N. Maharzi, V. Parietti, E. Nelson, S. Denti, M. Robledo-sarmiento et al., Identification of TMEM131L as a novel regulator of thymocyte proliferation in humans, J. Immunol, vol.190, pp.6187-6197, 2013.

S. Gaumer, I. Guenal, S. Brun, L. Theodore, and B. Mignotte, Bcl-2 and Bax mammalian regulators of apoptosis are functional in Drosophila, Cell Death Differ, vol.7, pp.804-814, 2000.

J. L. Mullor and I. Guerrero, A gain-of

, HPCs transduced as above with TMEM131L or the empty vector (pRRL) were cultured for two weeks under the T condition before FACS analysis. Gates are set on CD45 þ GFP þ transduced cells. Dashed arrows show the gating strategy. Bi-dimensional dot-plots show expression of CD34/ CD7, CD4/CD8, CD33/CD11b. (C) Bar plots show the percentages of CD34 À CD7 À monocytic and CD34 À CD7 þ T cell precursors. Data are from two independent experiments performed in duplicates, Effect of TMEM131L on T cell development. CD34 þ

, D) Effect of TMEM131L on B cell development. CD34 þ HPCs transduced with TMEM131L or the empty vector (pRRL) were cultured for two weeks under the B condition before being analyzed as above. Gates are set on CD45 þ GFP þ cells. Bi-dimensional dot-plots show expression of CD19/CD10. Data are from one experiment out of three. responses to the hedgehog gradient, Dev. Biol, vol.228, pp.211-224, 2000.

S. Szuplewski, T. Sandmann, V. Hietakangas, and S. M. Cohen, Drosophila Minus is required for cell proliferation and influences Cyclin E turnover, Genes Dev, vol.23, 2009.

R. Haddad, F. Guimiot, E. Six, F. Jourquin, N. Setterblad et al., Dynamics of thymus-colonizing cells during human development, vol.24, pp.217-230, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00164311

A. Parcelier, N. Maharzi, M. Delord, M. Robledo-sarmiento, E. Nelson et al., AF1q/MLLT11 regulates the emergence of human prothymocytes through cooperative interaction with the Notch signaling pathway, Blood, vol.118, pp.1784-1796, 2011.

A. H. Brand and N. Perrimon, Targeted gene expression as a means of altering cell fates and generating dominant phenotypes, Development, vol.118, pp.401-415, 1993.

F. A. Ramirez-weber, D. J. Casso, P. Aza-blanc, T. Tabata, and T. B. Kornberg, Hedgehog signal transduction in the posterior compartment of the Drosophila wing imaginal disc, Mol. Cell, vol.6, pp.479-485, 2000.

J. F. De-celis, A. Garcia-bellido, and S. J. Bray, Activation and function of Notch at the dorsal-ventral boundary of the wing imaginal disc, Development, vol.122, pp.359-369, 1996.

F. J. Diaz-benjumea and S. M. Cohen, Serrate signals through Notch to establish a Wingless-dependent organizer at the dorsal/ventral compartment boundary of the Drosophila wing, Development, vol.121, pp.4215-4225, 1995.

R. Nolo, L. A. Abbott, and H. J. Bellen, Senseless, a Zn finger transcription factor, is necessary and sufficient for sensory organ development in Drosophila, Cell, vol.102, pp.349-362, 2000.

M. Jaiswal, N. Agrawal, and P. Sinha, Fat and Wingless signaling oppositely regulate epithelial cell-cell adhesion and distal wing development in Drosophila, Development, vol.133, pp.925-935, 2006.

M. Calleja, E. Moreno, S. Pelaz, and G. Morata, Visualization of gene expression in living adult Drosophila, Science, vol.274, pp.252-255, 1996.

J. L. Mummery-widmer, M. Yamazaki, T. Stoeger, M. Novatchkova, S. Bhalerao et al., Genome-wide analysis of Notch signalling in Drosophila by transgenic RNAi, Nature, vol.458, pp.987-992, 2009.

G. Awong, E. Herer, C. D. Surh, J. E. Dick, R. N. La-motte-mohs et al., Characterization in vitro and engraftment potential in vivo of human progenitor T cells generated from hematopoietic stem cells, Blood, vol.114, pp.972-982, 2009.

M. E. Garcia-ojeda, R. G. Klein-wolterink, F. Lemaitre, O. Richard-le-goff, M. Hasan et al., GATA-3 promotes T-cell specification by repressing B-cell potential in pro-T cells in mice, Blood, vol.121, pp.1749-1759, 2013.