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Abstract

Background The first generation of brain-computer

interfaces (BCI) classifies multi-channel electroencephalo-

graphic (EEG) signals, enhanced by optimized spatial

filters. The second generation directly classifies covari-

ance matrices estimated on EEG signals, based on straight-

forward algorithms such as the minimum-distance-to-

Riemannian-mean (MDRM). Classification results vary

greatly depending on the chosen Riemannian distance

or divergence, whose definitions and reference imple-

mentations are spread across a wide mathematical lit-

erature.

Methods This paper reviews all the Riemannian

distances and divergences to process covariance ma-

trices, with an implementation compatible with BCI

constraints. The impact of using different metrics is

assessed on a steady-state visually evoked potentials

(SSVEP) dataset, evaluating centers of classes and clas-

sification accuracy.

Results and Conclusions Riemannian approaches

embed crucial properties to process EEG data. The Rie-

mannian centers of classes outperform Euclidean ones

both in offline and online setups. Some Riemannian
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distances and divergences have better performances in

terms of classification accuracy, while others have ap-

pealing computational efficiency.

Keywords Riemannian geometry · covariance matri-

ces · distances · divergences · EEG · SSVEP

1 Introduction

Brain-computer interfaces (BCI) provide humans and

animals with the ability to interact with machines with-

out the use of their motor functions. They offer alterna-

tives for the compensation of physical limitations (Mc-

Farland et al. 2017), with applications in rehabilitation

and assistive technologies (Hosni et al. 2018). Brain sig-

nals could be recorded with various systems, with the
electroencephalography (EEG) being widely adopted

(Niedermeyer and Silva 2005) as it has a low cost and

requires low computational power. BCI designs com-

monly rely on one of the three following paradigms (Nam

et al. 2018; Quitadamo et al. 2008): the event-related

(de)-synchronization (ERD/S), the event-related poten-

tials (ERP) and the steady-state visually evoked po-

tentials (SSVEP). ERD/S are detected in the premotor

cortex and are correlated with motor imagery. ERP are

the observed brain responses to an external stimula-

tion of the sensory nervous system, often auditory or

visual in BCI. SSVEP are elicited by the attentional

focus on a steady pattern of a visual stimulus (Wang

et al. 2004). Auditory or somatosensory patterns could

be considered, but visual stimulation is the most com-

mon in BCI (Zhang et al. 2015). In SSVEP paradigm,

a stimulus flickering at constant frequency is generated

by LEDs or by alternating images on a computer screen.

When a user’s gaze is directed toward a flickering stim-

ulus, it elicits cortical oscillations with matching fre-
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quency. Those cortical oscillations are modulated by

the selective attention (Vialatte et al. 2010). The ex-

periments conducted in this paper focus on SSVEP-

based BCI due to their general robustness and effi-

ciency (Volosyak et al. 2011).

BCI face important challenges that are mainly cau-

sed by the poor spatial resolution of EEG. This limi-

tation is due to the volume conduction effect (Nieder-

meyer and Silva 2005); the bone structure filters out the

higher frequency part, mixing the brain sources signals

and reducing the signal-to-noise ratio (SNR). Conse-

quently, spatial filtering methods are developed to en-

hance SNR, such as common spatial patterns (CSP) (Jo-

hannes et al. 1999), independent component analysis

(ICA) (Wang and James 2006), xDAWN (Rivet et al.

2009) or canonical correlation analysis (CCA) (Yang

et al. 2017). Filtered signals define a feature space where

machine learning methods are used to classify trials.

While spatial filters are very efficient on clean datasets

obtained in constrained environments, they are easily

distorted by artifacts and outliers (Tomioka et al. 2007),

and are specific to subjects and sessions.

All the above-mentioned spatial filters rely on com-

plex computations based on covariance matrices esti-

mated from the EEG signal. Covariance matrices have

a specific structure and are defined on a subspace of

the Euclidean space. Classical matrix computations –

such as Euclidean distance, `2 norm or arithmetic mean

– results in inaccurate results when applied directly

on covariance matrices. It also induces numerical ar-

tifacts, like the swelling effect (Arsigny et al. 2007).

The Riemannian framework accounts for the specific

geometry of the space of covariance matrices. It em-

beds specific properties, like affine-invariance, result-

ing in equivalent distances between sensor-based co-

variance matrices or between source-based covariance

matrices (Congedo et al. 2017a; Yger et al. 2016). This

invariance to full-rank spatial filtering provides good

generalization capabilities to classification algorithms.

Recent works (Barachant et al. 2012; Kalunga et al.

2016; Meinel et al. 2019) demonstrate the benefit of Rie-

mannian framework. Riemannian approaches are also

applied in the winning strategy of five BCI competi-

tions (Congedo et al. 2017a). For EEG classification, a

very straightforward approach introduced in (Barachant

et al. 2012) is the known as minimum distance to Rie-

mannian mean (MDRM). The class centers are defined

as the average of covariance matrices for each class and

an unseen trial is assigned to the class with the near-

est center, in the sense of a Riemannian distance. This

straightforward approach is robust and yields better ac-

curacy than more sophisticated classifiers of the litera-

ture (Barachant et al. 2012), especially on systems with

few electrodes (Yang et al. 2016).

The space of covariance matrices is curved and proper

distances are geodesics, i.e. curves that flow along the

surface of the space. Different distances are defined in

the mathematical literature, each with specific proper-

ties that could be applied to the space of covariance

matrices (Arsigny et al. 2007). Still, there is no prior

work that indicates the most appropriate distances to

process EEG signals, or even to propose a thorough and

reproducible analysis.

While most applications of Riemannian geometry on

EEG are dedicated to motor imagery and ERP paradigms

(Congedo et al. 2017a; Yger et al. 2016), this work fo-

cuses on SSVEP-based BCI. The experimental part is

applied on a dataset acquired in the context of as-

sistive robotics, aiming toward applications for cere-

bral palsy and post-stroke rehabilitation. The task fol-

lows a shared control paradigm, where an arm exoskele-

ton is operated through a controller shared between an

SSVEP-based BCI and a 3D touchless interface based

on infrared sensors (Martin et al. 2012; Kalunga et al.

2014).

The relevant properties to cope with brain signal

variability have not been identified, and thus EEG sig-

nal processing is lacking the proper metrics to con-

duct deeper investigation. To address several open ques-

tions in EEG applications, such as handling specific

noise, change in electrode positioning, inter and intra-

individual variability, advances in Riemannian BCI could

open new opportunities to develop applicative solutions.

Such opportunities require a thorough analysis of ex-

isting distances and their properties, in a reproducible

context.

Advances in Riemannian BCI have opened new op-

portunities to address several open questions in EEG

applications, such as handling specific noise, change

in electrodes positioning, coping with inter and intra-

individual variability. However, the relevant metrics and

their properties that could encompass the brain signal

variability have not been formally identified. It is there-

fore important to identify the relevant metrics through

an extended analysis in a reproducible context.

While we start to investigate these issues in a previ-

ous work (Kalunga et al. 2015), this paper extends this

former approach and the contributions are the follow-

ing:

– a review of classification methods for SSVEP-based

BCI, showing remaining challenges such as resting-

state class,

– a complete survey of the existing distances and di-

vergences for covariance matrices for the first time

in the literature,



Review of Riemannian distances and divergences, applied to SSVEP-based BCI 3

Fig. 1 SSVEP-based BCI setup for controlling an arm ex-
oskeleton on an electric-powered wheelchair. The SSVEP
stimulation board is made of 3 groups of LEDs that blink
at different frequencies.

– an evaluation of the computational cost, numerical

stability and a qualitative analysis of results of those

distances and divergences,

– an open framework which includes the algorithms in

Matlab (Kalunga 2018, 2015) and Python (Cheval-

lier 2020; Bertrand-Lalo 2020), and the datasets (Cheval-

lier 2017) to ensure the reproducibility of experi-

ments.

This paper is organized as follows. Section 2 details

the neurophysiological ground of the steady-state visu-

ally evoked potentials and reviews the existing methods

for their classification. Section 3 describes the frame-

work for the classification of covariance matrices, in-

cluding the considered distances and divergences, and

presents the minimum distance to mean (MDM), which

is the classification algorithm used in this work. The

real EEG dataset used for the experiment is presented

in Section 4. In Section 5, the results of both offline

and online analyses are shown and discussed. Section 6

concludes this paper.

2 SSVEP-based BCI

2.1 Stimulus design

Steady-state visual evoked potential is a brain response

to a repeated visual stimulus. It is measured in the pri-

mary visual cortex as oscillations at a frequency which

corresponds to the visual stimulus frequency and its

harmonics (Vialatte et al. 2010). In BCI, while vari-

ous possible stimuli design are possible (Gergondet and

Kheddar 2015), SSVEP is triggered by a flashing visual

target using either LEDs or a computer screen. The

LEDs induce larger oscillation amplitude than a com-

puter screen (Zhu et al. 2010). A classical setup with

LEDs is visible on Fig. 1. Computer screens also have

a limitation in terms of the flashing frequencies that

could be produced, as it should be a multiple of R, the

screen refresh rate. This limitation is overcome by the

sampled sinusoidal stimulation method that allows to

simulate intermediate frequencies. These intermediate

frequencies are obtained by modulating the luminance

of the screen using the following equation (Chen et al.

2014):

s(t, f, θ) =
1

2

(
1 + sin

(
2πf (t/R) + θ

))
,

where s(t, f, θ) is the luminance of the screen at time t,

varying with frequency f and phase θ. In this stimula-

tion mode, a phase shift θ is added to differentiate be-

tween target stimulus with identical oscillation frequen-

cies, allowing for more possible targets. Nonetheless,

paradigms that require the use of phase information

add a constraint on the BCI system: the SSVEP stim-

ulation device should be synchronized with the EEG

acquisition system, usually with wire cables.

Any frequency, between 2 Hz and 50 Hz, induces vis-

ible oscillations in the visual cortex (Herrmann 2001),

the amplitude of the oscillations decreases as the fre-

quency increase. Frequencies as high as 90 Hz can be

used for SSVEP stimulation and could improve the vi-

sual comfort of the subject (Chen et al. 2015a), but

are difficult to detect. Visual stimuli between 12 Hz

and 25 Hz are the most common in SSVEP-BCI as this

range provides a good compromise between detectabil-

ity and reactivity (Zhu et al. 2010).

2.2 Classification with CCA

Classification of SSVEP brain signals relies on the iden-

tification of stimulus-specific frequency in the visual

cortex. Before advances introduced by Riemannian frame-

works, methods relying on CCA (Lin et al. 2007) achieved

the highest classification performances. CCA finds a

projection space that maximizes the cross-covariance

of two sets of input signals while jointly minimizing

their covariance (Kalunga et al. 2013). The common

methodology is to find the canonical space between a

multichannel EEG trial X, on the one hand, and the

reference signal Yf , on the other hand. Yf is usually

defined as:

Yf =


sin(2πft)

cos(2πft)
...

sin(2πNhft)

cos(2πNhft)

 ,

where Nh is the number of harmonics, and frequency f

belongs to the set of stimulation frequencies. The goal
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of the CCA is to maximize the correlation ρf between

wTXX and wTY Yf as follows:

ρf = max
wX ,wY

wTXΣXYf
wY√

wTXΣXwXw
T
YΣYf

wY

, (1)

where ΣX and ΣYf
are the covariance matrices of X

and Yf , and ΣXYf
is the cross-correlation matrix of X

and Yf . The estimated frequency f̂ is computed from

the values of ρf , as in Lin et al. (2007):

f̂ = arg max
f
{ρf} . (2)

It is possible to optimize the results by carefully select-

ing the reference signals and its harmonics, but there is

no specific recommendation.

With Filter Bank Canonical Correlation Analysis

(FBCCA) (Chen et al. 2015a), an input signal is decom-

posed in n = 1 . . . Nb sub-bands with overlapping fre-

quency bands. The correlation coefficients ρnf are com-

puted for each sub-band n and are combined as:

ρ̃f =

Nb∑
n=1

wn (ρnf )2 with wn = n−a + b , (3)

where a and b are constants defining the weight wn of

each sub-band. To maximize the classification perfor-

mance, an offline grid search is needed to select the

correct hyper-parameters a, b, and Nb. The classifica-

tion decision is reached with Eq. (2) as soon as the all

the ρ̃f are computed. There is a significant improve-

ment in terms of accuracy from the classical CCA with

this filter bank scheme.

An important milestone has been reached with stud-

ies conducted by Nakanishi et al. (2014) and Chen et al.

(2015b) for SSVEP-based spellers. These SSVEP-based

BCI achieve the highest information transfer rate (Mc-

Farland et al. 2003) reported in the EEG literature:

Nakanishi et al. (2014) brought the information trans-

fer rate to an average of 166.91 bits/min and later, Chen

et al. (2015b) raised it to an average of 270 bits/min.

These very high performances rely mostly on the im-

provement of two key aspects: the stimulation protocol,

using phase modulation and combination of frequen-

cies, and stimulus presentation, using a scheme simi-

lar to SMS writing. These approaches comes with two

strong limitations: the first drawback is that there is no

resting-state (also known as reject class, or no-SSVEP

class). Even without any intent from the subject, the

BCI system is selecting letters without any pause. The

ability for a user to act at their own pace is crucial in

Human-Machine Interface and in BCI, a system with-

out any resting-state is hardly compatible for a real

implementation of a BCI system. It should also be em-

phasized that handling the diversity of brain signals

corresponding to resting-state is a challenging issue as

stimulus frequency could still be observed in the EEG.

The second limitation is the complexity of the proto-

col, which requires a hardware synchronization between

the stimulation device and the EEG acquisition system

for precise phase measurements. This limits potential

applications.

A complete review of classification methods for SSVEP-

based BCI can be found in Lotte et al. (2018).

3 Riemannian BCI

Spatial filters and classifiers in BCI rely on covariance

matrices, as it could be seen in Eq. (1) for CCA. It is

possible to operate directly on the covariance matrices

of EEG signals, with formal tools of differential geom-

etry and algorithms borrowed from the mathematical

community of information geometry (Nielsen and Bha-

tia 2012). This section introduces the covariance matri-

ces, their geometry and the two most important notions

for EEG signal processing methods, which are the com-

putation of distance between two covariance matrices

and the estimation of the mean of a set of covariance

matrices. Endowed with a distance and an average, it

is possible to define all the required methods for pro-

cessing and classifying EEG signals in the space of co-

variance matrices.

3.1 From EEG signals to covariance matrices

In the context of EEG signal, we will denote by X an

EEG signal in RC×N where C is the number of chan-

nels, i.e. sensors that are placed on the subject’s scalp,

and N is the number of samples, which are the ob-

servations recorded by the system, with N > C. The

covariance matrix is estimated with

Σ =
1

N
XXT . (4)

For noisy or truncated signal is possible to use more

advanced estimator, an experimental analysis of covari-

ance estimators applied to EEG signal is detailed in Kalunga

et al. (2016). Covariance matrices are symmetric and

positive-definite (SPD) and it is possible to define a

manifold M of SPD C × C matrices (Bhatia 2009) as:

M =
{
Σ ∈ RC×C | Σ = ΣT and

zTΣz > 0,∀z ∈ RC\0
}
.

The eigenvalue decomposition of Σ is

Σ = U diag(λ1, . . . , λC)UT ,



Review of Riemannian distances and divergences, applied to SSVEP-based BCI 5

Fig. 2 Samples of EEG trials from Eq. (5). For each sub-band
Xfreqf

only the channel Oz is shown. Each subplot shows the

first second of a trial from classes: resting-state (a), 13 Hz
(b), 21 Hz (c), 17 Hz (d).

where λ1, . . . , λC are the eigenvalues and U the matrix

of eigenvectors of Σ. The unique symmetric square root

Σ
1
2 and symmetric inverse square root Σ−

1
2 are defined

as:

Σ
1
2 = U diag(λ

1
2
1 , . . . , λ

1
2

C)UT ,

Σ−
1
2 = U diag(λ

− 1
2

1 , . . . , λ
− 1

2

C )UT ,

and the exponential Exp and logarithm Log matrix op-

erators are defined as:

Exp(Σ) = U diag(exp(λ1), . . . , exp(λC))UT ,

Log(Σ) = U diag(log(λ1), . . . , log(λC))UT .

Following Congedo et al. (2017a), specific covariance

matrices for SSVEP are designed to embed frequency

information. Let X be an EEG trial measured during an

SSVEP experiment with F stimuli blinking at different

frequencies. The covariance matrices are estimated from

an extended version of the input signal X:

X ∈ RC×N →

Xfreq1

...

XfreqF

 ∈ RFC×N , (5)

where a band-pass filter around the frequency freqf ,

with f = 1, . . . , F , is applied on the input signal X

to obtain Xfreqf
. Fig. 2 show the extended signal of

one electrode, filtered at F = 3 different frequencies.

Hereafter, EEG signals always refer to the augmented

signal of Eq. (5).

3.2 Distances and divergences

In Riemannian framework, several distances have been

proposed for positive-definite matrices with different

properties, yielding various impacts on signal process-

ing and classification of brain signals. There is a large

literature in differential geometry, probability and ma-

trix calculus describing a great variety of distances for

positive-definite matrices, whose definitions are outside

the scope of this paper. In this large literature, there are

many reformulations of existing distances and general-

ization. Some distances cannot be computed while oth-

ers have very efficient implementations available; some

are very sensitive to the perturbations while others have

useful invariances for robustness to noise. This paper

summarizes all this literature and provides the precise

bibliographical references for the distance that could be

of use for Riemannian BCI.

Divergences and distances are measures of dissimi-

larity between two points in a space. A distance func-

tion d has the following properties for all Σ1, Σ2, Σ3 ∈
M:

1. Non-negativity: d(Σ1, Σ2) ≥ 0 ,

2. Identity: d(Σ1, Σ2) = 0 iff Σ1 = Σ2 ,

3. Symmetry: d(Σ1, Σ2) = d(Σ2, Σ1) ,

4. Triangular inequality:

d(Σ1, Σ3) ≤ d(Σ1, Σ2) + d(Σ2, Σ3) .

Divergences, which are generalization of squared dis-

tance, do not necessarily satisfy properties (3) and (4).

In this work, to compare covariance matrices, we

consider several existing distances, namely the Euclidean

distance, the harmonic distance (Lim and Pálfia 2012),

the affine-invariant Riemannian distance (Pennec et al.

2006), the Log-Euclidean distance (Arsigny et al. 2007),

the Wasserstein distance (Villani 2008), and divergences,

such as the Kullback-Leibler divergence (Nielsen and

Nock 2009) (equivalent to the log-det divergence (Dhillon

and Tropp 2007) for centered multivariate Gaussian

distributions), the Jeffreys divergence (Jeffreys 1946),

the S-divergence (Sra 2016) (equivalent to the Bhat-

tacharyya divergence (Chebbi and Moakher 2012)), and

the α-divergence family (Cichocki and Amari 2010; Nielsen

et al. 2014). All these distances and divergences are de-

tailed in Supplementary Material.

Table 1 provides consistent definitions of all these

distances along with pointers to most efficient imple-

mentations. It is important to select the required prop-

erties carefully for a specific problem, as it could pro-

vide a measure that is robust to noise and undesired

changes.

3.3 Riemannian mean

Considering the set of covariance matrices {Σi}i=1...I ,

the mean (also called barycenter or center of mass) Σ̄
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Table 1 Formula of distances, divergences and means considered in this article.

Distance/Divergence Mean References

Arithmetic dE = ‖Σ1 −Σ2‖F Σ̄E = 1
I

∑I
i=1Σi

Harmonic dH = ‖Σ−1
1 −Σ−1

2 ‖F Σ̄H =
(

1
I

∑I
i=1Σ

−1
i

)−1
(Lim and Pálfia 2012)

Log-Euclidean dLE = ‖Log(Σ1)− Log(Σ2)‖F Σ̄LE = Exp
(

1
I

∑I
i=1 Log(Σi)

)
(Arsigny et al. 2007)

Affine-invariant dAIR = ‖Log(Σ
−1/2
1 Σ2Σ

−1/2
1 )‖F Algorithm 3 in (Fletcher and Joshi 2004) (Moakher 2005; Fletcher and Joshi 2004)

Kullback-Leibler DKL = 1
2

(
log det(Σ2)

det(Σ1)
+ tr(Σ−1

2 Σ1)− C
)

Algorithm 1 in (Chebbi and Moakher 2012) (Chebbi and Moakher 2012)

Jeffreys DJ = 1
2

(
tr(Σ−1

2 Σ1) + tr(Σ−1
1 Σ2)

)
− C Σ̄J = Σ̄

1
2

E

(
Σ̄

− 1
2

E Σ̄HΣ̄
− 1

2

E

) 1
2

Σ̄
1
2

E (Moakher and Batchelor 2006)

S-divergence DS = log det(Σ1+Σ2

2
)− 1

2
log det(Σ1Σ2) Eq. (17-20) in (Cherian et al. 2011) (Sra 2016; Cherian et al. 2011)

α-divergence DαLD from Eq. (3) in (Chebbi and Moakher 2012) Algorithm 1 in (Chebbi and Moakher 2012) (Chebbi and Moakher 2012)

Wasserstein dW =

(
tr

(
Σ1 +Σ2 − 2

(
Σ

1/2
1 Σ2Σ

1/2
1

)1/2))1/2

Eq. (19) in (Álvarez-Esteban et al. 2016) (Agueh and Carlier 2011; Álvarez-Esteban et al. 2016)

minimizes the dispersion of matrices Σi and could be

expressed as:

Σ̄ = µ({Σ1, . . . , ΣI}) = arg min
Σ∈M

I∑
i=1

dp(Σi, Σ) , (6)

for p = 2 dp(·, ·) is a distance and for p = 1 it is a diver-

gence. Σ̄ is unique and is denoted with various names

in the literature, such as geometric mean, or Frechet

mean. It is sometimes called Cartan mean or Karcher

mean (Ando et al. 2004; Lim and Pálfia 2012). Cartan

had shown that a unique solution to (6) exists if all Σi
lie in a convex ball (Cartan 1929).

The choice of the divergence or the distance defined

in Eq. (6) has an important impact on the resulting

mean, that will be explored hereafter. In particular, for

the affine-invariant Riemannian (AIR) distance, the ge-

ometric mean is the unique matrix Σ̄AIR of the manifold

M satisfying:

I∑
i=1

Σ̄
1/2
AIR Log(Σ̄

−1/2
AIR ΣiΣ̄

−1/2
AIR )Σ̄

1/2
AIR

=

I∑
i=1

LogΣ̄AIR
(Σi) = 0 ,

where LogΣ̄AIR
(Σi) is the logarithmic map projecting

matrix Σi from manifold to tangent space at point

Σ̄AIR. Existence and unicity of this Riemannian mean

can be proved (Moakher 2005; Afsari 2011; Massart and

Chevallier 2017).

A summary of distances and divergences considered

in this study, as well as their associated means, is pro-

posed in Table 1, and their properties are listed in Ta-

ble 2.

3.4 Multi-class classification of covariance matrices for

SSVEP

Minimum Distance to Mean (MDM) (Barachant et al.

2012) allows to directly classify covariance matrices in

Fig. 3 Illustration of the MDM principle for a biclass prob-
lem in a curved space.

the Riemannian space. The training step consists in

computing one center of class Σ̄k for each class k as:

Σ̄k = µ({Σi}i∈I(k)) , (7)

where I(k) is the set of indices of training data belong-

ing to class k, and µ(.) is the mean estimation function.

For generalization, a new matrix Σ is assigned to the

class of the closest mean, as illustrated on Fig. 3:

k̂ = arg min
k=1...K

d(Σ, Σ̄k) , (8)

where d(.) is one of the distances from Table 1.

The classification of SSVEP signals discriminates

between K = F + 1 classes, to take into account the

resting-state class. From I labeled training trials {Xi}Ii=1

recorded per subject, K centers of classes Σ̄k are esti-

mated. To obtain a correct estimation of the centers

of classes, the artifacts are removed with the Rieman-

nian potato (Barachant et al. 2013) used with a z-score

threshold zth = 2.0 and a number of iterations L = 3.

The MDM algorithm described above is suitable for

offline and block-online BCI implementations (Cheval-

lier et al. 2018). Offline implementation requires a ref-

erence time, that is aligned with the cue onset. This
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Table 2 Properties of distances and divergences of SPD matrices.

Distance/Divergence Restriction on eigenvalues Invariances

Arithmetic None Rotation

Harmonic None Rotation

Log-Euclidean Strictly positive Rotation, inversion, similarity

Affine-invariant Strictly positive Rotation, inversion, similarity, affine transform

Kullback-Leibler Strictly positive Rotation, affine transform

Jeffreys Strictly positive Rotation, inversion, affine transform

S-divergence Strictly positive Rotation, inversion, affine transform

α-divergence Strictly positive Affine transform

Wasserstein Positive Rotation

reference time is used to estimate the covariance matri-

ces, thus focusing on the SSVEP occurrences. In online

and asynchronous setups, it is not possible to rely on

such cue onset: the EEG epochs should be classified

iteratively. An online computation scheme is applied

on overlapping epochs, as described in Kalunga et al.

(2016), and the length of the trial is determined with

a dynamic stopping approach (Verschore et al. 2012).

This avoids false detection induced by inattention of

the subject or by external noise. The online computa-

tion scheme makes use of a curve direction criterion

that shortens the synchronization latency by reducing

the delays of the epoch-based decision process.

To conclude this section, MDM and MDM-online

algorithms will be used in subsequent experiments to

evaluate the classification accuracy of different distances

and divergences.

4 Experimental SSVEP dataset

This section describes how the experiments have been

conducted to obtain the data for the experimental anal-

ysis presented in the next section. The subject sits on

an electric-powered wheelchair and an exoskeleton sup-

ports their right upper limb (Martin et al. 2012; Kalunga

et al. 2014). During the experimental recording, the ex-

oskeleton is powered on but not used. On the left side

of the subject, a panel shows 3 groups of 4 LEDs, blink-

ing each at specific frequency (see Fig. 1). Although the

panel is on the left side, the user could see it without

moving their head. The subject is asked to follow au-

dio instruction, while moving and blinking freely. In the

protocol, a trial starts by an audio cue prompting the

subject to gaze either at a group of LEDs or at a fixation

point positioned outside the LED panel. This fixation

point is used to characterize the reject class, which is

a reference state without any associated SSVEP com-

mand.

A g.Mobilab+ is used for recording EEG, with C =

8 channels. The electrodes are positioned in the cap

at PO7, PO8, PO3, PO4, POz, O1, O2 and Oz, with

an earlobe reference and a ground electrode in Fz. The

impedance is kept below 10 kΩ throughout the experi-

ments. The EEG sampling rate is 256 Hz, with a band-

pass filtering between 0.5 Hz and 100 Hz, and no spatial

referencing is performed to avoid obtaining low-rank

matrix. An example of EEG recording, extended as per

Eq. (5), is shown on Fig. 2.

Three distinct visual stimuli (F = 3) characterized

by their respective blinking frequencies of 13, 21, and 17

Hz, are presented to the subject. Thus, the classification

task is set up for K = 4 classes, that is the F = 3 classes

of the stimuli and the resting-state (no-SSVEP). Each

session is made of 32 trials, divided in 8 visual stimuli

for each class including the resting-state class. A trial

is 4 second long. These experiments gather 12 subjects

and, for each subject, there is between 2 and 5 sessions.

The data are split into I = 32 trials for training set

and the 32 to 128 trials left are for the test set. This

dataset is accessible at Chevallier (2017), with all the

information to extract and process the EEG markers.

5 Experimental evaluation of distances and

divergences

This section presents the analysis and experimental re-

sults of applying Euclidean and Riemannian distances

and divergences in SSVEP classification task.
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5.1 Assessment of centers of class

Covariance matrices of extended EEG signal, defined in

Eq. (5), capture discriminative features of EEG gener-

ated by same brain sources but with different oscillating

frequencies. The center of mass Σ̄k for the K classes is

shown on Fig. 4, with left (resp. right) part showing the

subject with the highest classification results (resp. low-

est). The diagonal blocks are the 8×8 covariance matri-

ces computed for the F = 3 target frequencies, the off-

diagonal blocks are almost null as there is a null inter-

frequency covariance. The block with the largest values

is almost always indicating the target frequency. In the

case of the resting state, all F blocks have equivalent

values, with small absolute value. Indeed, this is most

visible for the subject with the highest classification

rate and more difficult to see for the one with the low-

est classification rate. The mean covariance for 13 Hz is

very similar to the resting-state, and the first block of

the mean covariance for 21 Hz displays non-negligible

values. For this subject, the mean covariance matrices

are very informative but are not discriminative. The

subject with the highest classification accuracy has rel-

atively lower within frequency correlations: each class

has a higher within frequency correlation in its corre-

sponding target frequency, and the resting-state class

has all within frequency correlations equally reduced.

Consequently, the 4 classes are thus easily separable.

Classifiers commonly used in BCI, such as linear

discriminant analysis (LDA) or support-vector machine

(SVM) (Hastie et al. 2009), can appear as black-boxes

with decisions that are difficult to interpret. The pre-

sented classifier relies on features associated with a sim-

ple representation. This allows an intuitive understand-

ing for the domain experts, such as medical doctors,

neuroscientists, etc. One of the most interesting aspect

is that there is a physiological meaning to the observed

covariance matrices. Most of the complexity is embed-

ded in a dedicated distance, allowing a simple interpre-

tation, whereas machine learning algorithms produce

complex decisions that are difficult to explain. Under-

standing why a subject shows some poor classification

results is easily inferred from the values of the mean

covariance matrices.

Fig. 5 shows the classification accuracy and CPU

time, for all distances and divergences listed in Ta-

ble 1, except for the Wasserstein which has a very high

computational cost and a low accuracy. Firstly, Fig. 5a

shows the computation time of averaging, to estimate

the K = 4 centers of class Σ̄k during MDM offline train-

ing. Secondly, Fig. 5b shows the computation time of

distances and divergences elapsed on the trial classifica-

tion of test data. The computation times are measured

on every distance and divergence, then averaged across

all subjects and trials. In an online setting where the

target center of mass is updated at every trial, a clas-

sification using a specific metric would take the time

to compute one distance/divergence plus the time to

update the center of mass. These figures show that

S-divergence and Bhattacharyya divergence, which are

formally equivalent (Bhattacharyya 1943; Sra 2016) but

with different implementations, yield similar accuracy

but different computation times. They also constitute

a reference for compatibility in applications with real-

time constrains.

5.2 Offline classification

On Fig. 6, the performances achieved with offline MDM

using the above-mentioned distances and divergences

are compared to the three state-of-the-art methods: Lin

et al. (2006), Nakanishi et al. (2014), and FBCCA of

Chen et al. (2015a). All these methods are described in

Section 2. Only classes corresponding to the stimulation

frequencies (F = 3) are considered for the offline clas-

sification, K = 3, as CCA-based methods are not able

to identify resting-state class. The harmonic number is

set to Nh = 6 for the CCA based methods, this value

is selected after a grid search on the training data. The

signal is decomposed in Nb sub-bands for the FBCCA,

where the sub-band n ranges from n × 8 Hz to 93 Hz.

The maximum value is ten times the frequency span

of the stimulation: in the described experiment, 8 Hz

corresponding to the span from 13 Hz to 21 Hz. The

parameters Nb, a and b are selected by a grid search

in the following range: Nb = iN , with iN = 1, . . . , 7,

a = 0.25× ia, with ia = 0, 1, . . . , 40, b = 0.25× ib, and

with ib = 0, 1, . . . , 4. The selected values are Nb = 3,

a = 2 and b = 0.

5.2.1 Centers of class and classification performances

When evaluating the results of offline MDM, the arith-

metic distance yields the poorest performance, far lower

than the results obtained with the state-of-the art meth-

ods, as it could be seen on Fig 6. This poor perfor-

mance is attributed to the lack of invariance under in-

version and to the swelling effect (see Supplementary

Material). The determinant value is tightly linked to

the dispersion of multivariate variables, here the fre-

quency bands and the EEG electrodes, thus leading to

low classification accuracy. The swelling effect of the

arithmetic mean is shown on the TraDe plot (Congedo

et al. 2017b) of Fig. 7, which displays the log-trace as a

function of the log-determinant for the different covari-

ance matrices taken from the trials of the 13 Hz class of
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Resting class

Oz−13Hz
O1−13Hz
O2−13Hz

PO3−13Hz
POz−13Hz
PO7−13Hz
PO8−13Hz
PO4−13Hz

Oz−21Hz
O1−21Hz
O2−21Hz

PO3−21Hz
POz−21Hz
PO7−21Hz
PO8−21Hz
PO4−21Hz

Oz−17Hz
O1−17Hz
O2−17Hz

PO3−17Hz
POz−17Hz
PO7−17Hz
PO8−17Hz
PO4−17Hz

13 Hz class

21 Hz class

Oz−13Hz
O1−13Hz
O2−13Hz

PO3−13Hz
POz−13Hz
PO7−13Hz
PO8−13Hz
PO4−13Hz

Oz−21Hz
O1−21Hz
O2−21Hz

PO3−21Hz
POz−21Hz
PO7−21Hz
PO8−21Hz
PO4−21Hz

Oz−17Hz
O1−17Hz
O2−17Hz

PO3−17Hz
POz−17Hz
PO7−17Hz
PO8−17Hz
PO4−17Hz

17 Hz class

(a) Subject with highest BCI performance.

Resting class

Oz−13Hz
O1−13Hz
O2−13Hz

PO3−13Hz
POz−13Hz
PO7−13Hz
PO8−13Hz
PO4−13Hz

Oz−21Hz
O1−21Hz
O2−21Hz

PO3−21Hz
POz−21Hz
PO7−21Hz
PO8−21Hz
PO4−21Hz

Oz−17Hz
O1−17Hz
O2−17Hz

PO3−17Hz
POz−17Hz
PO7−17Hz
PO8−17Hz
PO4−17Hz

13 Hz class

21 Hz class

Oz−13Hz
O1−13Hz
O2−13Hz

PO3−13Hz
POz−13Hz
PO7−13Hz
PO8−13Hz
PO4−13Hz

Oz−21Hz
O1−21Hz
O2−21Hz

PO3−21Hz
POz−21Hz
PO7−21Hz
PO8−21Hz
PO4−21Hz

Oz−17Hz
O1−17Hz
O2−17Hz

PO3−17Hz
POz−17Hz
PO7−17Hz
PO8−17Hz
PO4−17Hz

17 Hz class

(b) Subject with lowest BCI performance.

Fig. 4 Representation of covariance matrices: each image is the covariance matrix mean Σ̄k of the class k, for one session of
the recording. The diagonal blocks show the covariance in different frequency bands, i.e. 13 Hz in the upper-left block, 21 Hz
in the middle, and 17 Hz in the bottom-right.

the subject with the highest BCI performance. Mark-

ers represent the different means and the color map

represents the distribution of covariance matrices used

in the computation of the means. The determinant of

the arithmetic mean is strictly larger than any other

mean. The Log-Euclidean, the AIR, the S-divergence,

the Jeffreys, and the Bhattacharyya means yield sim-

ilar determinants, close to the mean value of determi-

nants of individual matrices. The determinant of the

harmonic mean shows a reverse phenomenon: there is

a shrinking effect on the determinant of the individual

matrices. In fact, the lack of self-duality of arithmetic

mean, i.e. Σ̄E(Σi) 6= Σ̄−1
E (Σ−1

i ), can be reformulated as

Σ̄E 6= Σ̄H, where Σ̄H is the dual of Σ̄E (Congedo et al.

2017b). With the generalization capability of the power

means Σ̄t with t ∈ [−1,+1] (see Eq. (4) in Supplemen-

tary Material), the geometric mean (t→ 0) is right be-

tween arithmetic (t = 1) and harmonic (t = −1) means.

This justifies that the shrinking factor of the harmonic

mean is of the same order as the swelling factor of the
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(a) Computation of average

(b) Distance and divergence computation

Fig. 5 Processing time and accuracy (mean and standard deviation across subjects and trials) for all distances and divergences.
Computation of averages during offline training (a) and of distances/divergences during classification (b). For computation
times, methods were run on Matlab 7.11.0.584 (R2010b), on a Linux Intel i7 machine.

arithmetic mean. The same phenomenon can be ob-

served for the trace, with a shrinking effect stronger

for the Harmonic mean than for the AIR mean. The

Log-Euclidean mean and the AIR one conserve their

determinant, because their determinant is the geomet-

ric mean of the determinants of individual matrices, see

Supplementary Material, whereas the arithmetic mean

conserves the trace, because its trace is the arithmetic

mean of the traces of individual matrices. The equiva-

lence between the S-divergence and the Bhattacharyya

is also verified on this plot. Finally, the Log-Euclidean

mean appears as a good trade-off for the estimation of

such properties, close to the center of the distribution.

5.2.2 Riemannian distances and divergences evaluation

Using Riemannian distances significantly improves the

classification performances, in comparison with the state-

of-the-art CCA-based methods which have an average

performance across subjects of 87.5%, 81.2% and 87.4%

for Lin et al. (2006), Lin et al. (2006) and Chen et al.

(2015a) respectively. These methods rely on CCA coef-

ficients for the classification: this is a strong limitation,

as they could not account for the reject class. As the re-

ject class is not associated with any reference signal, no

correlation coefficient could be computed for this class.

Due to this limitation, CCA-based methods avoid to

confront with the most challenging case, that is to iden-

tify when the user does not look at any stimulus. These

approaches are thus not compatible with realistic BCI

use case.

Various Riemannian distances and divergences achieve

different classification performances. It is possible to de-

termine the Riemannian distance or divergence that is

best suited for the classification of EEG covariance ma-

trices, and for SSVEP in particular.

The α-divergence, being a generalization of the Kullback-

Leibler divergence (see Supplementary Material), offers
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Fig. 6 Offline classification accuracy (in %) for K = 3 classes (no resting-state), by subject. Classification is performed with
MDM using either Euclidean or Riemannian means (see Table 1). The results are benchmarked against the state-of-the-art
CCA-based methods.

a particular advantage as it allows the assessment of a

family of divergences by changing the value of α. It is

possible to find the optimal value of α with respect to

the classification accuracy for the investigated dataset.

Through a cross-validation process with −1 ≤ α ≤ 1

(see Fig. 9), α = 0.6 is the optimal α for the current

study. This procedure lasted 225.42 seconds and makes

α-divergence the most costly method. This assessment

goes through some of the divergences that are known

to be particular cases of the α-divergence: the left- and

right-sided Kullback-Leibler at α = −1 and α = 1 re-

spectively, and the Bhattacharyya and S-divergence at

α = 0. The results of α-divergence reported on Fig 6 is

obtained with the optimized value of α = 0.6, and rep-

resents the best accuracy achievable with the family of

α-divergence. The α-divergence yields the highest accu-

racy across distances and divergence considered in the

current study. Unlike other distances and divergences,

the α-divergence is not parameter-free and require an

optimization step to determine the value of α. This is a

limitation of the α-divergences for real BCI application,

as it needs an extra processing step which is computa-

tionally demanding.

Despite the apparent good properties of the Wasser-

stein mean (see Fig. 7), the Wasserstein distance has the

lowest accuracy among all Riemannian methods. While

the Bhattacharyya distance and the S-divergence have

different expressions in Table 1, they obtain similar re-

sults in terms of accuracy, and differ only in their com-

putational time. For this reason, the Fig 6 only reports

one of them.

The best trade-off regarding computation time and

accuracy is provided by the Jeffreys divergence and

mean, which achieves results close to the accuracy of the

α-divergence or affine-invariance distance with a com-

putation time that is an order of magnitude lower. The

reported accuracy show that the Jeffreys divergence is

a better estimator for classifiers than affine-invariant

distance for all subjects but two.

To analyze the statistical significance of the im-

provement brought by Riemannian distances and diver-

gences, we perform a paired t-test between pairs of re-

sults and we evaluate the p-values. The analysis reveals

that the difference in performance of the two Euclidean

distances, arithmetic and harmonic, are not statistically

significant, with p-value p > 0.05. Also, despite the im-

provement in accuracy from state-of-the-art method,

the test reveals that the improvement is not statistically

significant (p > 0.05). However, it reveals a significant

improvement between the Euclidean distances and the

Riemannian ones, with p-values p < 0.05 (in the or-

der of 10−5). With the exception Wasserstein distance,

the analysis shows no significant difference between the

different Riemannian approaches. The most important

point is that all the Riemannian approaches, with the

exception of the Wasserstein distance, significantly im-

prove the state-of-the-art (p < 0.05), that is MDM with

any Riemannian distance or divergence outperforms the

CCA-based methods for classifying SSVEP.

5.3 Online classification

Fig. 8 indicates the performances of online MDM with

the different distances and divergences, using the K = 4

classes, including the resting-state class. Firstly, we ob-

serve that the online results are lower than the offline

ones displayed on Fig. 6. There are two reasons: (i)

Fig. 6 displays the results for only K = 3 classes, with-

out the resting-state class; (ii) offline implementations

capture more information than online ones (Chevallier
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Fig. 7 The TraDe plot displays the log-trace as a function of the log-determinant of the different covariance matrices: the
markers indicate the type of the mean and the color map shows the distribution of covariance matrices used in the computation
of the means. Most of the means align diagonally, away from the individual matrices. A swelling effect is visible on the
determinant for the arithmetic mean and a shrinking effect for the harmonic mean. A shrinking effect on the trace could also
be seen for the harmonic mean and the AIR mean.

et al. 2018), leading to better accuracy. Secondly, on-

line and asynchronous MDM with Riemannian metrics

outperform those with Euclidean metrics. Wasserstein

distance has the lowest accuracy among all Rieman-

nian methods. These two observations are qualitatively

similar to the observation made for the offline imple-

mentation.

The paired t-test shows that there is no statisti-

cally significant difference between MDM approaches

with Riemannian metrics, apart from the Wasserstein

that obtains significantly lower performances. It is to

be noted that CCA-based methods, used for compari-

son in offline classification, are not adequate for online

and asynchronous applications as they cannot separate

SSVEP classes from the resting class. This limitation

disqualifies them for any real implementation of BCI.

With these experimental results on real EEG, the

benefit of dedicated Riemannian tools for processing

covariance matrices is clearly demonstrated. As seen

on offline experiments the Jeffreys divergence is a good

choice, as it is a good trade-off between the accuracy

and the computation time.

6 Conclusion

The objective of this study is to investigate how fast

and accurate systems that could be applied in a loosely

controlled environment, instead of carefully tuned sys-

tems that are designed in strongly constrained environ-
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Fig. 8 Online classification accuracy (in %) for K = 4 classes, by subject. Classification is performed with MDM using either
Euclidean or Riemannian means (see Table 1).
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Fig. 9 Classification accuracy and CPU time (mean and
standard deviation) obtained for the log-determinant α-
divergence, with −1 6 α 6 1. The values are averaged across
all sessions and subjects.

ments. Riemannian approaches have been successfully

applied on EEG signals for brain-computer interfaces,

demonstrating their robustness to noise and to the in-

trinsic variation of EEG signals. A direct approach,

like Minimum Distance to Riemannian Mean, yields

comparable results with state-of-the-art without requir-

ing a complex choice of parameters or a lengthy opti-

mization phase. Covariance matrices belong to a curved

space and, expressed in a Riemannian framework, sev-

eral distances are defined in the literature. Most of these

distances embed desirable invariances, avoiding costly

calibration of spatial filters for each session and yield-

ing estimation that are robust to artifacts and outliers.

Different distances and divergences, along with their

implementation are reviewed and investigated, includ-

ing the Log-Euclidean distance, the affine-invariant Rie-

mannian distance, the Kullback-Leibler divergence, the

Jeffreys divergence, the S-divergence, the α-divergence

and the Wasserstein distance.

This study shows that, for SSVEP classification,

Riemannian approaches outperform previous state-of-

the-art methods based on CCA. Riemannian approaches

also address the issue of resting class, where the user is

not interacting with the system, which is a challenging

task in machine learning. A thorough analysis of com-

putational cost and of numerical stability is proposed

in the experimental section. The best accuracy is ob-

tained with the α-divergence, after finding the optimal

value of α. The Jeffreys divergence offers the best ac-

curacy for the lowest computational cost. At last, to

ensure the reproducibility of the results and to propose

a framework for evaluation of new approaches to the

communities of brain-computer interfaces and informa-

tion geometry, all the data, including the algorithms to

process them are available under an open source license.

The presented Riemannian framework can be ex-

tended to MI or ERP paradigms (Congedo et al. 2017a).

Future works on this topic could consist of investigat-

ing whether distances and divergences behave similarly

with different paradigms, in terms of classification ac-

curacy.

On a methodological level, these first results call for

an extension of covariance-based features to other VEP

paradigms: phase-based SSVEP and code–modulated

VEP (c-VEP). These paradigms achieve very high in-

formation transfer rates and could greatly benefit from

the accuracy improvement provided by Riemannian ge-

ometry.

Finally, another opportunity ahead is to evaluate

the possibility of making transfer learning between fre-

quencies for a given subject. This approach would allow

to calibrate the system on single frequency and general-

ize the classifier’s training to a large number of frequen-
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cies. This is particularly useful as it could help reduce

the calibration time and allow subjects to keep their

concentration for the real task.
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