accuracy and F1-measure for two datasets of acoustic recording, corrupted
by faulty mechanical sounds.

As already discussed before, this study is part of a larger PhD position project
that is the predictive and automated maintenance of an industrial equipment.
The overall architecture of the project is divided into several parts starting with
the monitoring of the equipment until the alarms propagation and the proposal
of the maintenance actions to be carried out, while passing through the anomaly
detection and the fault identification.

The contribution of this paper has been devoted mainly to acoustic data, but
we want to broaden the study of anomaly detection in future work on other per-
ception mechanisms set up for maintenance, such as vibratory and thermographic
measurements with well-defined specifications, while integrating the confidence
interval questions for each type of measurement.
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