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Hierarchical clustering of spectral images with spatial constraints for the rapid processing1

of large and heterogeneous datasets from ancient material studies2

Gilles Celeux∗ , Serge X. Cohen† , Agnès Grimaud‡ , and Pierre Gueriau§3

Abstract. The study of very complex and heterogeneous materials, such as those encountered in4
the science of ancient materials, benefits from the wealth of information provided by the5
acquisition and exploitation of full spectrum images, i.e. spectral images. In order to ob-6
tain a high dynamic range in both the spatial dimensions and composition, great efforts7
have made it possible to considerably accelerate data collection and increase the average8
size of a single data set, each image reaching up to several tens of GB. Rapid processing9
is now required to allow feedback during data collection, within the short time available10
for instruments and samples. Here we propose an approach combining hierarchical clus-11
tering and spatial constraint. Spatial constraints allow both a significant reduction in12
the computational cost of segmentation and a certain level of robustness with respect to13
the signal-to-noise ratio: the prior knowledge injected by the spatial constraint partially14
compensates for the increase in noise level; hierarchical clustering provides a statistically15
sound and known framework that allows accurate reporting of the instrument noise model.16
We illustrate the proposed algorithm on a X-ray fluorescence spectral image collected on an17
ca. 100 Myr fossil fish, as well as on simulated data to assess the sensitivity of the results18
to the noise level. It can be foreseen how such an approach could simultaneously lead to19
an increase in the spatial definition of the collected spectral image and to a reduction in20
the potentially harmful radiation dose density to which the samples are subjected.21

Key words. Spectral image segmentation, Ward criterion, spatial constraint, ancient material, X-ray22
fluorescence23

1. Introduction24

Ancient materials, studied by archaeology, paleontology or as part of the cul-25

tural heritage research, are very diverse but share the particularity of being com-26

posite and heterogeneous on several scales [6]. Moreover, they are the results of27

multiple processes at various time scales, inducing strong constraints in terms of28

handling and physico-chemical characterization whilst often having limited a priori29

certainties concerning them [5, 4]. In this context, spectral imaging, i.e. images for30

which each pixel is characterized by a full spectrum (see e.g. Figure 1), is a tool of31
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choice for simultaneously obtaining physico-chemical information (e.g. elemental,32

chemical or mineralogical composition), and the morphological information essen-33

tial for understanding the behavior of the material over long periods of time. Such34

datasets make several GB or even tens of GB, depending on the type of detection35

used. Indeed, while 1D detectors typically record thousands of values (i.e. a few KB)36

per pixel, 2D array detectors record images of several MB per pixel (e.g. [1, 3, 16]).37

As such, these datasets are too massive to be timely exploited with standard algo-38

rithms and we need to develop algorithms able to analyze such images in a time-39

frame compatible with the data collection time to provide feedback possibilities on40

the measurements (e.g. [1, 3]). One should also consider that on those measure-41

ments involving a probe, increasing the signal to noise ratio (SNR) comes at a cost:42

increasing probe/material interaction indeed most often leads to longer measure-43

ment times and always to a higher radiation dose deposited in the material. In such44

a framework one has to find a balance between SNR and dose/time, so that the45

experiment is conclusive without producing alteration of the samples during the46

analysis (e.g. [14]).47

In this article, we focus on the question of image segmentation when the dataset48

comes from X-ray fluorescence (XRF) mapping, a technique by which each individual49

pixel is characterized by its XRF spectrum, providing elemental composition infor-50

mation on that pixel (Figure 1). The classical approach to plot quickly or even live51

elemental distributions recorded by XRF mapping consists of integrating the signal52

(i.e. photons counted by the detector) in spectral regions of interest (ROI) correspond-53

ing to targeted element peaks. This does not, however, hold true elemental distribu-54

tion images as such ROI integrations additionally include significant contributions55

from other elements or phenomena (namely scattering, and sum and escape peaks);56

these overlapping biases can only be circumvented by applying slower approaches57

allowing a spectral decomposition of the dataset (e.g. [15, 1]). Here, we propose58

a hierarchical segmentation algorithm combining the characteristics of hierarchical59

clustering with the imaging properties of a composite material. In other words, we60

aim at proposing a hierarchical classification procedure of spectral dissimilarities61

allowing to take into account the spatial proximities between the pixels.62

It is important to understand the nature of the signal measured in such experi-63

ment. In XRF, we measure the energy of the photons emitted by the material when64

it is subjected to monochromatic incident radiation. Because this re-emission phe-65

nomenon is a stochastic process, the measured spectrum is an empirical sampling66
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Hierarchical segmentation of spectral images 3

of the law of this process. Instead of analyzing the signal using generic tools for67

Euclidean spaces, such as the `2 distance, it is therefore more relevant to use tools68

adapted to the comparison of population samples. On this respect, the algorithm69

we propose is based on the χ2 as a tool to assess homogeneity between two samples,70

in the present case two pixels of different compositions.71

After defining the terms and notations used throughout this article, we expose72

the general framework of our dissimilarity measure (using a Ward criteria based on73

χ2, subsection 2.2), and then propose an approach to impose spatial constraint upon74

the agglomerative process of the hierarchical clustering in subsection 2.3. Then, in75

section 3, we concentrate on the proper steps at which the spatial constraint should76

be released to properly account for non connex domains made of the same material.77

We further consider the appropriate number of classes at which the agglomeration78

process should be stopped in section 4. To illustrate our approach, we apply the79

proposed algorithm on a true dataset corresponding to the XRF mapping of a fossil80

teleost fish, including both the analysis of the experimental dataset in section 5,81

and, in section 6, the analysis of a synthetic dataset resembling the experimental82

one but providing the possibility to simulate various signal to noise ratio and giving83

insight into the robustness of the proposed algorithm to the noise level.84

2. The proposed hierarchical clustering method85

2.1. Notations and definitions86

A spectral image of N pixels is considered. Each pixel i ∈ {1, ..., N} is character-87

ized by a spectrum Si = (si(p))p∈{1,...,P}, where si(p) is the number of photon counts88

for pixel i in energy canal p.89

For i ∈ {1, ..., N} and p ∈ {1, ..., P}, let90

fi,p =
si(p)

s��
and tip =

si(p)

si �
where si � =

P∑
p=1

si(p) and s�� =
N∑
i=1

si �.91

The aim is to propose a hierarchical classification procedure of spectra (Si)i∈{1,...,N}92

using the conditional distributions (or profiles) of pixels ((tip)p∈{1,...,P}, i ∈ {1, ..., N}),93

the pixel i being weighted by fi � = si �/s�� (i ∈ {1, ..., N}). Since these profiles are prob-94

ability distributions, they are compared using the χ2 distance.95

For two pixels i and j, let

d2χ2(Si,Sj) =
P∑
p=1

(tip − t
j
p)2

f� p
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4 G. Celeux, S. X. Cohen, A. Grimaud, and P. Gueriau

Figure 1. Synchrotron XRF mapping of major-to-trace elements of the anterior part (skull on the right)
of the yet undescribed fish MHNM-KK-OT 03a from the Jbel Oum Tkout Lagerstätte (Upper Cretaceous,
100 Myr, Morocco). (A): optical photograph. (B): false color overlay of the distributions of two rare earth
elements, neodymium (red) and yttrium (green), and of iron (blue), reconstructed from a full spectral
decomposition of the data (modified from [15]). Acquisition parameters: 100 x 100 µm2 scan step, 50,851
pixels. Lighter tones indicate higher concentrations. Arrows and asterisks in B are discussed in the text.
(C): Mean (dark colored; 90 pixels) and central individual (light colored) spectra from the boxes in B,
corresponding to fossilized muscles (red and orange), bone (dark and light green) and the sedimentray
matrix (dark and light blue), respectively. Spectra are shown using a logarythmic scale, vertically shifted
for clarity. Main peaks are labelled. Abbreviations: esc., escape peak; ES, elastic scattering; IS, inelastic
scattering; x2, sum (double) peak. Note that the Ar-peak does not arise from the sample but is due to
excitation of Ar in the air (ca. 0.93 %) between the sample and the detector.

with f� p =

N∑
i=1

fi,p =
1

s��

N∑
i=1

si(p).96

Remarks:97

• It is assumed that f� p 6= 0 for all p. If there is a canal p such that f� p = 0, then98

si(p) = 0 for all i ∈ {1, ..., N}, hence tip = tjp = 0 for all (i, j) ∈ {1, ..., N}2. Thus,99

such canals are removed beforehand.100

• It is assumed that si � 6= 0 for all pixel i (otherwise it would mean that the101

detector did not received any photon for the corresponding pixel).102
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2.2. The Ward criterion103

Using the χ2 distance as the proximity measure between the spectra of pixels,104

the hierarchical clustering is designed with the agglomerative Ward criterion δχ2105

[22], which consists of minimizing the increase of the within-cluster inertia at each106

step. This agglomerative criterion for two clusters C and C ′ is:107

(2.1) δχ2(C,C ′) =
µCµC′

µC + µC′
d2χ2(SgC , SgC′ )108

where µC =
∑
i∈C

fi � is the weight of cluster C and SgC the gravity center of cluster C;109

SgC = (gc(p))p∈{1,...,P} with gc(p) =
1

µC

∑
i∈C

fi �t
i
p.110

Note that the gravity center of the union of two clusters is SgC∪C′ =
µCSgC

+µC′SgC′
µC+µC′

.111

112

Usually, the dissimilarity matrix between clusters is updated with a special oc-
currence of the general Lance and Williams formula, see [11, 17] for example. The
dissimilarity between the possible aggregation Ci ∪ Cj of two clusters Ci and Cj and
any other cluster Ck can be expressed by:

δχ2(Ck, Ci ∪ Cj) =
(µCk

+ µCi)δχ2(Ck, Ci) + (µCk
+ µCj )δχ2(Ck, Cj)− µCk

δχ2(Ci, Cj)

µCi + µCj + µCk

.

2.3. Taking the spatial constraint into account113

With spectral images, the dimension of the dissimilarity matrix at the start is114

too large (O(N2) ≈ 20 GB), hence it is computationally too expensive (O(N2P ) ≈115

5×1012 operations to design directly a hierarchical clustering with the Ward criterion116

described above). Moreover, it is desirable that the clusters form unions of spatially117

connected sub-clusters.118

For these two reasons, following [18], we propose a first hierarchical clustering119

algorithm that only aggregates two spatially neighboring clusters. More precisely,120

two clusters C and C
′ are spatially neighboring if there exists (i, i

′
) ∈ C × C ′ such121

that i and i
′ are neighboring pixels.122

In our application, we will consider second-order neighborhoods (Figure 2). It123

implies that most of the pixels have eight neighbors (Figure 2A), while the pixels on124

an edge or at the corners have only five and three neighbors, respectively.125

The advantage of this algorithm is, at each step, that for each cluster only a few126
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A B

Figure 2. Schematic representation of the second-order neighborhoods approach. (A): neighbors for
a pixel that is not located on an edge or at a corner. (B): example of clusters spatially neighboring; on the
top, the blue and purple clusters are spatially neighboring, while on the bottom left the green and orange
clusters are spatially neighboring. All are spatially neighboring to the grey cluster. On another hand, for
example, the purple and orange clusters are not spatially neighboring.

dissimilarities have to be computed. Nevertheless, for this reason, it is not possi-127

ble to use the Lance and Williams formula [11, 17] to update the dissimilarities.128

Therefore, equation (2.1) is used to compute the dissimilarities needed to design the129

hierarchy.130

131

The hierarchical algorithm with the spatial constraint operates following the132

steps below:133

Algorithm 2.1 Hierarchical spatial clustering
Initialization : computes the χ2 distances between two spectra for neighboring
pixels
Define J := 1
while J < N do

Aggregates the two neighboring clusters with the smallest Ward criterion value
(or χ2 distances at the first step)
Updates the neighborhoods of clusters.
Updates the dissimilarity matrix (for spatially neighboring clusters).
J := J + 1

end while

If this algorithm is run until it remains only two clusters, we get a hierarchy134

where at each step the clusters are spatially connected. However, it is not desirable135

to impose such clusters connexion during the final steps. Indeed, from the point136

of view of the application domain scientist/specialist, the relevant clusters, while137
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Hierarchical segmentation of spectral images 7

connected at fine scale, have no reason to be spatially connected at large scale.138

As a consequence, the proposed algorithm taking the spatial constraint into ac-139

count is run for J steps leading to spatially connected clusters, J being large (the140

choice of the switching step J will be discussed hereafter in section 3). It leads141

to (N − J) spatially connected clusters, hereafter called patches. Then from these142

(N−J) patches, unconstrained agglomerative hierarchical clustering algorithm with143

the Ward criterion is used. Thus, the proposed final clusters are union of the J spa-144

tially connected patches. Obviously, a relevant number of final clusters is to be145

chosen; this point is discussed in section 4.146

3. Selecting the switching step J147

3.1. The proposed criterion148

In order to select the switching step J in the proposed hierarchical algorithm, a
criterion balancing the between-cluster inertia with a regularization term measuring
the spatial homogeneity of the clusters is proposed. This criterion to be maximized
has the form:

H(J) = B(J) + αG(J),

where α ∈ R+, B(J) is the between-cluster inertia of a partition of the pixels into J149

patches and G(J) is a measure of the spatial homogeneity of this partition. Following150

[2], we consider151

G(J) =
1

2

J∑
k=1

N∑
i=1

N∑
j=1

cikcjkvij

where vij = 1 if i and j are neighbors, and 0 otherwise (with vii = 0 by convention),152

and cik = 1 if i ∈ Ck and 0 otherwise.153

154

The important point is to choose the scalar α to get an equilibrium between B(J)155

and G(J). In the extreme situation of a partition into N patches, we have G(N) = 0156

and in the opposite extreme situation G(1) =
1

2

N∑
i=1

N∑
j=1

vij ≈
1

2

N∑
j=1

8 = 4N. (For sim-157

plicity, we consider here improperly that each pixel has 8 neighbors.)158

159

Assuming an equilibrium H(N) = H(1) between these two extreme situations160

leads to α =
T

4N
, T being the total inertia of the whole set of pixels. Thus, the161
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8 G. Celeux, S. X. Cohen, A. Grimaud, and P. Gueriau

criterion to be maximized is162

H(J) = B(J) +
T

4N
G(J).163

164

165

However, as it will be apparent in the case study in section 5, this choice of166

α leads to the selection of a too large number of patches Jmax. In order to select167

a more relevant number of patches, J , from which to release spatial constraints168

in the clustering, we propose to make use of the “one standard deviation” proce-169

dure proposed in [7] to cut a decision tree. This procedure consists of computing170

H(K) for K = N, . . . , 1, then to compute the standard error sd(H) of the resulting171

(H(K))K=N,...,1 and choosing the smallest Ĵ such that172

H(Ĵ) ≥ H(Jmax)− sd(H).

The rationale for this procedure is to determine the value of Ĵ that corresponds173

to a large number of clusters and provides a good compromise between the between-174

cluster inertia and the spatial homogeneity. Note that, while it is expected that175

H(J) increases from H(N) to H(Jmax) and then decreasing back to H(1), there is no176

guarantee for such a behaviour. Such an unexpected behaviour of the H criterion177

is obtained for low signal to noise ratio image in Figure 6E and G. In order to also178

address these types of behaviour of H we express the choice of Ĵ in a different way :179

Ĵ = max{J |(J < Jmax) and (H(J) < H(Jmax)− sd(H))}

3.2. In practice180

In practice, depending on the image size, it can be too long or impossible to181

compute H(K) for all K ∈ {N, ..., 1}. In this case, the following heuristic approach is182

proposed to determine Ĵ :183

As a first step, the idea is to compute (H(` × by))l, with by ≥ 1 chosen to have a184

reasonable computing time and ` ∈ N∗ such that ` × by ≤ N . However, after testing185

on the studied dataset described in section 5, we noticed that the obtained Ĵ can186

change significantly according to the value by. Hence, by must be small enough to187

obtain a correct value for Ĵ (but we do not know its order of magnitude).188

On the other hand we noticed that the obtained values for the ratios βk =
Ĵk
Nk

(Ĵk is189
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Hierarchical segmentation of spectral images 9

computed with the criterion described in subsection 3.1) are similar for sub-images190

(Ik)k of size (Nk)k having a similar type of morphology.191

Therefore we propose to evaluate the “constant” β =
Ĵ

N
, which seems linked to the192

morphology of the studied image, by cutting the image into q sub-images (Ik)k∈{1,...,q}193

with size (Nk)k∈{1,...,q}). Then, for each sub-image, Ĵk is computed with either the194

criterion described in subsection 3.1 or the introduction of a small value for by, and195

the terms βk = Ĵk/Nk are computed for all k ∈ {1, ..., q}.196

Finally, Ĵ is chosen as the nearest integer to β̄ ×N , with β̄ =
1

q

q∑
k=1

βk.197

4. Selecting the number of clusters198

4.1. Statistical heuristics199

A first and simple way to properly assess the number of clusters from a dendro-200

gram is to select the numbers of clusters producing the greater jumps in the plot201

of the cluster criterion values (i.e. here the Ward criterion), against the number of202

clusters. We refer to this strategy as the jump heuristic.203

An another natural and popular criterion for choosing a relevant number of clus-204

ters K in a hierarchy designed with the Ward criterion is to use the value of K cor-205

responding to the maximum value of the Calinski and Harabasz criterion (CHC, [8])206

CHC(K) =
Tr(BK)

(K − 1)
/

Tr(WK)

(N −K)
,207

where BK and WK are respectively the between-cluster matrix and the within-cluster
matrix of the partition C1, . . . , CK . In the present context, we have

Tr(BK) =
K∑
k=1

µCk
d2χ2(SgCk

, Sg)

and

Tr(WK) =

K∑
k=1

∑
i∈Ck

fi.d
2
χ2(SgCk

,Si)

where Sg is the gravity center of the N pixels, and for k = 1, . . . ,K, SgCk
is the gravity208

center of cluster Ck.209

This criterion has been shown to perform well in practical situations (see [19]).210
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4.2. Particular considerations in the case of spectral images from Ancient mate-211

rials science212

Although we listed above several ways to statistically determine the number of213

clusters to retain, it is however not recommended to choose a unique number of214

clusters with a formal technique in the case of ancient material studies. Instead, we215

here prefer to use the following strategy:216

• Preselect several number of clusters using the jump heuristic and the CHC.217

• Analyze the preselected clusterings with the help of a specialist of the appli-218

cation domain. Having this purpose in mind, it is desirable to provide the219

specialist with the mean spectra of the preselected clusters, which represent220

complementary information to those obtained from usual spectral image pro-221

cessing (e.g. ROI integration and full spectral decomposition, see section 1)222

and are, as such, critical to assess the robustness and benefits of the ap-223

proach.224

• Select with this person the clustering(s) to be interpreted.225

The present paper exemplifies in the following section this way of assessing ancient226

material clusterings.227

5. Application to a real world dataset228

5.1. Data description229

The proposed algorithm has been applied to a spectral image dataset collected230

on a yet undescribed ca. 100-million-year-old new teleost fish from Morocco (Fig-231

ure 1, [15]). The information embedded in this dataset is a synchrotron micro-X-ray232

fluorescence (µXRF) major-to-trace-elemental map, where a full XRF spectrum has233

been recorded for each pixel, over a 22.5×22.5 mm2 area using a scan step of 100×100234

µm2 and a 500 ms counting time (211 × 241 = 50, 851 pixels in total; Figure 1B, C).235

The experiment was performed at the DiffAbs beamline (SOLEIL synchrotron, Gif-236

sur-Yvette, France) using a 17.2 keV incident beam focused down to a diameter of237

10× 7 µm2.238

Very interestingly, the distribution of strontium and yttrium Kα lines, which sub-239

stitute for calcium in calcium phosphates such as bone apatite [15, 13] and whose240

information depths under hard X-rays reach 200-300 µm in pure apatite with the241

used geometry, revealed previously indiscernible anatomical features in this pecu-242

liar new fish (Figure 1B, [15]). They particularly unveil the morphology of the first243

vertebrae (white arrows in Figure 1B), the neurocranium that extends into a sharp244
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supraoccipital at the top of the skull, the metapterygoid, and the hyomandibular245

that appears dorsally flared. These new information help deciphering the affinities246

of this new fossil species (in preparation). The other main outcome of this work was247

that a false color overlay of the distribution of different rare earth elements (REEs;248

e.g. neodymium and yttrium, red and green distributions in Figure 1B, respectively)249

discriminates phosphatized muscles (yellow arrows in Figure 1B) and bone [15].250

251

5.2. Resulting hierarchical spatial clustering252

In the following, the proposed algorithm has been implemented with R [20] on253

this image of N = 211× 241 = 50, 851 pixels, for which at each pixel i the spectrum Si254

has P = 1780 values. The size of the file containing the dataset is 1.7 GB.255

For such a dataset, it is too long to compute the criterion H described in section 3256

for all K ∈ {N, ..., 1} in order to determine the switching step Ĵ . Hence, the image has257

been cut into 4 sub-images with size 100×115 and Ĵ has been computed as described258

in subsection 3.2. As explained in subsection 3.2, to limit the computational cost259

of the complete algorithm, the (βk)k values are estimated on the four sub-images260

with H computed every 5 agglomerative steps (by = 5). We obtained (βk)k values of261

0.84087, 0.93043, 0.85565 and 0.85522 respectively for top right, bottom right, bottom262

left and top left sub-images leading to β̄4 ' 0.87054 and consequently Ĵ = 44268.263

Note that the (βk)k values are close for the three sub-images having a similar type264

of morphology, whilst the bottom-right sub-image consist mostly of sediment and is265

more homogeneous than other sub-images.266

To select the number of clusters, we plotted the jump heuristic and the CHC267

against the number of clusters (starting with two clusters) (Figure 3). These criteria268

are here to complement the knowledge of the application domain specialist, in the269

case of the present example a paleontologist (PG). The jump heuristic leads to pro-270

pose 6 clusters, whilst the CHC leads to propose either 6 or 9 clusters, corresponding271

to the two local maxima of the curve.272

Looking more precisely at the differences between 6 and 9 clusters, it can be seen273

that only the light green cluster of the 6-cluster solution is modified (Figure 3C–E).274

The difference image (Figure 3E) illustrates how the light green cluster incorporates275

three smaller clusters: one with 5 black isolated pixels, one green cluster with 50276

isolated pixels, and a light-red cluster with 3014 pixels spread out it several patches.277

If the additional clusters with 5 and 50 isolated pixels seem of little interest, the light-278
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12 G. Celeux, S. X. Cohen, A. Grimaud, and P. Gueriau

Figure 3. Defining the number of clusters used for hierarchical segmentation.(A, B): Ward (A) and
Calinski and Harabasz (B) criteria against the number of clusters (starting with 2 clusters). (C–E): False
color distributions obtained for 6 (C) and 9 (D) clusters, and difference (E).

red cluster appears to be interesting, as it highlights areas richer in iron (asterisks in279

Figure 1B) that are not clearly obvious in the µXRF elemental maps obtained using280

ROI integration or spectral decomposition.281

From a paleontological point of view, the segmentation offered by the selected282

clustering (Figure 4A) does not improve the visualization of hidden anatomical de-283

tails, but provides new insights into the chemical composition of the different tissues284

and materials present in the sample through the mean spectra of the clusters (Fig-285

ure 4B). While individual elemental distributions show no strong contrast in the286

incorporation of light REEs between bone and muscles (Figure 4C), following the287

distribution of calcium, which they substitute and that originates from a compara-288

ble depth (Figure 4D), the yttrium distribution shows strong enrichment in the bone289
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Hierarchical segmentation of spectral images 13

as compared to the muscles (Figure 4E). In fact, in the muscles area (yellow arrows290

in Figure 1B), rather than following the type of tissue the yttrium distribution largely291

follows the thickness of the material as shown by X-ray microtomography where most292

of the muscles region appear to be very thin or not discernible (Figure 4F). Conse-293

quently, thickness and information depth were likely responsible for the apparent294

REE contrast. Nevertheless, the selected clustering clearly discriminates bone from295

phosphatized muscles (blue/purple and dark red clusters in Figure 4A, respectively)296

on the basis on the full µXRF spectra. The muscles dark red cluster appears richer in297

Fe and Pb (Figure 4B), which come from a reddish fossil biofilm made of iron hydrox-298

ides and covering the phosphatized muscles [14, 10, 12] rather than the phosphatic299

material itself. In turn, the bone blue and purple clusters contain much higher con-300

tents in heavier REEs (Lβ1 emission lines from erbium and ytterbium particularly301

stand out in Figure 4B, as they do not fall in the same energy domain as major ele-302

ments [15]). This is most likely again an effect of information depths and thickness303

of the tissues.304

On another hand, the selected clustering isolates well the large, highly absorbing305

iron grains situated posteriorly to the orbit (asterisks in Figure 1B; light red cluster306

in Figure 4A, B) that prevent segmentation of the first vertebrae and posterior part307

of the head from the X-ray tomography data (asterisks in Figure 4F). These grains308

are particularly rich in Fe, Ti, Cu and Ga, but not so much in Pb (Figure 4B) and are309

therefore, besides their larger size, a different material than the reddish thin film of310

iron hydroxides covering most of the fossil.311

By providing a global discrimination of the different materials composing the312

fossil much faster than a full spectral decomposition (approximatively two hours313

here for a computer with specifications i5-4590 @ 3.30GHz, 4 Core, four days using314

the freeware PyMCA [21]), the proposed clustering methodology provides a robust315

and quick way to extract, “live” at the beamline, chemical information not hampered316

by local heterogeneity or contamination for further higher resolution mapping of317

areas of interest, or point analyzes using, e.g., X-ray absorption spectroscopy.318

5.3. Regarding the chosen switching step J319

One may wonder if the value of the switching step, J , has an influence on the320

results for the choice of the number of clusters and for the clusters shape. In this321

section we tackle this question by applying the algorithm using switching steps equal322

to J = 43000 and J = 46000. In Figure 5 are the graphic representations of the jump323
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Figure 4. Hierarchical segmentation of the synchrotron µXRF spectral image dataset of the yet
undescribed fish (MHNM-KK-OT 03a) from the Jbel Oum Tkout Lagerstätte (Upper Cretaceous, 100 Myr,
Morocco). (A): Segmentation results when 9 classes are selected with the proposed algorithm, disabling
spatial constraint at agglomerative step Ĵ = 44268. (B): mean spectra from 4 of the 9 classes visible in
(A). (C-E): concentration maps of neodymium (C), calcium (D) and yttrium (E). The color scale goes from
dark blue (for low concentration) to red (high concentration) going through green and yellow. (F): micro-
computed tomography 3D rendering of the fossil within the sedimentary matrix after rapid segmentation.
Voxel size: (24.7 mm)3.

heuristic and the CHC for J = 43000 and J = 46000, respectively.324

For J = 43000, the jump heuristic plot leads to propose 6 or 10 clusters while the325

CHC leads to 3, 10 or 12 clusters (Figure 5A,B). For J = 46000, the jump heuris-326

tic plot leads to propose 5 clusters or maybe 9, and the CHC leads to propose 9327

clusters (first local maximum) or more (Figure 5E,F). These results show that the328

value of the switching step has an influence on the result of the hierarchical clus-329

tering. Comparisons of the graphic representations for J = 43000, 44268 and 46000330

(Figure 5 C,D,G) clearly identify the segmentation resulting from the latter as abso-331

lutely unsatisfactory as many fossil areas are found mixed up with the surrounding332

sediment (Figure 5G). Graphic representations for J = 43000 and 44268 appear in333

turn very similar. Nevertheless, representation for J = 44268 (the computed Ĵ value,334

see subsection 5.2) more accurately reflects elemental distributions (Figure 1B), par-335
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ticularly regarding the iron-rich phase located around the fish orbit.336

6. Assessing robustness of the segmentation to signal to noise ratio337

To assess the robustness of the proposed segmentation method in regard of the338

signal-to-noise ratio (SNR) we prepared simulated data having features close to the339

one of the experimental dataset used in the previous section. Starting with a single340

realistic model, we generated a family of simulated observation with a decreasing341

SNR. Performing the segmentation on this family of simulated data, which are all342

originating from the same generative model, enabled us to assess the effect of SNR343

levels on the proposed segmentation results. To achieve consistency we generated344

this simulated dataset in two steps: (i) we constructed a zero noise model that would345

correspond to a likely observed object; (ii) from this zero noise model we generated346

simulated observation by applying a noise generation process that mimics the phys-347

ical observation process while providing control on the noise level of the simulated348

data. We will present the two steps of this procedure, then the results in terms of349

segmentation.350

6.1. Building a zero noise model and simulating data with controlled SNR351

We based our zero noise model on the above studied experimental dataset that352

we regularized using local polynomial regression smoothing, through the loess func-353

tion in R [20, 9]. To account for the nature and the dynamic of the signal on the354

observed X-ray fluorescence data, the weight was set to the reciprocal square root355

of the observation when the observation is not 0, and to 1 otherwise. The second356

important parameter was the span of the filter that we set to 0.02 in order to account357

for the approximate width of the fluorescence bands on such spectra. Finally, a358

thresholding was performed on the regularized form so that its value is never lower359

than 0.001.360

While this procedure is producing a realistic zero noise X-ray fluorescence spectra361

in each pixel of our image, it has to be noted that this should not be considered as362

a ground truth version of the observation. Indeed, since each spectrum is dealt363

with independently from its neighbors, there is no spatial regularization and the364

estimations performed are far from optimal for detector channels that have measured365

a low level of photons.366

The noise present in the observation is mostly due to the counting statistic of367

each channel of the detector. Hence, we can generate a simulated observed spectra368

with the same SNR as the raw observation, by simply replacing the value of the zero369
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Figure 5. Hierarchical segmentation for different choices of switching step J = 43000 and J = 46000.
(A, B): Ward (A) and Calinski and Harabasz (B) criteria against the number of clusters (starting with 2
clusters) for J = 43000. (C): False color distributions obtained for J = 43000 (10 clusters). (D): False color
distributions obtained for J = 44268 (9 clusters). (E, F): Ward (E) and Calinski and Harabasz (F) criteria
against the number of clusters (starting with 2 clusters) for J = 46000. (G): False color distributions
obtained for J = 46000 (9 clusters).
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noise spectra by a single realization of a Poisson random process with its parameter370

being the zero noise spectra ’s value. We generated such a dataset, for which we have,371

by construction, the ground truth and a SNR equal to the one of the raw dataset. This372

simulated dataset is later on referred as a plus 0db dataset (p0db in short).373

Starting from the same zero noise model, we also generated simulated observation374

with lower SNR. Since each theoretical value is replaced by a Poisson realization,375

dividing the model by a factor of 2 would decrease the SNR by a factor of
√

2, which376

correspond to removing 3db to the SNR. This simulated dataset is later on referred377

as a minus 3db dataset (m3db in short). Repeating this procedure two more times378

enabled us to generate a minus 6db dataset (m6db) and finally a minus 9db dataset379

(m9db).380

Each of these datasets resembles what could have been measured if the expo-381

sure time was divided by two incrementally. In other words, obtaining for the m3db382

dataset a spatial clustering similar to that obtained for the p0db dataset would lead383

to the conclusion that the experiment could have been done twice faster without sig-384

nificant loss in term of the explained morphology of the fossil. A shorter exposure385

time also means a lower radiation dose for the sample and correspondingly lower386

risk of alteration during and due to the measurements.387

One has to note that the protocol we use here to smooth the data is not valid as388

a denoising algorithm since it has some advert effects on the concentration of the389

trace elements, and in particular the REEs. Still, while the obtained spectra are390

not properly estimating the ground truth of this particular fossil, they have all the391

features making them likely to be present in a fossil. Hence, the generated dataset392

should be considered as the XRF spectral image of a purely phantom fossil, enabling393

us to test the proposed hierarchical clustering algorithm on totally controlled data.394

6.2. Impact of noise on hierarchical spatial clustering results395

Following the same process as in subsection 5.2, we use the criterion H to de-396

termine the switching step Ĵ . In Figure 6, we can see that the curve of H has397

the expected shape for datasets p0db (Figure 6A) and m3db (Figure 6C), while the398

shape begins to change for dataset m6db (Figure 6E) and is significantly different in399

m9db (Figure 6G) (the curve correspond to the top left quadrant sub-image but the400

same behaviour is observed for the three other sub-images). The values obtained401

for these dataset are: Ĵ = 44063 for p0db, Ĵ = 45871 for m3db, Ĵ = 48988 for m6db.402

Such choice is not possible for dataset m9db for the exact reason explained at the403
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end of subsection 3.1, hence for each of the four sub-image we took the smallest Ĵk404

on the right (greater than 8000) such that H(Ĵk) ≥ H(Jmax)− sd(H) (where here Jmax405

and sd(H) are values computed for the associated sub-image Ik). This led to choose406

Ĵ = 50387 for m9db. The higher the noise, the higher the Ĵ , getting closer to the total407

number of pixels N in the image.408

According to the plot of the jump heuristic, to the CHC and to clusters appearing409

to be interesting from a paleontological point of view, the selected number of clusters410

is 11 for p0db (Figure 6B), 10 for m3db (Figure 6D) and 9 for m6db (Figure 6F).411

Concerning the m9db dataset, no fossil morphology can be seen when the selected412

number of clusters is 10 or lower, hence we have decided to represent the 11-cluster413

segmentation for this dataset (Figure 6H).414

As expected, similarity of the graphic representations as compared to the original415

and simulated datasets quickly degrades with increasing noise, and most morpho-416

logical information is lost for dataset with a SNR greater than or equal to 6db from417

the original data. Increasing further the level of noise leads to totally unexploitable418

data, with which the morphology of the sample could hardly be observed, as demon-419

strated on the m9db simulation (Figure 6H). Note that, in the m3bd representation420

(Figure 6D), the pale yellow triangular area that “appears” on the top right of the im-421

age and clusters with some of the fossil corresponds to air (there is no sample there,422

see Figure 1A); it otherwise clusters with the sediment in the other noise models,423

which can be explained by the geometry used during the experiment where the beam424

came from the right of the sample with a 45◦ angle, leading for pixels in that area to425

record the X-rays-sediment interaction below the fossil surface.426

7. Discussion427

In this article we propose a spatially constrained hierarchical clustering method428

to be applied on spectral images, in particular on energy resolved X-ray fluorescence429

images. The first aspect of the method is to choose an agglomerative criteria based430

on a dissimilarity measure that is consistent with the noise model of the measured431

spectra. Then, the main aspect of this method is to apply constraints during the432

agglomerative process such that only spectra belonging to neighboring pixels could433

be clustered together. While this constraint is meaningful as long as the classes434

form small clusters on the image, it is obvious that when the number of classes is435

small this spatial constraint should not be applied anymore, bringing the problem of436

the proper step at which the spatial constraint should be released. To address this437
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Figure 6. Behavior of the H criterion for selecting the switching step J while adding noise to the
zero noise model simulated dataset. The H criterion computed in the top left quadrant sub-image (as
explained in subsection 3.2 and subsection 5.2) and resulting hierarchical spatial clustering image for
the zero noise model (adding 0db) (A,B), and after removing 3db (C,D), 6db (E,F) and 9db (G,H).
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problem, we proposed a heuristic that balances the spatial coherence of the proposed438

segmentation, as measured through the G penalization, and the between-cluster439

inertia deriving from the Ward agglomerative criteria. The outcome of this algorithm440

is a hierarchy of possible segmentations that the practitioner should choose from.441

To aid this final selection step, the Ward and Calinski and Harabasz criteria are both442

computed to determine the most significant segmentation within the full hierarchy.443

The advantages of such a simple minded algorithm is two-fold: first the general444

principles of the method do not require deep knowledge of statistical methods and as445

such can be grasped by the application domain specialist, the paleontologist in the446

presented example. Second, the computational cost of the segmentation is relatively447

low, even for a rather large dataset, and the processing time is on par with the typical448

measurement time for such spectral images. Hence, this method can be applied to449

the data while the experiment is still ongoing and used for a rapid diagnostic and450

experimental feedback within the global data acquisition strategy.451

As a diagnostic tool, this method helps at finding a balance between a higher452

signal to noise ratio of individual spectra and the measurement time and radiation453

dose to which the sample is subjected. In such µXRF imaging modality, the SNR is454

inversely proportional to the square root of the radiation dose. Increasing the SNR455

increases the risk of producing radiation-induced damages to the sample during456

the experiment, but also often leads to increased measurement time and fewer (or457

smaller) samples being characterized in the allocated time slot. In such a situation458

it is therefore important to quickly and properly assess the optimal exposure param-459

eters (mostly time, but possibly also beam intensity), which need to be sufficient to460

produce exploitable spectra while avoiding any risk of radiation-induced damages to461

the simple and enabling large maps to be collected. Using simulated data, we have462

shown that the algorithm is robust to an increased level of measurement noise and463

as such is not only helpful in asserting an optimal measurement time but also in464

reducing it and lowering the radiation dose.465

In our SNR test application, it seems indeed that the behavior of H is a good early466

indicator of the quality of the observed data, providing insight into the discrimination467

power of the collected spectra. Indeed the curve in Figure 6G illustrates a behavior468

significantly different from the ones of Figure 6A,C,E, which we link to the fact that469

the segmentation obtained in Figure 6H is not very informative. In other words,470

the behavior of the H criterion as classes get aggregated is a good predictor of the471

usefulness of the segmentation that will be attained with the data.472
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Note that while the simulated data tested herein demonstrate that the behavior473

of the H criterion depends on the SNR, it seems equally likely that this behavior also474

depends on the type of morphology of the sample being imaged. This is somehow475

evidenced in our real data test when comparing the H criterion found in the four476

quadrants of the image, three of which have a very similar morphology and H crite-477

rion curve, while the fourth bottom-right quadrant, with mostly sediment and very478

little fossil features, produces a slightly different H criterion curve.479

As a continuation of the present work, one could assess how the H criterion480

depends on the morphology of the image. From our currently limited experience, it481

seems likely that if the studied dataset exhibits a similar type of morphology in all the482

image, a possibility is to choose a sub-image of size N0 representative of the image483

morphology. The parameter β can be then evaluated by β0 = Ĵ0/N0 (and Ĵ is chosen484

as the nearest integer to β0×N ), leading to a drastic reduction of the computational485

cost of the evaluation of this parameter. Furthermore, this would promote β to be a486

scalar descriptor of the image’s morphology.487

Last but not least, this method provides to the practitioner a complete view of488

the information contained in a given spectral image dataset. When such data are489

collected, the prior knowledge on the chemistry of the sample often leads to the490

selection of very specific features of the spectra to be analyzed. Moreover, although491

entire µXRF spectra mostly contain XRF elemental information they also include ad-492

ditional, non-elemental signal including escape and sum peaks, as well as inelastic493

and elastic scattering and peaks from elements present in the air between the sam-494

ple and the detector such as Ar (Figure 1C). Depending on the sample, some of these495

peaks can carry interesting signal and one could need to keep them in the analysis.496

However, it is often preferred to remove them from the analysis and crop the spectra497

to the “true” elemental signal only, or only a few peaks, prior to the analysis. This498

can simply be done at the practitioner’s discretion prior to applying the algorithm.499

Conversely, we here propose to confront the result of such focused analysis with500

an analysis based on the full spectra. Indeed, both the focused and complete analy-501

sis could be performed using the same algorithm but selecting for each one either a502

subset or the fullset of the spectral channels of the image. Using such an approach503

the application scientist could both use the data in a prior knowledge directed ap-504

proach, verifying pre-existing hypothesis on the nature of the signal to be detected505

in the spectral image, as well as a unsupervised discovery approach where the full506

spectral dataset is subjected to the segmentation with a priori on which channel is507

This manuscript is currently submitted to peer-review.



22 G. Celeux, S. X. Cohen, A. Grimaud, and P. Gueriau

of importance to exploit the image. Finally, this algorithm might even be used as508

a post-hoc analysis to test a posteriori the importance of unexpected features of the509

spectra as discovered discriminant features of the sample, as exemplified herein with510

the iron-rich phase located around the fossil fish orbit for which the cluster mean511

spectrum provided complementary and new information to decipher its chemistry.512
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