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This file contains the supplementary material for the arti-
cle “Review of Riemannian distances and divergences, applied
to SSVEP-based BCI”.

A Appendix: Distances, divergences and means

The literature on the geometry of symmetric and positive-
definite (SPD) matrices describes several distances and diver-
gence that are well suited for the classification of covariance
matrices. We present here the main results and the formal def-
initions of these distances and divergences, along with their
associated means.

For I covariance matrices {Σi}i=1...I , the mean Σ̄ is the
covariance matrix that minimizes the dispersion of the ma-
trices Σi. It is written as:

Σ̄ = µ({Σ1, . . . , ΣI}) = arg min
Σ∈M

I∑
i=1

dp(Σi, Σ) , (1)

with p = 2, dp(·, ·) is a distance and it is a divergence for
p = 1.

A.1 Euclidean distance

The Euclidean distance is defined as the Frobenius norm of
the difference of two matrices:

dE(Σ1, Σ2) = ‖Σ1 −Σ2‖F . (2)

Using this distance in (1), this defines the arithmetic mean:

Σ̄E =
1

I

I∑
i=1

Σi . (3)

The arithmetic mean is drawn from a family of power means
(Lim and Pálfia 2012; Congedo et al. 2017), defined as the
unique solution of:

Σ̄t =
1

I

I∑
i=1

Σ
1/2
i

(
Σ
−1/2
i Σ̄tΣ

−1/2
i

)t
Σ

1/2
i , t ∈ [−1,+1] . (4)

It could be thus expressed as Σ̄E = Σ̄t|t=1. From the same
family, one can define the geometric mean as Σ̄t|t→0, and the
harmonic mean as Σ̄H = Σ̄t|t=−1, also derived from the har-

monic distance dH(Σ1, Σ2) = ‖Σ−1
1 −Σ

−1
2 ‖F = dE(Σ−1

1 , Σ−1
2 ).

The arithmetic mean is a possible choice, as the mean of
SPD matrices is a SPD matrix, but it is not suited for two
reasons. Firstly, the Euclidean distance (hence the arithmetic
mean) is not invariant under inversion, meaning that a matrix
and its inverse are not at the same distance from the identity
matrix. Secondly, the arithmetic mean is plagued with the
swelling effect, that affects its determinant. The determinant
is a measure of the dispersion of the multivariate variable and
it is proportional to the volume of the column space. The
arithmetic mean induces a distortion, as the determinant of
the mean could be larger the determinants of the Σi (Arsigny
et al. 2007). It is thus more appropriate to rely on a mean
that adapt to the geometry of the SPD matrices.

A.2 Affine-invariant Riemannian distance

Relying on a Riemannian metric, a manifold could be defined
for the space of SPD matrices, that is called a Riemannian
manifold.

The affine-invariant Riemannian (AIR) distance is defined
as the curve length connecting two points on a Riemannian
manifold (Pennec et al. 2006) and is defined as:

dAIR(Σ1, Σ2) = ‖Log(Σ
−1/2
1 Σ2Σ

−1/2
1 )‖F =

(
C∑
c=1

log2 λc

)1/2

,

(5)

where Log is the matrix logarithm and the eigenvalues of

Σ
−1/2
1 Σ2Σ

−1/2
1 are λc, c = 1, . . . , C. This definition comes

from the geodesic equations expressed in the space of SPD
matrices.

The mean Σ̄AIR associated to the affine-invariant Rie-
mannian metric is obtained by combining (5) and (1). This
could be written as:

I∑
i=1

Log(Σ̄
−1/2
AIR ΣiΣ̄

−1/2
AIR ) = 0 .

There is no closed form for this equation and it is efficiently
solved by a gradient descent algorithm (Fletcher et al. 2004).
Even if AIR mean is commonly referred as the geometric
mean, it is still an active field of research (Congedo et al.
2017).

This distance is indeed invariant to affine transforms and
has also other invariances:

1. Invariance under congruent transformation, for any invert-
ible matrix W

dAIR(Σ1, Σ2) = dAIR(WTΣ1W,W
TΣ2W ) ;

2. Invariance under inversion

dAIR(Σ, I) = dAIR(Σ−1, I)

implying

dAIR(Σ1, Σ2) = dAIR(Σ−1
1 , Σ−1

2 ) .

A.3 Log-Euclidean distance

The Log-Euclidean was introduced to lower the computa-
tional complexity of affine-invariant metric, while keeping some
of its properties. The distance between two SPD matrices is
expressed as:

dLE(Σ1, Σ2) = ‖Log(Σ1)− Log(Σ2)‖F
= dE (Log(Σ1),Log(Σ2)) ,

(6)

and dLE(I, Σ−1
1 Σ2) = dAIR(Σ1, Σ2). The mean associated to

the Log-Euclidean distance is defined explicitly as the arith-
metic mean in the domain of matrix logarithms:

Σ̄LE = Exp

(
1

I

I∑
i=1

Log(Σi)

)
. (7)

There is a closed form expression for the Log-Euclidean mean,
unlike the AIR mean, yielding an obvious computational ad-
vantage. Another advantage is that the Log-Euclidean mean
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is usually close or equivalent to the AIR mean, with tr(Σ̄LE) >
tr(Σ̄AIR), and share similar properties. The Log-Euclidean
and AIR means have the same determinants, that are the
equivalent to the geometric mean of the determinants of their
matrices (Arsigny et al. 2007):

det Σ̄LE = det Σ̄AIR =
I∏
i=1

(detΣi)
1/I

= exp

(
1

I

I∑
i=1

log(detΣi)

)
.

Also, the Log-Euclidean mean enjoys the same properties
than AIR mean with the noticeable difference that Log-Euclidean
mean has a similarity-invariance instead of a invariance by
congruence.

A.4 Bregman divergences

Divergences have been considered for the computation of mean
in applications of clustering and classification of SPD ma-
trices due to the fact that they induce a Riemannian met-
ric (Amari and Cichocki 2010). Consider a strictly convex and
differentiable function f : R→ R; then f(x) > f(y)+f ′(y)(x−
y) and f(x) = f(y)+f ′(y)(x−y)⇔ x = y for all x, y ∈ R. The
Bregman divergence (Bregman 1967) is the first-order Taylor
expansion of the so-called seed function f :

Df(x, y) = f(x)− f(y)− f ′(y)(x− y) ,

This divergence Df verifies the non-negativity and the iden-
tity properties. When the seed function is quadratic, it can
also be symmetric. The other properties of Df are reported in
Bregman (1967). Geometrically, the Bregman divergence can
be seen as the measure of the difference between f(x) and its
representation on the plane tangent to f at y, see (Dhillon
and Tropp 2007; Nielsen and Nock 2009) for illustrations.

The scalar divergence can be directly adapted to SPD
matrices with a seed function f depending on eigenvalues,
such as the trace or as the determinant. Depending on the
chosen seed function, various divergences can be defined from
the Bregman divergence.

The asymmetry of divergences results in a right- and left-
sided mean:

Df(Σ1, Σ2) 6= Df(Σ2, Σ1)

⇒ arg min
Σ∈M

I∑
i=1

Df(Σi, Σ) 6= arg min
Σ∈M

I∑
i=1

Df(Σ,Σi) .

It is usually sufficient to consider a single sided divergence: in
this work, only the right-sided divergence and mean are used.

A.4.1 Euclidean divergence

A Bregman divergence naturally follows from the Frobenius
norm (Dhillon and Tropp 2007), with f(x) = x2:

DE(Σ1, Σ2) =
1

2
‖Σ1 −Σ2‖2F . (8)

This divergence is equivalent to the square distance in the
Euclidean case. The arithmetic mean of SPD matrices is thus
equivalent to the Euclidean divergence-based mean, as it could
be seen in Eq. (3).

A.4.2 Kullback-Leibler divergence

Using the Shannon entropy f(x) = x log x yields the Kullback-
Leibler divergence (Kullback and Leibler 1951; Nielsen and
Nock 2009; Duchi 2007; Chebbi and Moakher 2012). This di-
vergence is also called the discrimination information or the
relative entropy. Considering two multivariate Gaussian dis-
tributions N (µ1, Σ1) and N (µ2, Σ2), with means µ1 and µ2

and covariance matrices Σ1 and Σ2 is given by Duchi (2007);
Chebbi and Moakher (2012):

DKL(N (µ1, Σ1),N (µ2, Σ2)) =

1

2

(
− log det(Σ−1

2 Σ1) + tr(Σ−1
2 Σ1)− C

)
+

1

2

(
(µ1 − µ2)TΣ−1

2 (µ1 − µ2)
)
.

But considering that µ1 = µ2 = 0, the Kullback-Leibler di-
vergence between two SPD matrices Σ1, Σ2 becomes:

DKL(Σ1, Σ2) =
1

2

(
− log det(Σ−1

2 Σ1) + tr(Σ−1
2 Σ1)− C

)
.

(9)

There are two means induced by the Kullback-Leibler diver-
gence: the right-type mean is:

arg min
Σ∈M

I∑
i=1

DKL(Σi, Σ) ,

and coincides with the arithmetic mean Σ̄E(Nielsen and Nock

2009); and the left-type mean argminΣ∈M
∑I
i=1DKL(Σ,Σi)

which coincides with the harmonic mean Σ̄H(Moakher and
Batchelor 2006).

A.4.3 Log-det divergence

Another function often used in Bregman divergences of sym-
metric matrices is the logarithmic barrier using the seed func-
tion f(x) = − log(x) (Dhillon and Tropp 2007; Cherian et al.
2011; Sra 2016):

f(Σ) = − log det(Σ) .

The corresponding divergence is called the log-det divergence
and is given by Dhillon and Tropp (2007):

Dld(Σ1, Σ2) = − log det(Σ1Σ
−1
2 ) + tr(Σ1Σ

−1
2 )− C . (10)

Interestingly, for centered multivariate Gaussian distributions,
log-det divergence is equivalent to the Kullback-Leibler of
Eq. 9, since det(AB) = det(BA) and tr(AB) = tr(BA) for
squared matrices A and B.

A.5 Symmetrized Bregman divergences

In some cases, the asymmetry of divergences can be unde-
sirable, and there are two ways to symmetrize the Bregman
divergences (Nielsen and Boltz 2011). The Jeffreys-Bregman
divergences consider half of the double-sided divergences (Jef-
freys 1946; Nielsen and Boltz 2011):

DJfB(Σ1, Σ2) =
1

2
(Df(Σ1, Σ2) +Df(Σ2, Σ1)) , (11)
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and the Jensen-Bregman divergences, considering the diver-
gences to the averaged matrix (Nielsen and Boltz 2011):

DJnB(Σ1, Σ2) =
1

2

(
Df(Σ1,

Σ1 +Σ2

2
) +Df(Σ2,

Σ1 +Σ2

2
)

)
.

(12)

Various symmetric divergences can be defined from these two
ways.

A.5.1 Jeffreys divergence

The Jeffreys divergence (Jeffreys 1946), sometimes called J-
divergence, is a symmetrized Kullback-Leibler divergence (Jef-
freys 1946; Sra 2016):

DJ(Σ1, Σ2) =
1

2
DKL(Σ1, Σ2) +

1

2
DKL(Σ2, Σ1)

=
1

2

(
tr(Σ−1

2 Σ1) + tr(Σ−1
1 Σ2)

)
− C .

(13)

The mean associated with the symmetrized Kullback-Leibler
is easily computed as it coincides with the middle of the
geodesic going from the arithmetic mean Σ̄E to the harmonic
mean Σ̄H (Moakher and Batchelor 2006):

Σ̄J = Σ̄
1/2
H

(
Σ̄
−1/2
H Σ̄EΣ̄

−1/2
H

)1/2
Σ̄

1/2
H

= Σ̄
1/2
E

(
Σ̄
−1/2
E Σ̄HΣ̄

−1/2
E

)1/2
Σ̄

1/2
E .

(14)

A.5.2 S-divergence

The other way to symmetrize the Kullback-Leibler diver-
gence gives the Jensen-Shannon divergence (Lin 1991; Briët
and Harremoës 2009; Nielsen and Boltz 2011), also called S-
divergence (Sra 2016):

DS(Σ1, Σ2) =
1

2

(
DKL(Σ1,

Σ1 +Σ2

2
) +DKL(Σ2,

Σ1 +Σ2

2
)

)
.

The S-divergence is obtained by using the logarithmic barrier
function for the positive-definite cone f(Σ) = − log det(Σ):

DS(Σ1, Σ2) = log det(
Σ1 +Σ2

2
)−

1

2
log det(Σ1Σ2) . (15)

Despite its symmetry, S-divergence is not a metric: it does
not satisfy the triangular inequality criterion. However, its
squared root has been shown to be a distance (Sra 2016).

The S-divergence between two SPD matrices corresponds
to the Bhattacharyya divergence between them (Bhattacharyya
1943; Sra 2016), and it is also equivalent to a symmetrized
log-det divergence (Cherian et al. 2011).

A.6 Weighted divergences

Another family of divergence is defined when the right- and
left-sided divergences are mixed in a weighted manner.

A.6.1 Log-det α-divergence

One such family is the α-divergence (Nielsen et al. 2014), and
Dαf can be expressed in terms of Bregman divergence for α2 6=
1 (Chebbi and Moakher 2012):

Dαf (Σ1, Σ2) =
4

1− α2

(1− α
2

Df

(
Σ1,

1− α
2

Σ1 +
1 + α

2
Σ2

)
+

1 + α

2
Df

(
Σ2,

1− α
2

Σ1 +
1 + α

2
Σ2

))
.

(16)

To obtain the α-divergences at α = ±1, we could consider the
limit values limα→±1Dαf that yield for the logarithmic-barrier
function:

DαLD(Σ1, Σ2) =
4

1− α2
log det

(
1− α

2

(
Σ1Σ

−1
2

) 1+α
2

+
1 + α

2

(
Σ2Σ

−1
1

) 1−α
2

)
, α 6= −1, 1

D−1
LD(Σ1, Σ2) = tr

(
Σ−1

1 Σ2 − I
)
− log det

(
Σ−1

1 Σ2

)
D1

LD(Σ1, Σ2) = tr
(
Σ−1

2 Σ1 − I
)
− log det

(
Σ−1

2 Σ1

)
.

(17)

With −1 ≤ α ≤ 1 the log-det α divergence smoothly changes
from the left-sided Kullback-Leibler D−1

LD to the right-sided
Kullback-Leibler D1

LD (Chebbi and Moakher 2012). A spe-
cific case is the so-called Bhattacharyya divergence DB, corre-
sponding to D0

LD (Bhattacharyya 1943; Chebbi and Moakher
2012; Sra 2016).

The family of α-divergence is a generalization of the Kullback-
Leibler divergence obtained by substituting the logarithm
function in the Kullback-Leibler divergence with the gener-
alized logarithm function or the α-logarithm (Cichocki and
Amari 2010) :

logα =
2

1− α

(
x

α−1

2 − 1
)
.

Varying the value of α in the α-divergence yields various di-
vergences (Cichocki and Amari 2010).

A.7 Wasserstein distance

The Wasserstein distance, also called Earth’s mover distance,
is a distance between two probability distributions. This is
the optimal cost for the transport of one distribution onto
the other (Monge 1781; Kantorovitch 1958; Villani 2008).

The `2-Wasserstein distance between multivariate Gaus-
sian distributions, with means µ1 and µ2 and covariance ma-
trices Σ1 and Σ2, which are noted N (µ1, Σ1) and N (µ2, Σ2),
is reduced to (Bures 1969; Givens and Shortt 1984):

d 2
W,2(N (µ1, Σ1),N (µ2, Σ2)) =

‖µ1 − µ2‖22 + trΣ1 + trΣ2 − 2 tr

((
Σ

1/2
1 Σ2Σ

1/2
1

)1/2)
.

Considering that µ1 = µ2 = 0, the Wasserstein distance be-
tween two covariance matrices is:

dW (Σ1, Σ2) =

(
tr

(
Σ1 +Σ2 − 2

(
Σ

1/2
1 Σ2Σ

1/2
1

)1/2))1/2

.

(18)

The associated mean is computed iteratively, as described in
Barbaresco (2011); Agueh and Carlier (2011) and improved

in Álvarez-Esteban et al. (2016).
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