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Abstract It is now well established that the mitochon-

drion is a central regulator of mammalian cell apoptosis.

However, the importance of this organelle in non-mam-

malian apoptosis has long been regarded as minor, mainly

because of the absence of a crucial role for cytochrome c in

caspase activation. Recent results indicate that the control

of caspase activation and cell death in Drosophila occurs at

the mitochondrial level. Numerous proteins, including

RHG proteins and proteins of the Bcl-2 family that are key

regulators of Drosophila apoptosis, constitutively or tran-

siently localize in mitochondria. These proteins participate

in the cell death process at different levels such as degra-

dation of Diap1, a Drosophila IAP, production of mito-

chondrial reactive oxygen species or stimulation of the

mitochondrial fission machinery. Here, we review these

mitochondrial events that might have their counterpart in

human.

Keywords Apoptosis � Drosophila � Mitochondria � Bcl-2
family proteins � RHG proteins � IAP � Mitochondrial

dynamics � Reactive oxygen species

Introduction

The genetic basis of metazoans programmed cell death was

first discovered in Caenorhabditis elegans but it is now

largely recognized that the core of the apoptotic machinery,

including caspases, adaptor proteins and B-cell lym-

phoma 2 (Bcl-2) family members, has been conserved

during evolution including in insects and mammals. In

most organisms, caspases are the main effectors of apop-

tosis. In mammals, 18 caspases have been identified [1]

while seven have been counted in Drosophila [2, 3].

Indeed, Drosophila apoptosis has an intermediate com-

plexity between nematodes and mammals [4]. The initiator

caspase Dronc and effector caspases Drice and Dcp-1 are,

in Drosophila, the main caspases involved in apoptotic

events. Opposing forces modulate the activity of caspases

which are constitutively present in most cells in an inactive

zymogen form. Indeed, adaptor proteins such as Dark in

Drosophila and APAF1 in mammals act positively on

initiator caspases while a negative control is provided by

the inhibitors of apoptosis protein (IAP) family members.

Several strategies are used to control the level of active

caspases. However the importance of these various

checkpoints on the status of caspases varies depending on

the organism.

In mammalian cells, apoptosis can be initiated either by

an intrinsic pathway involving mitochondria, or by an

extrinsic pathway triggered by death receptors. This

extrinsic pathway can, at times, also be dependent on

mitochondria (for reviews: [5, 6]). Although these path-

ways can act independently to activate caspases in some

cellular systems, in many cell types there is accurate

coordination and cross-talk between these two pathways

[7]. Thus, in mammalian cells, mitochondria are the main

regulators of many cell death processes [8]. Indeed, many
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isabelle.guenal@uvsq.fr

1 Laboratoire de Génétique et Biologie Cellulaire, Université
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proteins involved in apoptosis regulation in mammals act at

the level of, or are released from, mitochondria. Moreover,

mitochondria undergo numerous alterations during apop-

tosis such as ultra-structural changes [9]. Contrary to this

central role of mitochondria in apoptosis that has been

established for a long time in mammals, the scientific

community has only recently attached importance to

mitochondria in apoptosis control in Drosophila. However,

controversies still remain concerning the involvement of

certain players in this mitochondrial death pathway. In this

review, we discuss the controversial data and highlight new

elements demonstrating the crucial place of mitochondria

in Drosophila apoptosis.

A role for cytochrome c in caspase activation
in Drosophila: myth or reality?

In mammalian cells, in response to an apoptotic stimulus,

cytochrome c is released from the mitochondrial inter-

membrane space to the cytosol where it binds the WD40

motifs of the APAF1 adaptor. In the presence of ATP, this

interaction leads to APAF1 oligomerization and therefore

to pro-caspase 9 recruitment and activation in the apopto-

some. The cytochrome c release is an important phe-

nomenon in many cell death processes in vertebrates.

In Drosophila, the possible release of cytochrome c

during apoptosis remains a controversial point. Cytochro-

me c is encoded by two genes in Drosophila: cyt-c-d and

cyt-c-p. Original studies by Varkey et al., indicate that

cytochrome c remains localized to the mitochondria during

apoptosis. However, during apoptosis cytochrome c dis-

plays an otherwise hidden epitope, suggesting that it

acquires an altered conformation [10]. These data suggest

that cytochrome c could be released from the mitochon-

drial intermembrane space but remains associated with the

mitochondrial outer membrane. In contrast, a more recent

study showed a rapid spreading of cytochrome c in the

cytosol of dying cells [11]. Subcellular fractionation

experiments also provide conflicting results concerning the

possible release of cytochrome c [10–15]. Technical dif-

ferences in immunostaining or subcellular fractionation

protocols may explain the discrepancy in these observa-

tions. Nevertheless, these data highlight that cytochrome c

release cannot be used as a good indicator of apoptosis

initiation in Drosophila as it can be in mammalian cells.

As its mammalian counterpart APAF1, Dark has WD40

motifs that allow the APAF1/cytochrome c interaction [14,

16, 17]. Moreover, in the presence of cytochrome c, for-

mation of a high molecular weight complex containing the

caspases Dronc and Drice can be observed in cell extracts

[13]. Thus, an apoptosome could be formed in the vicinity

of mitochondria despite the lack of cytochrome c release in

the cytosol. However, in vitro studies indicated that the

Drosophila apoptosome assembly (consisting of eight Dark

molecules) does not require the presence of cytochrome c

[18–20]. Furthermore, structural data showed that cyto-

chrome c cannot form a stable complex with Dark [21].

These in vitro studies may not reflect the behavior of

proteins in vivo and should be interpreted with caution.

However, they strongly suggest that cytochrome c would

not play a decisive role in the activation of the Dark

adaptor.

What about cytochrome c role in caspase activation?

Several studies using cultured cells, indicate that cyto-

chrome c is not required for apoptosis in Drosophila [11,

15, 22, 23]. However, a moderate caspase activation was

observed after addition of cytochrome c to Drosophila cell

extracts [14] and the addition of Cyt-c-d and Cyt-c-p

recombinant proteins led to a strong activation of caspases

in mammalian cell extracts. Genetic data indicate a role for

cyt-c-d in caspase activation in some developmental con-

texts, while cyt-c-p is required for cellular respiration.

Indeed, cyt-c-d loss of function leads to spermatid indi-

vidualization defects that involve an activation of caspase

independently of apoptosis [24–27]. Moreover the devel-

opmental death of interommatidial cells is delayed by cyt-

c-d loss of function [28]. It is important to note that cyt-c-

d is not required for cellular respiration, retina cells dif-

ferentiation or progress of pupal development [28].

Therefore, the cell death defects observed following cyt-c-

d loss of function may be due to a direct physiological role

of cytochrome c in the activation of caspases. In the end,

cytochrome c involvement in caspase activation and

apoptosis induction in Drosophila remains limited and is

still a matter of debate.

In mammals, Omi/HtrA2 is sequestered in the mito-

chondrial intermembrane space. During apoptosis, mito-

chondrial outer membrane permeabilization allows its

release into the cytosol where it can ensure its apoptotic

activity by binding and inhibiting the IAP proteins [12, 29,

30] The Drosophila homologue of this protein, dOmi/

HtrA2, is located in the mitochondrial intermembrane

space in living cells. After an apoptotic stimulus, it is

released into the cytosol but it remains close to mito-

chondria. dOmi/HtrA2 overexpression triggers cell death

both in vitro and in vivo [12, 29, 30]. Conversely, the

expression of a RNAi directed against dOmi/HtrA2 delays

caspase activation in response to stress in cultured cells

[12]. In addition, the dOmi/HtrA2 loss of function reduces

male germ cells death [31]. These data suggest a conser-

vation of dOmi/HtrA2 pro-apoptotic function in Droso-

phila. However, a more recent study, using a dOmi loss of

function in vivo, does not highlight a disruption of devel-

opmental cell death or stress-induced apoptosis in this

genetic background [32]. Nevertheless, this observation
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does not exclude a function for dOmi in cell death induc-

tion in particular contexts such as the death of male germ

cells during development.

As a consequence, cytochrome c and dOmi/HtrA2 do

not seem to play a crucial role in the cell death control in

Drosophila. Therefore, the role of mitochondria in apop-

tosis has long been neglected in this model organism. In

Drosophila, caspase activity is mainly inhibited by the anti-

apoptotic protein Diap1 which is itself negatively regulated

by the RHG family proteins.

Crucial role of RHG proteins mitochondrial
localization for their pro-apoptotic function

In Drosophila, Diap1 is essential for cell survival. Indeed,

diap1 loss of function leads to massive apoptosis in most

tissues during development [33–37]. The Diap1 protein,

through its BIR (Baculovirus Inverted Repeat) domains,

binds and inhibits caspases [38–41]. Furthermore, Diap1

has an E3 ubiquitin ligase activity that allows the degra-

dation of caspases [42, 43]. Diap1 level can be negatively

regulated both at transcriptional level by the Hippo path-

way and the CREB binding protein (CBP) and at post-

transcriptional level by the RNA binding protein Held out

of wing (How) (for review: [44]). This anti-apoptotic factor

is also post-translationally negatively regulated by the

RHG (Rpr, Hid, Grim) family proteins. The RHG proteins

show little similarity but they possess a conserved motif

called IBM (IAP Binding Motif) in their N-terminal part

(Fig. 1). This IBM sequence is necessary for the RHG

proteins to fully ensure their pro-apoptotic function [45–

50] by allowing them to bind the Diap1 BIR domains [38,

40, 45, 51–55]. Interestingly, similarly to the RHG pro-

teins, mammalian Smac/DIABLO and Omi/HtrA2 contain

this IBM and use it to bind and inhibit IAPs. RHG proteins

compete with caspases for Diap1 binding, thus allowing

active caspases release. In addition, RHG proteins promote

Diap1 ubiquitination and its subsequent degradation. As a

consequence, the RHG proteins trigger apoptosis on the

one hand by releasing caspases from Diap1 by competitive

binding and on the other hand by favoring its degradation.

Notably, RHG promoters respond to various developmen-

tal or environmental signals controlling apoptosis [56–60].

These genes share regulatory regions containing many

enhancer or silencer elements that are the target of various

transcription factors [61–63]). For example, in response to

irradiation, the Dmp53 transcription factor activates the

expression of rpr, skl and hid via the irradiation-responsive

enhancer region (IRER) located upstream of rpr [64].

Intriguingly, despite the strong conservation of the IBM

motif and the role of this domain in the pro-apoptotic

function of RHG family members, several studies indicate

that Rpr and Grim proteins lacking this domain keep the

ability to induce cell death [47, 48, 50, 65–71]. These data

suggest that at least another region of Rpr and Grim

ensures a pro-apoptotic role. Indeed, a second domain

conserved between Rpr, Grim and Sickle was identified

[48, 65, 68, 72, 73]. This internal motif corresponding to an

a amphipathic helix was named Grim Helix 3 (GH3

domain) [68] or RHG domain 3 (R3 domain) [65] or

tryptophan (Trp) block [48] (Fig. 1). This GH3 domain is

both required for the pro-apoptotic function of Rpr and

Grim and sufficient to induce cell death in vitro [47, 65, 68,

69, 72, 74].

Interestingly, Rpr and Grim localize to mitochondria in

a GH3-dependent manner [67–69, 72, 74–76]. Even so, this

domain is not a canonical mitochondrial targeting

sequence. Freel et al. have shown that the GH3 domain

allows Rpr to embed in the outer mitochondrial membrane

through interaction of this domain with membrane lipids

[74] (Fig. 2). Sandu et al. consider another model in which

Hid interaction would be required for Rpr mitochondrial

localization [75]. Indeed, as Rpr and Grim, Hid localizes to

mitochondria [49, 75]. But unlike the two others, Hid has a

mitochondrial targeting sequence in its C-terminal part.

Both this sequence and the Cyclin-dependent kinase 7

(Cdk7) protein are required for Hid mitochondrial local-

ization [49, 75, 77]. Hid and Rpr physically interact

through the Rpr central helical region which comprises the

GH3 domain. Therefore, Rpr would be recruited to the

mitochondria thanks to the interaction of its GH3 domain

with Hid which possess itself a mitochondrial targeting

sequence (Fig. 2).

Rpr

Grim

Hid

IBM motif

GH3 motif

mitochondrial targeting sequence Sickle

Fig. 1 Link between RHG structure and their mitochondrial local-

ization. In addition to the IBM N-terminal motif (in gray), some

members of the RHG family (Rpr, Grim and Sickle) have a helical

region called GH3 motif (in green). This motif is required for their

mitochondrial localization. Hid has a mitochondrial targeting

sequence (rich in hydrophobic amino acid) in C-terminal (in purple)

(Color figure online)
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Several studies indicate that the mitochondrial local-

ization of RHG proteins is important for their pro-apoptotic

function. RprDGH3, a form of Rpr devoid of the GH3

domain that is no more mitochondrially localized, has a

reduced ability to induce cell death [72]. Interestingly,

RprDGH3 is unable to stimulate the ubiquitination and the

degradation of Diap1 although it retains the ability to bind

IAPs [72]. However, the addition of Hid mitochondrial

targeting sequence to RprDGH3 is sufficient to restore the

Diap1 degradation and an efficient cell death induction

[72]. These data indicate that Rpr-induced Diap1 degra-

dation is favored by the mitochondrial localization of Rpr.

In addition, Hid, which is involved in Rpr mitochondrial

localization, is required for an efficient stimulation of

Diap1 ubiquitination by Rpr [75]. Hermann Steller and his

collaborators have proposed that the main role of Hid

would be to assemble a macromolecular complex in

mitochondria in order to recruit Rpr [75]. Within this

complex, Rpr would induce Diap1 ubiquitination more

efficiently in mitochondria, because of the local concen-

tration of various apoptosis regulators. In particular, it was

shown that Dronc and Drice localize to mitochondria [13].

Rpr could therefore be part of a large complex located in

mitochondria which regulates the stability of Diap1 and

caspase activation. This dependence between Diap1 inhi-

bition and mitochondrial localization is not true in the case

of Grim. Indeed, IBM and GH3 domains of Grim activate

two distinct cell death pathways, the IBM triggering Diap1

inhibition, while the GH3 acting in a mitochondrial death

pathway that remains to be characterized [68]. These two

pathways may cooperate in vivo to efficiently induce cell

death [68].

Beyond the mitochondrial localization of Rpr, Hid and

Grim, other data support the existence of a mitochondrial

death pathway downstream of these pro-apoptotic proteins.

Indeed, Rpr, Grim and Hid trigger a permeabilization of

mitochondria in Drosophila cells, mammalian cells or

Xenopus egg extracts [11, 67, 69, 71, 78–80]. In Droso-

phila embryos, a RHG-dependent mitochondrial perme-

abilization seems to occur during DNA damage-induced

apoptosis [11]. Furthermore, rpr overexpression leads to

mitochondrial defects, such as a loss of the mitochondrial

membrane potential. Interestingly, this phenomenon can be

counteracted by ectopic over-expression of Bcl-2 [81], a

mammalian anti-apoptotic member of the Bcl-2 family. It

is interesting to note that the GH3 domain (of RHG pro-

teins) and the BH3 domain (actually a motif present in Bcl-

2 family members [82]) share a similar alpha amphipathic

helix structure. Furthermore, replacement of the BH3

domain of Bad (a pro-apoptotic BH3 only protein, see

below) by the GH3 domain of Grim preserves not only Bad

mitochondrial localization but also its ability to induce both

cytochrome c release and death of mammalian cells. Taken

together, these data might indicate that fly RHG proteins

could in some way control a mitochondrial death pathway

like mammalian Bcl-2 family members do.

Bcl-2 family proteins function during apoptosis
in Drosophila

In mammalian cells, permeabilization of the mitochondrial

outer membrane is tightly controlled by Bcl-2 family pro-

teins. Members of this family are characterized by the

Mitochondrial 
outer membrane

Mitochondria

Cytosol

Fig. 2 Model for Rpr mitochondrial localization. Hid possesses in its

C-terminal part a sequence which allows its mitochondrial targeting

in a Cdk7 dependent manner. There are two models to explain Rpr

mitochondrial localization. The first one (on the left) shows Rpr

mitochondrial recruitment through interaction with Hid which is itself

mitochondrial, and potential other factors (in orange). The second (on

the right) shows Rpr direct interaction with the mitochondrial

membrane lipids. This interaction allows Rpr integration in the

mitochondrial outer membrane. Whatever the recruitment model, Rpr

mitochondrial localization increases its ability to stimulate Diap1

ubiquitination (Ub) (Color figure online)
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presence of one to four Bcl-2 homology (BH) domains.

Structurally, there are two sub-groups: multi-domain pro-

teins (three to four BH domains) and BH3-only proteins

which have only the BH3 domain [83]. BH3-only proteins

are pro-apoptotic while the subset of multi-domain proteins

includes both anti-apoptotic factors (such as Bcl-2) and

pro-apoptotic ones (like Bax or Bak). Members of the Bcl-

2 family are key regulators of cell death in mammals.

Given the minor role of cytochrome c in Drosophila

apoptosis, we can wonder about the role of Bcl-2 family

proteins in cell death regulation in this model organism.

Two Bcl-2 family members have been identified in

Drosophila: Buffy and Debcl [84–88]. These two proteins

have three BH domains (BH1 to 3) and a hydrophobic

domain at the C-terminal allowing their anchoring in

membranes. Debcl displays mitochondrial localization and

Buffy is found both in mitochondria and the endoplasmic

reticulum [86–89]. In the literature, there are divergent data

on the existence of a BH4 domain in Debcl, so it is called

‘‘weak’’ BH4 domain [90]. debcl and buffy have a similar

dynamic expression profile throughout all developmental

stages [84, 86, 87] but little is known about the regulation

of their transcription. One study showed that the tran-

scription factor nuclear factor Y-box B (NF-YB) binds

debcl promoter region to regulate its expression, at least

in cultured cells [91]. Beyond this transcriptional regula-

tion, Debcl protein level is regulated by the ubiquitine/

proteasome pathway. Indeed, the b-TrCP homologue

Slimb interacts with Debcl and targets it to the protea-

some [92]. Moreover, we recently showed that Rbf1 (the

Drosophila homologue of the pRb tumor suppressor

protein) cooperates with the transcription factor dE2F2 to

repress buffy transcription during wing imaginal disc

development [93]. Interestingly, buffy and debcl expres-

sion is correlated with the cell death profile in the

developing embryo [85, 87], suggesting a role for these

genes in Drosophila apoptosis.

Ectopic expression of debcl induces cell death in various

cultured cell models both from Drosophila or other species

and in different tissues in vivo during Drosophila devel-

opment [13, 15, 84–89, 92, 94–99] (Tables 1 and 2).

Conversely, overexpression of buffy counteracts the cell

death induced by ectopic expression of rpr, hid or grim in

the eye [87]. These data suggest that Debcl is pro-apoptotic

whereas Buffy ensures anti-apoptotic functions. Actually,

Debcl and Buffy have both pro- and anti-survival proper-

ties. For example, it has been shown that debcl expression

protects neurons from polyglutamine proteins toxicity,

whereas buffy expression promotes this neuronal degener-

ation [100]. In addition, buffy expression induces apoptosis

in Drosophila BG2 cells [89] while debcl protects these

cells from serum deprivation-induced cell death [84]. This

dual role of Bcl-2 family proteins is not restricted to

Drosophila [101]. Indeed, in the nematode, CED-9 carries

pro- or anti-apoptotic functions. Likewise, Bax and Bak

which are pro-apoptotic proteins in mammals, may, in

some cases, promote survival. Whatever the species, the

ability of Bcl-2 family proteins to promote or rather inhibit

apoptosis probably depends on the cell context.

debcl or buffy homozygous mutants are viable, fertile

and develop normally without apparent defect of devel-

opmental program cell death [102]. Therefore, Debcl and

Buffy do not seem essential for most developmental cell

death processes. However, their function was revealed to

be required specifically in certain tissues. Debcl and Buffy

are required to induce the death of germ cells during

oogenesis and spermatogenesis [31, 103, 104]. Further-

more, buffy is required for glial cells apoptosis in the

microchaete lineage [105]. Therefore, Debcl and Buffy role

in the control of developmental cell death is limited to

certain tissues and developmental stages. Additionally,

these proteins have a role in the DNA damage response.

Indeed, Debcl and Buffy modulate the embryonic apoptotic

response to irradiation. debcl mutant embryos have fewer

apoptotic cells in response to irradiation compared to

control embryos, whereas buffy mutant embryos exhibit a

slight increase of the number of apoptotic cells [102].

Moreover, debcl loss of function animals were slightly

compromised for viability after genotoxic stress [106].

Otherwise, Debcl plays a crucial role in Rbf1-induced

apoptosis whereas Buffy protects against this cell death

[93, 94]. In addition, Buffy and Debcl regulate autophagy

in response to amino acids deprivation [107] and buffy is

required for the nutrient stress response at the larval stage

[108]. Therefore, although the role of Drosophila Bcl-2

family members in the control of developmental cell death

appears minor, these proteins seem to play a major role in

the apoptosis induced by stress or by a tumor suppressor

protein homolog such as Rbf1.

Debcl physically interacts with Buffy [87]. Thus, it is

likely that these two proteins act in a manner analogous to

that of their mammalian counterparts by binding and neu-

tralizing each other. Genetic data are consistent with this

idea. The overexpression of buffy inhibits Debcl-induced

cell death both in the wing and in the eye [87]. Likewise,

buffy overexpression attenuates the dendritic phenotype

induced by debcl overexpression [109]. Moreover, in

response to polyglutamine proteins Buffy inactivates Debcl

to induce neuronal degeneration [100]. Finally, the use of

buffy and debcl double mutant embryo showed an antag-

onistic action of these two genes in irradiation-induced cell

death [102]. However, Buffy and Debcl do not always

ensure opposite roles. Indeed, since both buffy and debcl

mutant show a striking defect in cell death in the ovary,

they can, in this case, cooperate to induce cell death [31,

103].
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Until recently, the molecular basis of Debcl pro-apop-

totic activity was poorly described and data in the literature

were often contradictory. Indeed, depending on the study,

the cell death induced by debcl ectopic expression is

totally, partially or not at all inhibited by a caspase inhi-

bitor [15, 84–86, 88]. These data suggest that Debcl

induces cell death by pathways dependent and independent

of caspases. Similarly, Dark involvement in Debcl-induced

cell death is a debated topic: if two studies agree that Dark

is required for Debcl-induced apoptosis in vivo [85, 106], a

third study performed in Drosophila cultured cells rejects

its involvement [15]. Similarly, depending on the publi-

cations, the BH3 domain of Debcl can be described as

crucial or not important for its ability to trigger apoptosis

Table 1 Summary of Debcl pro and anti-survival functions

debcl pro-cell death functions

debcl triggers cell death when ectopically expressed in

cultured cells

In Drosophila cells Zimmerman et al. 2002 [12]

Colussi et al. 2000 [71]

Igaki et al. 2000 [72]

Dorstyn et al. 2002 [10]

Doumanis et al. 2007 [75]

In chinese hamster ovary cells Brachmann et al. 2000 [70]

In mammalian cells Colussi et al. 2000 [71]

Zhang et al. 2000 [74]

In insect cells (other than Drosophila) Zhang et al. 2000 [74]

debcl triggers cell death when ectopically expressed in

various tissues during Drosophila development

In embryos Brachmann et al. 2000 [70]

during eye development Brachmann et al. 2000 [70]

Igaki et al. 2000 [72]

Kanda et al. 2011 [84]

Park et al. 2010 [83]

Copeland et al. 2007 [86]

Quinn et al. 2003 [73]

During wing development Quinn et al. 2003 [73]

Grusche et al. 2011 [85]

Colin et al. 2014 [78]

Colin et al. 2015 [81]

Clavier et al. 2015 [80]

In larval brain Brachmann et al. 2000 [70]

In salivary glands Brachmann et al. 2000 [70]

debcl is required for developmental cell death At embryonic stages Brachmann et al. 2000 [70]

Galindo et al. 2009 [93]

Senoo-Matsuda et al. 2005 [87]

Colussi et al. 2000 [71]

During oogenesis Tanner et al. 2011 [90]

During spermatogenesis Yacobi-Sharon et al. 2013 [28]

debcl is required for DNA damage induced cell death debcl expression enhances irradiation induced

cell death during eye development

Brachmann et al. 2000 [70]

debcl is required for irradiation induced cell

death at embryonic stage

Sevrioukov et al. 2007 [89]

debcl is required for tumor suppressor induced cell death debcl is required for Rbf1-induced cell death Clavier et al. 2015 [80]

debcl pro-survival functions

debcl counteracts CED-3 induced cell death in Drosophila cells Brachmann et al. 2000 [70]

debcl promotes survival following serum deprivation Brachmann et al. 2000 [70]

debcl knockdown enhances respiratory inhibitor-induced cell death Senoo-Matsuda et al. 2005 [87]

ectopic expression of debcl suppresses the neurodegeneration caused by expanded polyglutamine Senoo-Matsuda et al. 2005 [87]
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[85, 88, 89]. Although this has not been systematically

tested, it seems that the RHG proteins are not required for

Debcl pro-apoptotic properties and vice versa Debcl would

not be involved in the pro-apoptotic activity of the RHG

proteins. We recently shed light on some aspects of Debcl

mechanism of action. We performed a genetic screen in

order to identify gene products that modify Debcl-induced

cell death. Among the suppressors identified, the Glyc-

erophosphate oxidase-1 participates in Debcl-induced

apoptosis by increasing mitochondrial reactive oxygen

species (ROS) accumulation [95]. Therefore, our data

highlight that mitochondrial oxidative stress takes an

important place in Debcl-induced cell death. More pre-

cisely, we showed that this oxidative stress was linked to

impaired mitochondrial dynamics [94]. Indeed there are

close links between Bcl-2 family members and mitochon-

drial dynamics as discussed in the following paragraph.

In summary, some controversies remain about the pre-

cise function of Bcl-2 family proteins in Drosophila cell

death. Further in vivo studies are required to fully char-

acterize the role of these proteins in Drosophila apoptosis.

It is possible that, in Drosophila, Debcl, Buffy and the

RHG proteins could jointly control a mitochondrial death

pathway and ensure together a comparable function to the

one played by Bcl-2 family members in mammals. In line

with this hypothesis, Grim was shown to physically interact

with Buffy and Debcl [105] even if the consequences of

this interaction remain to be determined.

Mitochondrial dynamics and apoptosis
in Drosophila

A mitochondrial fragmentation is observed

during apoptosis

Mitochondria network undergoes fragmentation early in

the course of cell death in mammals [110]. This frag-

mentation can also be observed in Drosophila cells during

apoptosis [11, 79, 94, 106]. This disruption of mitochon-

drial dynamics occurs in vivo during developmental cell

death [79, 106] and in cultured cells after exposure to

different apoptotic stimuli like etoposide, cycloheximide or

rpr and hid ectopic expression [11, 76, 79]. Thus, mito-

chondrial dynamics seems to be altered during apoptosis,

both in Drosophila and in mammals.

The mitochondrial fragmentation plays a role

in the apoptosis induction

The molecules involved in mitochondrial fusion and fission

have been identified and are conserved during evolution.

Several GTPases of the dynamin family: OPA1 and the

mitofusins (Marf and Fuzzy onions in Drosophila and

Mfn1 and Mfn2 in mammals) are involved in mitochon-

drial fusion whereas Drp1 is the main effector of mito-

chondrial fission.

Table 2 Summary of Buffy pro and anti-survival functions

Buffy pro-cell death functions

Buffy is required for cell death Induced by a respiratory inhibitor in Drosophila cells Senoo-Matsuda et al. 2005 [87]

Of germ cells during spermatogenesis Yacobi-Sharon et al. 2013 [28]

Of germ cells during oogenesis Tanner et al. 2011 [90]

Of glial cells in microchaete lineage Wu et al. 2010 [92]

Induced by grim expression during eye development

Ectopic expression of buffy enhances the neurodegeneration caused by expanded polyglutamine Senoo-Matsuda et al. 2005 [87]

Buffy ectopic expression triggers apoptosis in Drosophila cells Doumanis et al. 2007 [75]

Buffy pro-survival functions

Buffy protects against cell death Induced by irradiation both in embryos and wing imaginal discs Quinn et al. 2003 [73]

Induced by diap1 loss of function

during embryonic development

Induced by rpr or hid expression

Induced by grim expression Quinn et al. 2003 [73]

Sevrioukov et al. 2007 [89]

Induced by rbf1 expression Clavier et al. 2014 [79]

Clavier et al. 2015 [80]

Buffy loss of function enhances irradiation-induced apoptosis in embryos Sevrioukov et al. 2007 [89]

Buffy is required for embryonic cell survival Quinn et al. 2003 [73]
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There are several arguments in favor of an active role

for mitochondrial fragmentation in the commitment to

apoptosis. Firstly, this fragmentation occurs upstream of

caspase activation, either in mammalian or Drosophila

cells [79]. Moreover, whatever the species, inhibition of

caspases does not block mitochondrial fragmentation [79,

110]. Conversely, and interestingly, the inhibition of the

pro-fission gene drp1 leads to an inhibition of caspase

activation and cell death, again, both in Drosophila and

mammalian cells [11, 79, 94, 110–114]. This suggests that

mitochondrial fission is required for apoptosis. However,

these experiments do not exclude the existence of a

potential function of Drp1 in the cell death process that

would be independent from its role in mitochondrial

dynamics. Similarly, both depletion and overexpression of

mitofusins modulate the response of cells to apoptosis [76,

111, 115, 116]. It has been demonstrated that Rpr induces

mitochondrial fragmentation by binding and inhibiting the

pro-fusion protein Marf [76]. marf overexpression induces

mitochondrial elongation and counteracts apoptosis

induced by either irradiation or rpr expression [76]. This

suggests that mitochondrial fragmentation would be

required for Rpr apoptotic activity.

Relationship between the Bcl-2 family members

and mitochondrial dynamics during apoptosis

in Drosophila

In mammals, Bcl-2 family proteins modulate the mito-

chondrial dynamics and this aspect of their activity is

important for the regulation of apoptosis [83, 117, 118]. In

Drosophila, far less is known about Bcl-2 family members

activities. Thus, the possible link of these proteins with

mitochondrial dynamics remains elusive. A study con-

ducted by John Abrams team indicates that debcl loss of

function does not induce defects in the organization of

mitochondria in living cells [106]. Similarly, mitochondrial

fragmentation, which occurs during the developmental cell

death of salivary glands, is not changed after debcl loss of

function [106]. However, buffy expression suppresses the

mitochondrial changes associated with the apoptosis

induced by pink1 loss of function [119], a gene encoding a

mitochondrial kinase whose loss of function in humans is

associated with mitochondrial dynamics alteration in

Parkinson’s disease. Buffy and Debcl are required for the

death of nurse cells during oogenesis. In this context, debcl

or buffy loss of function leads to mitochondrial network

elongation [103, 104], underlying their ability to affect

mitochondrial fusion or fission processes. All these data

suggest a link between Bcl-2 family members, mitochon-

drial dynamics and cell death in Drosophila. We recently

showed that Debcl and Drp1 can physically interact and

that Buffy inhibits this interaction [94]. Notably, Debcl

favors Drp1 mitochondrial localization during apoptosis.

Moreover, Debcl-induced apoptosis requires Drp1 and

involves a mitochondrial fragmentation. This mitochon-

drial dynamics alteration induced by Debcl through Drp1

triggers an accumulation of ROS which in turn activates

the c-Jun N-terminal kinase (JNK) signaling pathway and

triggers apoptosis [94]. This evolutionarily conserved

kinase cascade has crucial roles in the regulation of cell

death in response to many stimuli [120]. Therefore, these

results shed light on a link between Bcl-2 family members

and mitochondrial dynamics in vivo during cell death in

Drosophila.

Other ROS related events and mitochondrial
factors involved in Drosophila apoptosis

Various stimuli can induce an accumulation of mitochon-

drial ROS leading to apoptosis. However, depending on the

inducer, the resulting activated cell death pathway may

vary. For example, a null mutation in the selD gene causes

an impairment of selenoprotein biosynthesis, a ROS burst

and an apoptosis driven by the caspase-dependent Droso-

phila p53 (Dmp53)/Rpr pathway [121]. Dmp53 is able to

promote cell apoptosis and also cell division in apoptosis-

induced proliferation [122]. Interestingly, there is a cross

talk between these JNK and Dmp53 pathways. The nor-

mally rapid JNK-dependent apoptotic response to geno-

toxic stress is significantly delayed in Dmp53 mutants. This

suggests that Dmp53 potentiates the JNK-dependent

response; however, the mechanism whereby Dmp53 stim-

ulates JNK activity remains undefined [123].

Beyond the RHG proteins and the Bcl-2 family mem-

bers, other mitochondrial proteins appear to play a role in

Drosophila apoptosis. For instance, the mitochondrial

i-AAA protease mutation causes abnormal mitochondria,

increased level of reactive oxygen species (ROS) and leads

to a caspase-mediated apoptotic cascade in the photore-

ceptor cells [124].In particular, loss of function of apop-

tosis inducing factor (AIF) reduces the embryonic cell

death leading to the presence of supernumerary cells [125].

Furthermore, dMiro, a GTPase of the mitochondrial outer

membrane, is required for caspase activation and cell death

induced by the expression of an RNAi against diap1 in

Drosophila cultured cells [126]. Moreover, drosophila

translocator protein (dTSPO), another mitochondrial outer

membrane protein is required for apoptosis induced by

irradiation or oxidative stress in the larval brain [127].

Thus, a large number of mitochondrial proteins are

involved in Drosophila apoptosis which reinforces the

importance of mitochondria in this death process.
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Conclusion

Contrary to what foreshadowed by the first studies on

Drosophila apoptosis, mitochondria have a prominent

place in the control of cell death in this model organism as

is the case in mammals (Fig. 3). However, unlike what is

observed in mammalian cells, in Drosophila, few proteins

seem to be released from mitochondria during apoptosis,

and the existence of a permeabilization of the mitochon-

drial outer membrane remains today a subject of debate.

Nevertheless, several mitochondrial proteins are involved

in the death program and some Drosophila proteins are

recruited to mitochondria in apoptotic conditions. In view

of these data, it was proposed that the apoptotic cascade is

reversed between Drosophila and mammals: in mammals

the actors of apoptosis are released from the mitochondria

to the cytosol while in Drosophila the regulators of apop-

tosis undergo an inverse relocation: they are concentrated

in or near the mitochondria during apoptosis [128].

Moreover, like during mammalian cells apoptosis, a

Fig. 3 Mitochondrial cell death pathway in Drosophila. In response

to an apoptotic stimulus, dOmi/HtrA2 is released from mitochondria.

Once in the cytosol, it degrades Diap1 by cleavage. AIF is also

released from mitochondria and is involved in cell death induction.

Mitochondrial dTSPO and dMiro proteins are localized at the

mitochondrial outer membrane and are also involved in the cell

death program. Cytochrome c is exposed to the mitochondrial surface

in response to apoptotic stimuli. This exposure would promote the

formation of an apoptosome near the mitochondria. Debcl and Buffy

play a role in stress-induced cell death. Gpo-1 participates in Debcl-

induced cell death by increasing ROS accumulation. Debcl and Buffy

interact with Grim but the biological significance of this interaction is

unknown. Rpr is recruited to mitochondria in response to apoptotic

stimuli which increases its ability to induce Diap1 degradation. Rpr

can also alter the mitochondrial membrane potential. In addition, Rpr

promotes mitochondrial fragmentation by inhibiting pro-fusion pro-

tein Marf. Debcl also triggers a mitochondrial fragmentation by

interaction with the pro-fission protein Drp1. This mitochondrial

fragmentation is required for efficient cell death
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mitochondrial fragmentation is observed during apoptosis

in Drosophila and the involvement of the fission/fusion

machinery in the mitochondrial death pathway appears to

be conserved between these species. One possible

hypothesis is that the mitochondria, particularly fission

sites, serve as docking sites to recruit and concentrate the

proteins involved in cell death [129]. Mitochondria thus

appear today in Drosophila as major regulators of the cell

death process. Drosophila proves to be a powerful model

system for understanding human diseases involving mito-

chondrial death pathway, or associated with altered mito-

chondrial function [129–131]. The apparent discrepancy of

the mitochondrial cell death pathways between Drosophila

and mammals could be due at least in part to the incom-

plete state of our knowledge. Therefore it appears essential

to continue research on the contribution of mitochondria in

cell death in Drosophila.
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