M. Abdel-sayed, D. Duclos, G. Faÿ, J. Lacaille, and M. Mougeot, Dictionary comparison for anomaly detection on aircraft engine spectrograms, Machine Learning and Data Mining in Pattern Recognition, pp.362-376, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02526568

H. Aguinis, R. K. Gottfredson, and H. Joo, Best-practice recommendations for defining, identifying, and handling outliers, Organizational Research Methods, vol.16, issue.2, pp.270-301, 2013.

A. Atkinson and M. Riani, Robust diagnostic regression analysis, 2012.

M. M. Breunig, H. P. Kriegel, R. T. Ng, and J. Sander, Lof: identifying density-based local outliers, ACM sigmod record, vol.29, pp.93-104, 2000.

F. Camci, System maintenance scheduling with prognostics information using genetic algorithm, IEEE Transactions on reliability, vol.58, issue.3, pp.539-552, 2009.

M. Cuturi, Sinkhorn distances: Lightspeed computation of optimal transport, Advances in neural information processing systems, pp.2292-2300, 2013.

M. Cuturi and A. Doucet, Fast computation of wasserstein barycenters, International Conference on Machine Learning, pp.685-693, 2014.

M. C. Garcia, M. A. Sanz-bobi, and J. Del-pico, Simap: Intelligent system for predictive maintenance: Application to the health condition monitoring of a windturbine gearbox, Computers in Industry, vol.57, issue.6, pp.552-568, 2006.

A. Genevay, M. Cuturi, G. Peyré, and F. Bach, Stochastic optimization for largescale optimal transport, Advances in Neural Information Processing Systems, pp.3440-3448, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01321664

M. Goldstein and S. Uchida, A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data, PloS one, vol.11, issue.4, p.152173, 2016.

F. T. Liu, K. M. Ting, and Z. H. Zhou, Isolation forest, Eighth IEEE International Conference on Data Mining, pp.413-422, 2008.

J. Ma and S. Perkins, Time-series novelty detection using one-class support vector machines, Proceedings of the International Joint Conference on, vol.3, pp.1741-1745, 2003.

L. M. Manevitz and M. Yousef, One-class svms for document classification, Journal of machine Learning research, vol.2, pp.139-154, 2001.

G. Peyré and M. Cuturi, Computational optimal transport, 2017.

G. A. Susto, A. Schirru, S. Pampuri, S. Mcloone, and A. Beghi, Machine learning for predictive maintenance: A multiple classifier approach, IEEE Transactions on Industrial Informatics, vol.11, issue.3, pp.812-820, 2015.

C. Villani, Optimal transport: old and new, vol.338, 2008.

J. Zhang, M. Zulkernine, and A. Haque, Random-forests-based network intrusion detection systems, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol.38, issue.5, pp.649-659, 2008.