J. Ferlay, Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012, Eur. J. Cancer, vol.49, pp.1374-1403, 2013.

N. Colombo, Newly diagnosed and relapsed epithelial ovarian carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and followup, Ann. Oncol, vol.21, issue.5, pp.23-30, 2010.

A. M. Karst and R. Drapkin, Ovarian cancer pathogenesis: a model in evolution, J. Oncol, p.932371, 2009.

J. A. Ledermann, Newly diagnosed and relapsed epithelial ovarian carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and followup, Ann. Oncol, vol.24, issue.6, pp.24-32, 2013.

N. Colombo, Non-epithelial ovarian cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up, Ann. Oncol, vol.23, issue.7, pp.20-26, 2012.

P. Pautier, Combination of bleomycin, etoposide, and cisplatin for the treatment of advanced ovarian granulosa cell tumors, Int J. Gynecol. Cancer J. Int. Gynecol. Cancer Soc, vol.18, pp.446-452, 2008.

M. J. Birrer, Whole genome oligonucleotide-based array comparative genomic hybridization analysis identified fibroblast growth factor 1 as a prognostic marker for advanced-stage serous ovarian adenocarcinomas, J. Clin. Oncol, vol.25, pp.2281-2287, 2007.

G. Smith, Individuality in FGF1 expression significantly influences platinum resistance and progression-free survival in ovarian cancer, Br. J. Cancer, vol.107, pp.1327-1336, 2012.

M. L. King, WNT7A/?-catenin signaling induces FGF1 and influences sensitivity to niclosamide in ovarian cancer, Oncogene, vol.34, pp.3452-3462, 2015.

N. Itoh and D. M. Ornitz, Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease, J. Biochem, vol.149, pp.121-130, 2011.

D. M. Ornitz and N. Itoh, The fibroblast growth factor signaling pathway, Wiley Interdiscip. Rev. Dev. Biol, vol.4, pp.215-266, 2015.

T. Imamura, Recovery of mitogenic activity of a growth factor mutant with a nuclear translocation sequence, Science, vol.249, pp.1567-1570, 1990.

A. Wied?ocha, P. O. Falnes, I. H. Madshus, K. Sandvig, and S. Olsnes, Dual mode of signal transduction by externally added acidic fibroblast growth factor, Cell, vol.76, pp.1039-1051, 1994.

A. Wied?ocha, Stimulation of proliferation of a human osteosarcoma cell line by exogenous acidic fibroblast growth factor requires both activation of receptor tyrosine kinase and growth factor internalization, Mol. Cell Biol, vol.16, pp.270-280, 1996.

F. Renaud, The neurotrophic activity of fibroblast growth factor 1 (FGF1) depends on endogenous FGF1 expression and is independent of the mitogen-activated protein kinase cascade pathway, J. Biol. Chem, vol.271, pp.2801-2811, 1996.

S. Bouleau, FGF1 inhibits p53-dependent apoptosis and cell cycle arrest via an intracrine pathway, Oncogene, vol.24, pp.7839-7849, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00101326

S. Bouleau, Fibroblast growth factor 1 inhibits p53-dependent apoptosis in PC12 cells, Apoptosis Int. J. Program Cell Death, vol.12, pp.1377-1387, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00172706

A. Rodriguez-enfedaque, FGF1 nuclear translocation is required for both its neurotrophic activity and its p53-dependent apoptosis protection, Biochim. Biophys. Acta BBA-Mol. Cell Res, vol.1793, pp.1719-1727, 2009.

E. Delmas, FGF1 C-terminal domain and phosphorylation regulate intracrine FGF1 signaling for its neurotrophic and anti-apoptotic activities, Cell Death Dis, vol.7, p.2079, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01872524

H. Shi, A novel single-chain variable fragment antibody against FGF-1 inhibits the growth of breast carcinoma cells by blocking the intracrine pathway of FGF-1, IUBMB Life, vol.63, pp.129-137, 2011.

J. Bober, Identification of new FGF1 binding partners-implications for its intracellular function, IUBMB Life, vol.68, pp.242-251, 2016.

A. Jackson, Heat shock induces the release of fibroblast growth factor 1 from NIH 3T3 cells, Proc. Natl Acad. Sci. USA, vol.89, pp.10691-10695, 1992.

S. R. Opalenik, J. T. Shin, J. N. Wehby, V. K. Mahesh, J. A. Thompson et al.,

T. A. , protein induces the expression and extracellular appearance of acidic fibroblast growth factor, J. Biol. Chem, vol.270, pp.17457-17467, 1995.

J. T. Shin, Serum-starvation induces the extracellular appearance of FGF-1, Biochim Biophys. Acta, vol.1312, pp.27-38, 1996.

C. Skiple-skjerpen, T. Nilsen, J. Wesche, and S. Olsnes, Binding of FGF-1 variants to protein kinase CK2 correlates with mitogenicity, EMBO J, vol.21, pp.4058-4069, 2002.

E. Kolpakova, Cloning of an intracellular protein that binds selectively to mitogenic acidic fibroblast growth factor, Biochem. J, vol.336, pp.213-222, 1998.

C. S. Skjerpen, J. Wesche, and S. Olsnes, Identification of ribosome-binding protein p34 as an intracellular protein that binds acidic fibroblast growth factor, J. Biol. Chem, vol.277, pp.23864-23871, 2002.

T. Sletten, Nucleolin regulates phosphorylation and nuclear export of fibroblast growth factor 1 (FGF1), PLoS ONE, vol.9, p.90687, 2014.

B. Vogelstein, D. Lane, and A. J. Levine, Surfing the p53 network, Nature, vol.408, pp.307-310, 2000.

T. Miyashita and J. C. Reed, Tumor suppressor p53 is a direct transcriptional activator of the human bax gene, Cell, vol.80, pp.293-299, 1995.

K. H. Khoo, C. S. Verma, and D. P. Lane, Drugging the p53 pathway: understanding the route to clinical efficacy, Nat. Rev. Drug Discov, vol.13, pp.217-236, 2014.

M. Mihara, p53 Has a direct apoptogenic role at the mitochondria, Mol. Cell, vol.11, pp.577-590, 2003.

J. E. Chipuk, Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis, Science, vol.303, pp.1010-1014, 2004.

J. I. Leu, .. Dumont, P. Hafey, M. Murphy, M. E. George et al., Mitochondrial p53 activates bak and causes disruption of a Bak-Mcl1 complex, Nat. Cell Biol, vol.6, pp.443-450, 2004.

J. Barretina, The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity, Nature, vol.483, pp.603-607, 2012.

P. J. Smith, Etoposide-induced cell cycle delay and arrest-dependent modulation of DNA topoisomerase II in small-cell lung cancer cells, Br. J. Cancer, vol.70, pp.914-921, 1994.

I. Prudovsky, T. K. Kumar, S. Sterling, and D. Neivandt, Protein-phospholipid interactions in nonclassical protein secretion: problem and methods of study, Int. J. Mol. Sci, vol.14, pp.3734-3772, 2013.

J. Loughery, M. Cox, L. M. Smith, and D. W. Meek, Critical role for p53-serine 15 phosphorylation in stimulating transactivation at p53-responsive promoters, Nucleic Acids Res, vol.42, pp.7666-7680, 2014.

A. V. Gudkov and E. A. Komarova, Prospective therapeutic applications of p53 inhibitors, Biochem. Biophys. Res. Commun, vol.331, pp.726-736, 2005.

A. Suzuki, Y. Tsutomi, K. Akahane, T. Araki, and M. Miura, Resistance to fasmediated apoptosis: activation of caspase 3 is regulated by cell cycle regulator p21WAF1 and IAP gene family ILP, Oncogene, vol.17, pp.931-939, 1998.

A. V. Vaseva and U. M. Moll, The mitochondrial p53 pathway, Biochim. Biophys. Acta, vol.1787, p.414, 2009.

J. I. Leu, .. Pimkina, J. Frank, A. Murphy, M. E. George et al., A small molecule inhibitor of inducible heat shock protein 70, Mol. Cell, vol.36, pp.15-27, 2009.

Y. Gan, M. G. Wientjes, and J. Au, Expression of basic fibroblast growth factor correlates with resistance to paclitaxel in human patient tumors, Pharm. Res, vol.23, pp.1324-1331, 2006.

M. R. Akl, Molecular and clinical significance of fibroblast growth factor 2 (FGF2 /bFGF) in malignancies of solid and hematological cancers for personalized therapies, Oncotarget, vol.7, pp.44735-44762, 2016.

M. Fransolet, In vitro evaluation of the anti-apoptotic drug Z-VAD-FMK on human ovarian granulosa cell lines for further use in ovarian tissue transplantation, J. Assist. Reprod. Genet, vol.32, pp.1551-1559, 2015.

D. C. Woods, C. Alvarez, and A. L. Johnson, Cisplatin-mediated sensitivity to TRAIL-induced cell death in human granulosa tumor cells, Gynecol. Oncol, vol.108, pp.632-640, 2008.

P. J. Fuller, D. Leung, and S. Chu, Genetics and genomics of ovarian sex cordstromal tumors: genetics and genomics of ovarian sex cord-stromal tumors, Clin. Genet, vol.91, pp.285-291, 2017.

B. P. Zhou, Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells, Nat. Cell Biol, vol.3, pp.245-252, 2001.

O. Cazzalini, A. I. Scovassi, M. Savio, L. A. Stivala, and E. Prosperi, Multiple roles of the cell cycle inhibitor p21CDKN1A in the DNA damage response, Mutat Res. Mutat. Res, vol.704, pp.12-20, 2010.

J. ?mielová and M. ?ezá?ová, Protein and its function based on a subcellular localization, J. Cell Biochem, vol.112, pp.3502-3506, 2011.

A. Suzuki, Y. Tsutomi, M. Miura, and K. Akahane, Caspase 3 inactivation to suppress fas-mediated apoptosis: identification of binding domain with p21 and ILP and inactivation machinery by p21, Oncogene, vol.18, pp.1239-1244, 1999.

R. Koster, Cytoplasmic p21 expression levels determine cisplatin resistance in human testicular cancer, J. Clin. Invest, vol.120, pp.3594-3605, 2010.

X. Xia, Cytoplasmic p21 is a potential predictor for cisplatin sensitivity in ovarian cancer, BMC Cancer, vol.11, p.399, 2011.

H. Lu, HSP27 Knockdown Increases cytoplasmic p21 and cisplatin sensitivity in ovarian carcinoma cells, Oncil. Res. Featur. Preclin. Clin. Cancer Ther, vol.23, pp.119-128, 2016.

J. L. Gervais, P. Seth, and H. Zhang, Cleavage of CDK Inhibitor p21Cip1/Waf1 by caspases is an early Event during DNA damage-induced apoptosis, J. Biol. Chem, vol.273, pp.19207-19212, 1998.

J. Ren, Human MUC1 carcinoma-associated protein confers resistance to genotoxic anticancer agents, Cancer Cell, vol.5, pp.163-175, 2004.

R. Ahmad, M. Alam, H. Rajabi, and D. Kufe, The MUC1-C oncoprotein binds to the BH3 domain of the pro-apoptotic BAX protein and blocks BAX function, J. Biol. Chem, vol.287, pp.20866-20875, 2012.

J. Ren, MUC1 oncoprotein functions in activation of fibroblast growth factor receptor signaling, Mol. Cancer Res. Mcr, vol.4, pp.873-883, 2006.

X. Zhang, TRAF6 restricts p53 mitochondrial translocation, apoptosis, and tumor suppression, Mol. Cell, vol.64, pp.803-814, 2016.

J. Zhuang, Mitochondrial disulfide relay mediates translocation of p53 and partitions its subcellular activity, Proc. Natl Acad. Sci. USA, vol.110, pp.17356-17361, 2013.

J. Zhuang, Forkhead box O3A (FOXO3) and the mitochondrial disulfide relay carrier (CHCHD4) regulate p53 protein nuclear activity in response to exercise, J. Biol. Chem, vol.291, pp.24819-24827, 2016.

B. Y. Ahn, Tid1 is a new regulator of p53 mitochondrial translocation and apoptosis in cancer, Oncogene, vol.29, pp.1155-1166, 2010.

I. Ferecatu, Mitochondrial localization of the low level p53 protein in proliferative cells, Biochem. Biophys. Res. Commun, vol.387, pp.772-777, 2009.

M. Bergeaud, Mitochondrial p53 mediates a transcription-independent regulation of cell respiration and interacts with the mitochondrial F 1 F 0 -ATP synthase, Cell Cycle, vol.12, pp.2781-2793, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01871462

E. Mizukoshi, Fibroblast growth factor-1 interacts with the glucoseregulated protein GRP75/mortalin, Biochem. J, vol.343, issue.2, pp.461-466, 1999.

S. C. Kaul, C. C. Deocaris, and R. Wadhwa, Three faces of mortalin: a housekeeper, guardian and killer, Exp. Gerontol, vol.42, pp.263-274, 2007.

W. Lu, Induction of mutant p53-dependent apoptosis in human hepatocellular carcinoma by targeting stress protein mortalin, Int. J. Cancer, vol.129, pp.1806-1814, 2011.

W. Lu, Mortalin-p53 interaction in cancer cells is stress dependent and constitutes a selective target for cancer therapy, Cell Death Differ, vol.18, pp.1046-1056, 2011.

K. Guda, L. Natale, and S. D. Markowitz, An improved method for staining cell colonies in clonogenic assays, Cytotechnology, vol.54, pp.85-88, 2007.