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A B S T R A C T

Livestock-associated methicillin resistant Staphylococcus aureus (LA-MRSA) colonizes livestock animals world-
wide, especially pigs and calves. Although frequently carried asymptomatically, LA-MRSA can cause severe
infections in humans. It is therefore important to better understand LA-MRSA spreading dynamics within pig
farms and over pig movement networks, and to compare different strategies of control and surveillance. For this
purpose, we propose a stochastic meta-population model of LA-MRSA spread along the French pig movement
network (n = 10,542 farms), combining within- and between-farm dynamics, based on detailed data on
breeding practices and pig movements between holdings. We calibrate the model using French epidemiological
data. We then identify farm-level factors associated with the spreading potential of LA-MRSA in the network. We
also show that, assuming control measures applied in a limited (n = 100) number of farms, targeting farms
depending on their centrality in the network is the only way to significantly reduce LA-MRSA global prevalence.
Finally, we investigate the scenario of emergence of a new LA-MRSA strain, and find that the farms with the
highest indegree would be the best sentinels for a targeted surveillance of such a strain’s introduction.

1. Introduction

Livestock farms are often at high epidemiological risk, in particular
farms with a dense animal population (Meadows et al., 2018). Disease
spread control in livestock populations is a challenge for animal health
and welfare (Broom and Corke, 2002), as well as for farmers in terms of
economic and livelihood loss due to productivity drops (Food and
Agriculture Organization, 2017). It may also be a concern for human
health in the case of zoonotic diseases (Jones et al., 2008). In this
context, over recent years, the worldwide spread of antimicrobial-re-
sistant bacteria among livestock has emerged as a major threat that
needs to be accounted for to fully understand the global increase of
antimicrobial resistance in a one-health perspective (Laxminarayan

et al., 2013; Nadimpalli et al., 2018; Puyvelde et al., 2017).
Livestock-associated strains of methicillin-resistant Staphylococcus

aureus (LA-MRSA) have been identified since the 2000’s in farm ani-
mals, especially pigs and veal calves, as well as in humans in occupa-
tional contact with livestock, in several European countries (Armand-
Lefevre et al., 2005; Nadimpalli et al., 2016; Voss et al., 2005; Weese,
2010). Staphylococcus aureus is a Gram-positive bacterium carried
asymptomatically by a large portion of human populations (Williams,
1963), and is a frequent cause of opportunistic diseases such as skin and
soft tissue infections (Wertheim et al., 2005). Methicillin-resistant S.
aureus (MRSA), that are multi-resistant to antibiotics including most β-
lactams, were originally found in human populations in hospitals as
sources of nosocomial infections, and then in the human community
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(Chambers and DeLeo, 2009). LA-MRSA strains, mostly belonging to the
ST398 subtype in Europe (Weese, 2010), were found able to spread to
human populations not in direct contact with farm animals (Kinross
et al., 2017; Larsen et al., 2017; van der Mee-Marquet et al., 2011). As
pigs are suspected to act as a reservoir for LA-MRSA (Crombé et al.,
2013), understanding the spread dynamics of LA-MRSA within and
between pig farms is key to being able to design proper surveillance and
control measures. In particular, the major impact of pig movements on
the spread dynamics of LA-MRSA between farms has been underlined
(Broens et al., 2011; Espinosa-Gongora et al., 2012; Sieber et al., 2018).

Over the last decade, a few mathematical models have been pro-
posed to study the spread of LA-MRSA, within a single pig herd
(Sørensen et al., 2017; Sørensen et al., 2018), at the scale of a pig
movement network (Ciccolini et al., 2012; Schulz et al., 2018; Schulz
et al., 2019) and from a single pig farm to humans (Porphyre et al.,
2012). These models allowed to explore the implementation of control
interventions based on reduced antimicrobial use, reduced mixing of
pigs within and between farms, improved biosecurity, movements re-
strictions, as well as voluntary eradication of pigs. Porphyre et al.
(2012) estimated the risk of transmission to human populations even
beyond farm communities if such farm-level control measures were not
implemented. Finally, it was shown that a description of LA-MRSA
spread at both the within- and between-herd scales is necessary when
assessing control strategies (Crombé et al., 2013; Schulz et al., 2018).

Here, we propose a novel model of MRSA spread in pigs, that
combines within- and between-herd epidemiological and demographic
dynamics. This model is based on data from a real pig movement net-
work at a country level and is applied to the French situation. Using the
model, we aim to identify farm-related factors associated with extensive
spread of LA-MRSA over the network. Additionally, we assess the effect
of farm-level control measures on the network spread of LA-MRSA.
Finally we aim to optimize sentinel farms selection when designing
active surveillance of a new strain in the network.

2. Methods

2.1. Definitions

In the remainder of the text, the term “MRSA” will always refer to
LA-MRSA. The term “sows” will always refer to the breeding sows
aimed at farrowing. The term “gilt” will refer to young sows destined to
replace older sows for farrowing. Several types of pig farms are defined,
depending on the purpose of the farms (breeding or production) and the
rearing stage at which they raise pigs (Fig. 1). Breeding farms, including
nucleus (SEL) and multiplier (MU) farms, are defined as farms ex-
porting breeding sows (28-week old gilts). Other farms, including far-
rowing (FA), farrowing-post-weaning (FPW), post-weaning (PW), post-
weaning-finishing (PWF), finishing (FI) and farrowing-to-finishing (FF)
farms, are production farms and aim at producing pigs that will be

slaughtered when they are 28 weeks old. Breeding farms include a
breeding herd composed of sows aimed at producing new piglets. This
is also the case for some production farms: types FA, FPW and FF. The
fattening herd is composed of pigs raised to be sent to slaughterhouse,
or, in the case of breeding farms, exported to other farms for renewing
their breeding herd (see Supplementary Material SM1, Figure S1).

2.2. Data on the French pig industry

The National Swine Identification Database (BDPORC) has recorded
pig movements in France since 2010, allowing to reconstruct the net-
work of French pig farms, which was described previously (Salines
et al., 2017). This network was shown to be stable over time, with si-
milar active nodes, network properties and connected components
(Salines et al., 2017). Here, we used time-aggregated data from
BDPORC for the full year 2014: the characteristics of all pig farms,
including their type of activity – i.e. the age of pigs they raise (Fig. 1) –
and size (Fig. 2a); and all pig movements reported at the batch level
between all pairs of farms in 2014 (Fig. 2b). The total database re-
corded 13,124,032 pigs moved and included 20,688 sites, including
breeding and production farms as defined in Section 2.1, small farms
(defined as farms rearing less than 80 pigs), wild boar farms, boar
stations, trade operators and slaughterhouses. However, because we
aimed to study the spread of MRSA between farms through pig move-
ments only, the database was screened and filtered to exclude types of
holdings from which there were no or very little pig movements to
other farms (small farms, boar stations, wild boar farms, trade operators
and slaughterhouses) (Salines et al., 2017), individual farms for which
no movement was recorded (i.e. inactive nodes), and types of move-
ments that were rare and not consistent with farm types (e.g. fattening
pig movements from finishing to multiplier farms). This resulted in
10,542 farms, which is consistent with the number of active nodes in
the French pig industry identified in Salines et al. (2017). After filtering,
12,124,527 (92.4 % of the total recorded movements) pig movements
were included.

2.3. Network analysis

In our analyses, we calculated several centrality indicators for farms
within the network: outdegree, indegree, outflux, influx, betweenness,
closeness, coreness and eigenvector centrality. The outdegree of farm A
is the number of farms to which farm A exports pigs. The indegree of
farm A is the number of farms from which farm A imports pigs. The
outflux is defined as the number of pigs exported by farm A to other
farms. The betweenness is the number of directed geodesics – i.e. di-
rected shortest paths between each pair of nodes – going through farm
A. Definitions for all these indicators are provided in the SM2. For the
network we study, these indicators’ values have already been described
in an earlier study (Salines et al., 2017).

FA: 
Farrowing

FPW: Farrowing-Post-Weaning

PW: Post-Weaning

PWF: Post-Weaning Finishing

FI: Finishing

FF: Farrowing-to-Finishing

1240 28 weeks

SEL, MU: Breeding farms (selling gilts aimed at breeding)

Farrowing Post-Weaning Finishing Fig. 1. Types of pig farms. Each type (or ca-
tegory) of farms raises pigs over one or several
production steps: the Farrowing step (piglets
aged 0–4 weeks old), the Post-Weaning step
(4–12 weeks old) and the Finishing step
(12–28 weeks old). For instance, PWF (Post-
Weaning Finishing) farms raise pigs aged 4–28
weeks old, over Post-Weaning and Finishing
production steps.
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2.4. Dynamic model description

We built a discrete dynamic stochastic model of the spread of MRSA
within pig farms and between them over a connected network. Two
distinct processes were modelled both within and between herds: MRSA
colonization and transmission dynamics on the one hand, and pig de-
mographics on the second hand. Model parameters are summarized in
Table 1, along with their assumed values.

2.4.1. Demographic model
Demographic processes were modelled deterministically, at both the

within-farm and between-farm levels.
The model formalized both breeding and fattening herds within

farms (Fig. 3a and SM1). The within-farm structure divided farms into
four sectors: the gestation sector (GS), farrowing sector (FAS), post-
weaning sector (PWS) and finishing sector (FIS). GS and FAS housed
breeding sows. FAS, PWS and FIS housed fattening pigs of increasing
age. Sectors were divided again into rooms: 4 rooms in GS, 1 in FAS, 2
in PWS and 4 in FIS (Fig. 3a).

We modelled a 7-batch rearing system, the most common pig
management system in France (IFIP, 2016), based on a 4-week cycle for
pig movements. Each room in the FAS, PWS and FIS sectors housed a
single batch, resulting in seven batches of fattening pigs in total.
Therefore, piglets stayed four weeks in the FAS with their mother, then
8 weeks in the PWS, and finally 16 weeks in the FIS. In total, the
production cycle for fattening pigs was assumed to last for 28 weeks
(Fig. 1), and farm size was supposed to be constant over time.

Pig movements between farms directly replayed the pig movement
network described above: for each movement, the receiving and
sending herds were extracted directly from the database. Two types of
pig movements between farms were possible every four weeks. On the
one hand, gilts were transferred from breeding farms to replace a
proportion Prep of breeding sows in production farms. Prep was assumed
to be on average equal to 3.19 %, based on 2014 French data in which
41.5 % of sows in a sow herd were shown to be replaced over the entire
year (Badouard and Calvar, 2015). Self-renewal of sows was also pos-
sible: in this case, the replacing gilts were randomly chosen among 28-
week old pigs within their own farm’s finishing sector (FIS4 in Fig. 3a).

On the second hand, batches of fattening pigs could be moved between
farms at two ages corresponding to two production steps: 4 weeks old
(right after weaning), or 12 weeks old (for finishing). The proportion
Pexp,farm of exported pigs from a given batch depended on the farm
category. For instance, 100 % of 4-week old piglets were exported from
Farrowing farms, because these farms do not raise older pigs. Con-
versely, Farrowing-to-Finishing farms were assumed to export 12-week
old pigs only. For each farm and at each production step, the number of
pigs exported was computed from the network data and Pexp, farm. When
the exportation proportion could not directly be set to 0 % or 100 %, it
was computed as follows based on the BDPORC data:

In this formula, we assumed that, for a given farm, the proportion of
exported pigs in a batch is constant over all exportation rounds oc-
curring every four weeks. This proportion was calculated from the
number of pigs exported in 2014 and the number of fattening pigs on
farm recorded for each farm in the BDPORC database.

The week of the first movement for each farm was randomly drawn
among the four first weeks of simulations. The 4-week periodicity of pig
movements was therefore shifted among farms, so that they did not
occur at the same time in all farms.

The resulting contact matrices between farm categories are con-
sistent with data published by the French pig industry on piglets’
movements between categories of farms (Roguet and Laugé, 2009).
More details on the between-farm model, including contact matrices
between farm categories, are available from the SM1.

2.4.2. Epidemiological model
Pig-to-pig MRSA transmission was modelled at the within-farm

scale, through a discrete time stochastic Susceptible-Colonized-
Susceptible (SCS) model (Fig. 3b). Transmission could only occur
within the same farm sector. Thus, the only way for MRSA to spread
between farms was through movements of colonized pigs. Pigs were
assumed not to change MRSA status during their between-farm trans-
portation.

For any week t, the susceptible (i.e. non-colonized) and colonized

Fig. 2. Characteristics of the French pig movement network. a) Map of French pig farms in 2014. Dot colour represents the farm type (FA Farrowing, FF
Farrowing-to-Finishing, FI Finishing, FPW Farrowing-Post-Weaning, MU Multiplier, PW Post-Weaning, PWF Post-Weaning Finishing, SEL Nucleus), and dot size is
proportional to the number of pigs on site. b) Weighted oriented network of pig movements between farm types. Node size is proportional to the number of farms of
the corresponding type; arrow size is proportional to the number of pig movements between the two farm types.
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pig populations within a given farm sector U at week t + 1 were cal-
culated as follows:

SU(t + 1) = SU(t) – ΔSCU(t) + ΔCSU(t)

CU(t + 1) = CU(t) + ΔSCU(t) – ΔCSU(t)

where SU(t) is the number of susceptible pigs in sector U at week t, and
CU(t) the number of colonized pigs in sector U at week t. ΔSCU(t) and
ΔCSU(t) represent respectively the flux from SU to CU state, and from CU

to SU state, at week t. As in Daley and Gani (1999), they were drawn
from binomial distributions as follows:

+SC t Bin S t e( ) ( ( ); 1 )U U
C t

S t C t
( )

( ) ( )
U

U U

CS t Bin C t e( ) ( ( ); 1 )U U d
1

where β is the MRSA transmission rate between pigs of the same sector
(assumed constant across all ages and all farms), which may also ac-
count for indirect transmission through the sector environment, and d is
the average duration of MRSA colonization of a pig before natural
clearance (decolonization). In previous experimental work (Gibbons
et al., 2013), MRSA was shown to persist in half of colonized pigs for at
least 30 days (d = 4.3 weeks).

In farrowing sectors, because of close proximity between a sow and
its piglets, we assumed that piglets had the same MRSA status (colo-
nized or susceptible) as their mother, based on published experimental
data (Moodley et al., 2011). This status was assumed to be maintained
during the entire farrowing step in both the sow and its piglets, due to
constant recontamination occurring between them.

2.5. Model simulations

All simulations and analyses were performed using R version 3.4.3
"Kite-Eating Tree" and packages mc2d, parallel, igraph, Hmisc and

mratios. Simulations were generated using discrete time steps of one
week.

We first initialized the network as MRSA-free and ran the model
until the pig herd populations stabilized, which took in average 32
weeks of simulation. We then studied the spread of MRSA over the
network using two distinct scenarios.

2.5.1. The “realistic scenario”
In scenario 1, the “realistic scenario”, we used data from a cross-

sectional study led by the French Agency for Food Safety in 2007 to
assess MRSA carriage in pigs in France (Jouy et al., 2008; Madec and
Haenni, 2010). In this study, 5 % of pig farms were found to be MRSA-
positive (i.e. housing at least one MRSA-positive pig), and 0.8 % of
sampled pigs were MRSA-positive. To simulate this situation, at t = 0,
we randomly selected 5 % of the farms to be MRSA-positive. In these
farms, we set 16 % of randomly selected pigs of all ages as MRSA co-
lonized, to result in 0.8 % of total prevalence in pigs.

Scenario 1 was used for calibrating β, and for assessing the impact
of targeted control measures in an endemic situation. In this scenario,
due to stochasticity, 300 repetitions of the model were simulated, as
this value was found to be enough to hold stable the mean and variance
of model outputs, namely the percentage of farms contaminated (PFC),
the total prevalence in pigs and the prevalence of pigs heading for
slaughterhouse.

2.5.2. The “introduction scenario”
In scenario 2, the “introduction scenario”, we assumed an initial

MRSA-free situation and simulated the introduction of a single MRSA-
positive group of gilts in a single given farm (the seed). At t = 0, we set
3.19 % (that is Prep, the portion of sows replaced by gilts every four
weeks in our model, see Table 1 of the breeding herd of the seed farm as
MRSA-colonized, among sows entering gestation. This MRSA in-
troduction process was repeated in simulations starting from each of the

FAS

Sows/gilts

Fattening pigs

GS4

PWS1

Movements of fattening pigs 
(every 4 weeks)

Rooms’ subdivision inside sectors

Finishing sectorPost-Weaning sector

Farrowing sector

Gestation sector

PWS2 FIS1

Movements of sows
(every 4 weeks)

Import ImportExportExport

Import

Export
GS3 GS2 GS1

FIS2 FIS3 FIS4

SU

Non 
colonized 

pigs

CU

Colonized 
pigs

1

β CU
SU + CU

a b
Fig. 3. Mathematical model components. a) Demographic model at the within-farm scale. Each farm is divided into four sectors (GS, FAS, PWS, FIS), divided again
into rooms (resp. 4, 1, 2 and 4). b) Epidemiological model within a given farm sector. SU (resp. CU) is the number of non-colonized (resp. colonized) pigs in the sector.

Table 1
Model parameters and their assumed values.

Variable Description Value Source

Nf Number of farms in the network 10,542 BDPORC
Nb Number of farms in the network housing breeding sows 5102 BDPORC
Dprod Duration of a full production cycle 28 weeks (Badouard and Calvar, 2015)
β Transmission rate of LA-MRSA between two pigs (baseline) 0.26 week−1 Calibrated
d Average LA-MRSA colonization duration in pigs (baseline) 4.3 weeks (Gibbons et al., 2013)
CSTP Sow-to-piglets contamination probability 1 (Moodley et al., 2011)
Pexp Proportion of fattening pigs exported at the end of each production step (4 weeks or 12 weeks of age) farm-specific BDPORC
Prep Proportion of sows replaced by gilts every four weeks 3.19 % (Badouard and Calvar, 2015)
Pfarms Proportion of farms contaminated by MRSA at t = 0 5 % (Jouy et al., 2008; Madec and Haenni, 2010)
Pcol farms Mean proportion of pigs colonized by MRSA in contaminated farms at t = 0 16 % (Jouy et al., 2008; Madec and Haenni, 2010)
Pcol total Global proportion of pigs colonized by MRSA at t = 0 5 % * 16 % = 0.8 % (Jouy et al., 2008; Madec and Haenni, 2010)
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5102 farms housing breeding sows.
Scenario 2 was used for identifying factors associated with the

spreading potential of farms, and for selecting efficient sentinel farms to
detect the dissemination of a new MRSA strain over the pig movement
network. In this scenario, for each seed farm, 50 stochastic repetitions
were simulated, this number being sufficient to hold model outputs’
mean and variance stable.

2.6. Model and data analysis

2.6.1. Model calibration
We calibrated the value of the transmission rate, β, using scenario 1.

We aimed to select the value of β minimizing residuals between the
mean predicted prevalence in pigs of all farm sectors at steady state
(among all simulations, accounting for both within- and between-herd
dynamics), and the reported carriage of 0.8 % (Jouy et al., 2008; Madec
and Haenni, 2010).

2.6.2. Analysing the spreading potential of seed farms
We performed a multivariate analysis to assess the relationship

between the spreading potential of the seed farm in scenario 2 and the
seed’s characteristics. Spreading potential was measured through the
percentage of farms contaminated (PFC) at t = 52 weeks (one year)
predicted with this scenario. Investigated characteristics were the seed’s
breeding herd size, production herd size, farming category (breeding
farm, i.e. Multiplier or Nucleus, VS production farm), and eight network
centrality indicators: outdegree, indegree, betweenness, eigenvector
centrality, closeness, coreness, outflux and influx.

The variables associated with the PFC in univariate linear regression
with a p-value < 0.2 were selected for the multivariate analysis.
Variable selection in the multivariate linear models was performed
using a stepwise selection procedure algorithm, using Akaike’s in-
formation criterion (AIC). We checked the multicollinearity among
explanatory variables selected in the multivariate analysis by com-
puting the Variance Inflation Factors (VIF). In case variables showed a
VIF > 10, they were excluded from the multivariate model, and the
stepwise algorithm and VIF checking procedure was repeated without
them.

We illustrated more specifically the association between PFC and
the seed farm’s outdegree and category.

2.6.3. Assessing the impact of targeted control measures
Assuming that efficient within-farm control measures to reduce

MRSA spread exist, one may need to identify which farms should be
targeted preferentially, through a program supporting specific farmers
to implement them for instance. In this part, we used our model to
determine the types of farms in which these measures should be se-
lectively applied to enhance their effectiveness at the national pro-
duction level. We compared the impact of farm-level control measures
targeting 100 farms with either the highest indegree, the highest out-
degree, the highest outflux or the highest betweenness, with that of the
same control measures implemented in 100 random farms. As in
Sørensen et al. (2018), we assumed that control measures reduced the
transmission parameter β in farms. In the “realistic” scenario 1, once
the prevalence had plateaued, at t = 208 weeks, we reduced the
transmission parameter in the 100 selected farms (targeted or randomly
selected). Two levels of reduction were assessed: 25 % (leading to
β = 0.19/week) and 50 % (leading to β = 0.13/week), and compared
to the “no action” baseline value β = 0.26/week. We investigated the
total prevalence of MRSA colonization in pigs of all ages and the PFC at
different times after the introduction of the control measures.

2.6.4. Sentinel selection for targeted surveillance
We used our model to seek the best method to select sentinel farms

to perform targeted surveillance of incursions of a new MRSA strain in
the network, based on “introduction” scenario 2 simulating outbreaks

starting from all farms housing sows. We ranked farms in priority lists:
for instance, if for economic or practical reasons, only N farms can be
monitored regularly, which should be the first N farms to be monitored
to obtain the most efficient surveillance? We investigated three criteria
for surveillance efficiency: the percentage of MRSA incursions detected,
the time before MRSA detection, and the PFC at detection (that is, the
outbreak size at detection). As in Holme (2018), we calculated the
Kendall correlation (Kendall, 1938) between these three criteria. We
compared 10 distinct methods of targeted sentinel selection (Holme,
2018; Bajardi et al., 2012; Ciccolini et al., 2014; Schirdewahn et al.,
2017) to a random selection of sentinels. The first eight of these
methods were simply based on sorting farms by decreasing values for
network centrality measures (see SM2 for definitions): outdegree, in-
degree, betweenness, eigenvector centrality, closeness, coreness, out-
flux and influx (Holme, 2018; Ciccolini et al., 2014). The 9th method
was the “Invasion paths” method, described in (Bajardi et al., 2012;
Schirdewahn et al., 2017). The principle of this method is to cluster
farms based on the similarity of the paths that would potentially take
pathogens in the oriented network (details of the method are provided
in SM3). In the last method, we set a priority list by selecting farms that
maximized alternatively the following criteria: 1) the best farm in terms
of percentage of detected incursions, 2) the best in terms of time before
detection, 3) the 2nd best in terms of percentage of detected incursions,
etc. We called this the “Alternated method”. For all these methods, we
assessed the surveillance efficiency depending on three numbers of
sentinels monitored: 30, 60 and 120 sentinel farms.

2.7. Sensitivity analysis

We tested the sensitivity of our results to changes in the values of
parameters β and d.

First, we kept the reference value d = 4.3 weeks (Table 1) and in-
vestigated the behaviour of the model under a range of values for β,
from 0.1 to 0.7. Under scenario 1, we computed the evolution over time
of (i) the number of farms contaminated by MRSA, (ii) the number of
farms that were decontaminated after a period of contamination, and
(iii) the number of farms that were never contaminated.

Second, we assessed how sensitive our predictions were to a dif-
ferent initial hypothesis on carriage duration. Assuming respectively
d = 3 weeks and d = 5 weeks, we recalibrated β (as in section 2.6.1).
We performed with these sets of parameters the analysis described in
2.6.3, i.e. reducing the value of β by 25 % or 50 % after 208 weeks in
100 farms either chosen at random, with the highest outdegree, or with
the highest indegree.

3. Results

3.1. Model calibration and baseline predictions

Under “realistic” scenario 1, for values of β < 0.3/week, a non-null
steady-state for the PFC and the national prevalence in pigs could not be
reached, due to local extinctions in farms (SM4). Irrespective of the
value of β, the prevalence plateaued during the 4th year of simulation,
before a slow and steady decrease (SM4). Hence, we selected the value
minimizing residuals between the predicted prevalence in pigs of all
farm sectors, and the observed carriage of 0.8 %, between t = 156
weeks and t = 208 weeks (i.e. in the 4th year of simulation). The ca-
librated baseline value of the transmission parameter is β = 0.26/week.
Simulations show that with this transmission parameter value, the
predicted prevalence of MRSA in pigs in scenario 1 remains close to 0.8
% for more than 8 years of simulations (SM4).

Model simulations showed high stochasticity at the farm level, with
frequent extinctions and transmissions. As an illustration, Fig. 4 depicts
the predicted prevalence of MRSA colonization among the pigs from
four selected farms in our model under the “introduction” scenario 2, as
a function of time (Fig. 4a), as well as pig movements between these
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same farms (Fig. 4b).
Farm #1 (a Nucleus farm) was the seed farm in this simulation: 3.19

% of its breeding herd was contaminated at initialization. Farms #2 and
3 (Farrowing-to-Finishing farms) were first contaminated through im-
portation of colonized gilts. Then, MRSA reached their fattening herd.
Farm #4 (a finishing farm) was however contaminated through im-
portation of fattening pigs. Due to stochasticity, extinction was ob-
served in some farms (SM4).

3.2. Factors associated with the spreading potential of seed farms

Being a breeding farm (as opposed to a production farm), as well as
higher values of production herd size, outdegree, betweenness, close-
ness, coreness and outflux, were significantly associated with a higher
spreading potential (p < 0.0001) (SM5). A higher value of indegree
was significantly associated with a lower spreading potential
(p < 0.0001) (SM5). In the final multivariate linear model, all VIF
were < 2.5, showing a limited multicollinearity among explanatory
variables.

As an illustration, Fig. 5 highlights the effect of the seed’s farming
category and outdegree on two indicators after one year: the PFC and
the prevalence of MRSA in pigs heading for slaughterhouse, just before
transportation. Irrespective of the seed farm, the outbreak size in this
scenario remained limited: the average proportion of farms con-
taminated after one year was 0.03 % (SD: 0.05) (n = 3.3 farms), and
the maximum was 0.62 % (n = 65.3 farms). Moreover, after one year,
the average percentage of pigs colonized by MRSA sent to

slaughterhouse was 9.6 × 10−4 % per week (SD: 1.0 × 10-3), and the
maximum was 0.01 % per week (Fig. 5).

Regarding the effect of the seed’s outdegree, we compared the
spreading potential of the 10 % of seed farms with the highest out-
degree (category “ > = 11”) with that of other seed farms (category
“ < 11”) (Fig. 5a). The PFC predicted one year after MRSA introduction
significantly increased with the seed farm’s outdegree (Welch t-tests
between categories “ < 11” and “ > = 11”, p < 0.0001). It also de-
pended on the seed farm’s category, with higher PFC predicted when
MRSA was seeded in breeding farms (with no statistical difference be-
tween nucleus and multiplier farms), and lower PFC when MRSA was
seeded in production farms (Welch t-test, p < 0.0001) (Fig. 5b).
Among production farms, MRSA introduction in a farrowing farm led to
a higher PFC than introduction in a farrowing-post-weaning farm
(Welch t-test, p < 0.0001), and the lowest PFC was predicted when the
seed farm was a farrowing-to-finishing farm (Welch t-tests between
categories “FF”, and “FA” or “FPW”, both p < 0.0001).

One year after MRSA introduction, the predicted prevalence among
pigs at slaughter age also significantly increased with the seed farm’s
outdegree (Welch t-tests between categories “ < 11” and “ > = 11”,
p < 0.0001) (Fig. 5a). It was significantly lower when the seed farm
was a farrowing-to-finishing farm (Welch t-tests between categories
“FF”, and all others, all p < 0.0001). Introducing MRSA in a Multiplier
farm led to a higher prevalence among pigs heading to slaughterhouse
than in a Farrowing farm (Welch t-test, p < 0.01) (Fig. 5b).

The proportion of each farm category within the contaminated
farms depended on seed farm’s characteristics (Fig. 5a and b), and could

#1
SEL

#2
FF

#3
FF

#4
FI

Gilt movements Fattening pig movements

#1
SEL

#2
FF

#3
FF

#4
FI

b

a

#4
#1 #2

#3

Fig. 4. Illustration of model simulations. MRSA spread in four farms in our model based on a single stochastic simulation: a nucleus farm (SEL), where MRSA was
seeded, and three production farms (2 farrowing-to-finishing farms (FF) and a finishing farm (FI)). a) Time changes in MRSA prevalence in the breeding (dotted line)
and fattening (solid line) herd of each farm. b) Pig movements between the four farms, according to the database, differentiating gilt and fattening pig movements.
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highly vary from the proportions of farm categories in the network
(Fig. 5c). In particular, seeding MRSA in a Nucleus farm led to a pro-
portion of Multiplier farms among contaminated farms about four times
higher than the proportion of Multiplier farms in the network (10.0 %
against 2.6 %). On the contrary, whereas Farrowing-to-Finishing farms
represented 39.2 % of farms in the network, they were only 5.6 % – i.e.

a 7-fold decrease – among contaminated farms when the seed farm was
a Farrowing farm.

3.3. Impact of targeted farms when implementing control measures

Based on “realistic” scenario 1, Fig. 6 compares the impact of

a b

c

Fig. 5. Impact of seed farm characteristics on its spreading potential. Using the “introduction” scenario 2, the effect of the seed farm’s outdegree (a), and
category (b), on two outputs after one year is depicted: the proportion of farms contaminated (PFC, left axis, bar graphs) and the national prevalence of MRSA in pigs
heading for slaughterhouse (right axis, red diamonds dots). We also show in which proportions the different categories of farms (including the seed farm) are
contaminated. Intervals are 95 % confidence intervals of the one-sample t-test on the mean of the output (PFC and prevalence at slaughter age) for farms of a given
category or outdegree. c) Proportions of the different farm categories in the network (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article).

a b

Fig. 6. Impact of targeted control measures. Impact of control measures implemented in 100 farms selected at random, in the 100 farms with the highest
outdegree or in the 100 farms with the highest indegree. The ratio “Output value with control measures / Output value without control measures” is depicted at
different times (1, 2 and 4 years after control measures implementation) for two model outputs: (a) Total prevalence in pigs and (b) Percentage of Farms
Contaminated (PFC). “Realistic” scenario 1 was simulated. Two levels of control measure intensity are considered: reducing the transmission parameter β by 25 % or
50 %. Intervals are Fiellers 95 % confidence intervals of the t-test for the ratio of two means: the mean values of outputs of 300 model iterations for the case control
measures are applied VS the case control measures are not applied.
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applying farm-level control measures – i.e. reducing the transmission
parameter β by 25 % or 50 % – in 100 farms, either chosen randomly,
targeting the ones with the highest outdegree, or the ones with the
highest indegree. Irrespective of the assumed intensity of control
measures (amount of β reduction), the delay after their implementation
and the model output considered, control measures implemented in
random farms and in the farms with the highest indegree had no sig-
nificant impact on MRSA spread (ratio t-test comparing model predic-
tions with and without control measures, p > 0.05). On the contrary, a
25 % (resp. 50 %) β reduction in highest outdegree farms significantly
decreased MRSA prevalence, as soon as two (resp. one) years after the
implementation of control measures (p < 0.01) (Fig. 6a). In this case,
the impact of control measures increased with time passed since their
implementation. For instance, a 25 % reduction of within-farm MRSA

transmission in highest outdegree farms led to an 11.1 % (Fiellers 95 %
confidence interval (CI) [5.8 % ; 16.0 %]) reduction in the predicted
overall MRSA prevalence 2 years after control measures implementa-
tion, and to a 20.2 % (Fiellers 95 % CI [15.0 % ; 25.0 %]) reduction
after 4 years, compared to the “no action” baseline case. Similar results
were obtained regarding the PFC (Fig. 6b). Comparable results were
also obtained when considering the 100 farms with the highest be-
tweenness or the 100 farms with the highest outflux as targets for the
implementation of within-farm control measures (SM6).

3.4. Impact of sentinel farm selection for targeted surveillance

Fig. 7 compares the performance of several methods for sentinel
farm selection, in terms of three criteria for surveillance efficiency: the

Fig. 7. Comparison of the efficiency of several methods for sentinel selection. Three efficiency criteria are depicted: Percentage of MRSA incursions detected (a),
Time before detection (b), and Percentage of farms contaminated (PFC) at detection (c). Several sizes of sentinel sets were tested: 30, 60 and 120 sentinel farms. For
each set of sentinel farms, the surveillance performance was assessed based on the average of model simulations of MRSA introduction starting from all farms housing
breeding sows in the network (scenario 2). Intervals are 95 % confidence intervals of the t-test. 100 different sets of sentinels were considered with the “Random”
choice method.
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percentage of detected incursions (Fig. 7a), to be maximized, and the
time before detection (Fig. 7b) and the PFC at detection (Fig. 7c), to be
minimized.

Irrespective of the selection method, all three efficiency criteria
improved when the number of sentinel farms increased. For instance,
with the highest indegree method, a 4-fold increase in the number of
sentinels (from 30 to 120) multiplied the percentage of detected in-
cursions by 1.8 (from 12.7% to 23.3%), and allowed to detect the in-
cursion 5.1 weeks earlier (from 29.7 to 24.6 weeks).

For all efficiency criteria, the best method for sentinel selection was
the one based on the highest indegree, and the second best was the
“Alternated method”. For instance, monitoring the 120 farms with the
highest indegree allowed to detect an incursion after 24.6 weeks on
average (95 % prediction interval [10.0 ; 73.0]), 13.4 weeks earlier
than when sentinels were chosen at random; upon detection, the
average PFC was 0.06 % (95 % prediction interval [0.01 % ; 0.28 %])
(n = 6.0 farms), 2.8-fold less than when sentinels were chosen at
random. Other sentinel selection methods that proved less performant
than the highest indegree on all three criteria are displayed in SM7.

3.5. Sensitivity analyses

The model’s behaviour under scenario 1 for several values of β,
keeping the reference value for d, is displayed in SM4 (Fig S3). For
β < 0.26, no MRSA carriage was left in the whole network after less
than 200 weeks. For all tested values of β > 0.26, the PFC plateaued
around the same value (25%–30%).

SM8 presents the results of the sensitivity analysis performed on d.
For d = 3 weeks (resp. d = 5 weeks), the recalibrated value of β was
0.38 (resp. 0.23). This conducted to a time-evolution of the PFC iden-
tical to that observed with the reference values of d and β (SM8, Fig S7),
showing that the invasion path of MRSA in the network was not sen-
sitive to the initial hypothesis on carriage duration. As obtained with
the reference values (Fig. 6), introducing control measures – i.e. redu-
cing β by 25 % or 50 % – in 100 random farms or in the 100 farms with
the highest indegree did not significantly reduce the global prevalence
compared to the “no action” baseline case, for both tested values of d
(SM8, Fig S8 & S9). On the contrary, introducing control measures in
the 100 farms with the highest outdegree led to a significant reduction
of MRSA prevalence for both tested values of d (SM8, Fig S8 & S9), as
was found with the reference values (Fig. 6).

4. Discussion

Pig movements between farms are believed to be one of the main
factors of MRSA dynamics in the pig industry (Sieber et al., 2018).
Moreover, recent modelling work underlined the importance of con-
sidering within-farm dynamics when studying between-farm spread of
MRSA (Schulz et al., 2018). In this study, we propose a mathematical
model combining the within-farm and the between-farm levels to si-
mulate the spread of MRSA in an intensive pig production system such
as the French pig industry. We highlight the importance of individual
and network-based farm characteristics on their role in the global
MRSA epidemic. We compare several scenarios to target within-farm
control measures implementation, and to identify pertinent sentinel
farms for MRSA surveillance.

4.1. Main findings

The “introduction” scenario we proposed in our analyses, in which
MRSA is introduced in the network through a single seed farm, is not
realistic, in the sense that it leads to a maximum PFC of 0.62 % (n = 65
farms), far from the 5 % observed in France in 2007 (Jouy et al., 2008;
Madec and Haenni, 2010). This reflects the fact that MRSA was prob-
ably introduced in French pig farms through several distinct farms, and
on repeated occasions over time, probably as was shown in Denmark

(Sieber et al., 2018). However, this scenario is still useful for two main
reasons. First, it allowed us to investigate the specific spreading po-
tential of different farm types. Second, it may realistically simulate the
situation where a hypothetical new MRSA strain would arrive in the
network, and propose criteria for sentinel surveillance of such incur-
sions.

We found that MRSA spread in the pig industry largely depends on
the characteristics of the farm in which it is first introduced, namely its
size, category and its centrality in the network. Outbreaks originating
from breeding farms (Multiplier or Nucleus) or from farms with high
outdegree led to a significantly higher proportion of farms con-
taminated (PFC) than outbreaks originating from production farms
(Farrowing, Farrowing-to-Finishing or Farrowing-Post-Weaning) and
from farms with lower outdegree (Fig. 5). Results regarding the pre-
valence in pigs heading for slaughterhouse are less clear (Fig. 5). This
may be due to the low predicted prevalence values in pigs at slaughter
age.

One strategy to set up global infectious diseases surveillance over
the network is to choose sentinel nodes that are closely monitored. The
choice of these sentinel farms is however challenging as, depending on
this choice, the reactivity in sending the alert can vary. We proposed
and assessed several methods to help select sentinel farms that may be
used in a surveillance system. Because disease surveillance in livestock
meets limitations as only a sample of the total pig industry can be
regularly monitored, for costs reasons, we simulated the monitoring of
30–120 sentinel farms only. There was a high Kendall’s correlation
coefficient value between the three surveillance efficiency criteria we
considered (Percentage of detected incursions VS Time before detec-
tion: 0.81 (p < 0.0001); Percentage of detected incursions VS Number
of contaminated farms at detection: 0.71 (p < 0.0001); Time before
detection VS Number of contaminated farms at detection: 0.82
(p < 0.0001)). This justifies why we tested the “Alternated method”
for sentinel selection. Indeed, these correlations can lead to difficulty in
optimizing simultaneously the percentage of detected incursions, the
time before detection and the outbreak size (PFC) at detection, as evi-
denced by earlier work (Holme, 2018). This alternated method of
sentinel selection proved to be rather efficient (Fig. 7). However, we
found that the sentinel selection method based on choosing the farms
with the highest indegree was even more efficient, irrespective of the
chosen criteria and the number of sentinel farms monitored.

Different types of control measures of MRSA spread within farms
have been suggested (Sørensen et al., 2018; Catry et al., 2010; Dorado-
García et al., 2015). Earlier studies (Schulz et al., 2019) have suggested
that the implementation of within-farm control measures could have an
effect on the global pig movement network. In the hypothesis where
efficient within-farm control measures were available, we showed that
targeting certain categories of farms may increase their effectiveness at
the network level. For the same “cost”, that is, the same amount of
control interventions implemented to decrease MRSA’s within-herd
transmission (e.g. a hypothetical program to enhance biosecurity in
farms (Sørensen et al., 2018)), our results suggest that it is more effi-
cient to target pig farms sending pigs to the highest number of other
farms (highest outdegree), pig farms exporting the highest number of
pigs (highest outflux), or pig farms with the highest betweenness, than
random farms (Fig. 6 and SM6). On the contrary, targeting farms with
the highest indegree was shown not to be more efficient than targeting
random farms (Fig. 6). This suggests that the farms monitored to detect
a hypothetical introduction (which should be those with the highest
indegree) should not be the same than the ones targeted for within-farm
control measures implementation once detection has occurred.

Consistently with previous findings (Ciccolini et al., 2012), our simu-
lations also confirm that MRSA would be hard to eradicate in the pig
industry. Indeed, in our simulations, the obtained reduction in total pre-
valence after 4 years is only 23 %, even when reducing transmission by 50
% in 100 well-targeted farms (with the highest outdegree), and assuming
no other MRSA introduction occurs meanwhile in the farms’ network.
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Finally, it should be noted that MRSA prevalence in the French pig
industry may have increased since the latest carriage study (Jouy et al.,
2008; Madec and Haenni, 2010). However, although the actual pre-
valence levels we predict may not reflect the current situation regarding
MRSA in France, this does not impact the validity of the qualitative
results we obtained, in particular in terms of farm selection for control
strategy implementation or for surveillance.

4.2. Main study limitations

This study has several limitations.
First, our model simplified the pig movements recorded in 2014 in

France by excluding some types of holdings and inconsistent move-
ments (see section 2.2). Nevertheless, the model reconstructed 92.4 %
of recorded pig movements, and the contact matrix between farm ca-
tegories (SM1) was consistent with published descriptions of the French
pig industry (Roguet and Laugé, 2009). Therefore, these simplifications
should not have a major impact on our findings.

Second, our calibrated value of the transmission parameter β –
0.26/week – was seven times lower than the value estimated in a
previous study (Broens et al., 2012a), which was 0.21/day to 0.42/day.
However, in our model, β accounted for global transmission of MRSA
among a whole pig sector, which may also include transmission be-
tween pigs not in direct contact, although located in the same sector,
whereas (Broens et al., 2012a) only accounted for direct contacts be-
tween pigs. This could partly explain this lower value, along with the
fact β was calibrated to reproduce a low observed carriage in France.
What is more, in another study performed by the same team (Broens
et al., 2012b), the parameter calculated for transmission from other pig
pens and the environment in the absence of antibiotics was 0.039/day,
which is close to our calibrated value of 0.26/week (i.e. 0.037/day). In
addition, our model does not account for routes of MRSA spread beyond
transmission within farm sectors and colonized pig movements. Indeed,
we considered that pig farm sectors were spatially distinct enough, and
the biosecurity on farm strong enough, for transmission to occur within
sectors only, and not between sectors. In Sørensen et al., (2017), the
authors followed a comparable reasoning, as they assumed the be-
tween-stable transmission rate was only 2 % of the between-pen
transmission rate. Yet, MRSA may also spread between farm sectors
through the global farm environment, farmers or contaminated fomites,
as well as between farms via humans in contact with pigs (e.g. veter-
inarians). Taking these routes into account, additionally to the move-
ments of MRSA-positive pigs from other farms or from other sectors of
the same farm, would have led to a potentially faster spread of MRSA.
In future work, it may be interesting to investigate between-sector
transmission by collecting longitudinal data at the farm level.

The local extinctions we observed in some farms were likely due to
the low value of our transmission parameter β, together with our
model’s stochasticity and its within-farm structure, leading to smaller
populations in contact (within sectors). While observed data suggest
that pig farms can remain MRSA-positive for long time periods, such
spontaneous extinctions have also been documented (Van der Wolf
et al., 2011).

The effect of variations of β on the model’s predictions are shown,
for scenario 1, in SM4. Lower values of β led to global extinctions of
MRSA in the network after less than 200 weeks: in this case, it was
pointless to assess the efficiency of control measures and surveillance
measures. With higher values of β, local extinctions were scarcer, but
the PFC still capped around 25–30 %, irrespective of the value of β. This
may be explained by the oriented structure of the network which led
MRSA to follow the same invasion paths, and not to spread in more
farms, irrespective of its spreading potential (i.e. transmission para-
meter and carriage duration).

Furthermore, we chose not to take into account age differences in
the transmission parameter, due to the limited carriage data available
that did not allow us to calibrate several values for the transmission

parameters. Provided age-specific MRSA prevalence data becomes
available, this might prove an interesting addition to the model.
Similarly, we did not take into account farm type differences, for in-
stance due to variations in biosecurity levels. A lower transmission
parameter in breeding farms could decrease the difference of PFC in-
duced by introducing MRSA in breeding farms VS production farms. In
contrast, a higher transmission rate in breeding farms could increase
this difference.

Third, we chose to select a value of MRSA colonization duration d –
30 days – based on biological data (Gibbons et al., 2013), although
other values were found in the literature, such as 17.4 days in Broens
et al. (2012a). The value we used was obtained from MRSA CC5
(Gibbons et al., 2013), whereas CC398 seems to be predominant in
France (Madec and Haenni, 2010). However, we showed in a sensitivity
analysis that changing this initial hypothesis did not qualitatively affect
our results. In addition, we did not consider persistent carriage, while it
may have the effect of preventing extinctions of MRSA.

Fourth, we assumed that piglets had the same colonization status as
their mother, based on Moodley et al. (2011), even though other ex-
perimental results (Verhegghe et al., 2013) suggested that the asso-
ciation between sow and piglets colonization status may not be so di-
rect. Using a probabilistic approach on the piglets’ colonization status
would have potentially decreased the number of animals entering the
production cycle while colonized by MRSA, and therefore the pre-
valence and PFC.

Finally, other network centrality indicators such as ingoing and
outgoing contact chains which enable assessing indirect contacts, could
have been considered (Nöremark et al., 2011). However, we explored
eight different centrality indicators over the network, including the
eigenvector centrality, which also allows to explore indirect contacts,
by taking a higher value when the node is connected to other well
connected nodes (Mekonnen et al., 2019).

4.3. Perspectives and veterinary public health implications

Our results show that increasing the number of sentinel farms im-
proves the surveillance efficiency, but more in-depth cost-effectiveness
analyses would be useful to investigate what would be the most cost-
efficient number of sentinel farms, regarding surveillance costs and
veterinary public health objectives. It would also be interesting to
compare a surveillance led in farms, versus a surveillance led at the
slaughterhouse level. The hypothetical within-farm control measures
we discussed may also have different implementation costs depending
on farm size or category. Besides, the impact of potential control
measures and surveillance on farm productivity and daily work, as well
as on animal health and welfare, should always be carefully assessed
before their implementation.

Furthermore, our findings in terms of MRSA prevalence among pigs
sent to slaughterhouses should not be interpreted directly in terms of
contamination by MRSA of pork products intended for human con-
sumption. Indeed, from the moment pigs leave the farm to the con-
sumer’s fork, many factors, during transport, in the slaughterhouse and
during food processing, are susceptible to affect the bacterial load in
pork (Lassok and Tenhagen, 2013). In the future, these limitations
should be addressed in a detailed risk assessment study to evaluate the
risks for human health ensuing from the pig MRSA epidemic.

4.4. Conclusions

In conclusion, we show here how, using a multi-scale model of
MRSA spread in a pig movement network, criteria may be proposed to
select which farms could be used as sentinels in a surveillance system,
as well as which farms to apply control measures in. More thorough
cost-effectiveness analyses, accounting for actual economic costs re-
lated to different types of control or monitoring interventions, would be
necessary in the French context, similar to what was done recently in
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Denmark (Olsen et al., 2018). However, this work has the potential to
help better understand MRSA spread in intensive pig production sys-
tems similar to the French one in terms of global structure and batch
management (Relun et al., 2016). What is more, the methodology we
proposed could also be applied to other asymptomatic bacteria or
viruses circulating in pigs or other farm animal networks.
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