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Hierarchical clustering of spectral images with spatial constraints for the rapid1

processing of large and heterogeneous datasets2

Gilles Celeux∗ , Serge X. Cohen† , Agnès Grimaud‡ , and Pierre Gueriau§3

Abstract.4
When dealing with full spectrum images in which each pixel is characterized by a full spectrum, ie. spectral5

images, standard segmentation methods, such as k-means or hierarchical clustering might be either inapplicable6
or inappropriate ; one aspect being the multi-GB size of such dataset leading to very expensive computations.7
In the present contribution, we propose an approach to spectral image segmentation combining hierarchical8
clustering and spatial constraints. On the one hand spatial constraints allow to implement an algorithm with9
a reasonable computation time to obtain a segmentation and with a certain level of robustness with respect10
to the signal-to-noise ratio since the prior knowledge injected by the spatial constraint partially compensates11
for the increase in noise level. On the other hand hierarchical clustering provides a statistically sound and12
known framework that allows accurate reporting of the instrument noise model. In terms of applications,13
this segmentation problem is encountered particularly in the study of ancient materials that benefits from the14
wealth of information provided by the acquisition of spectral images. In the last few years, data collection has15
been considerably accelerated, enabling the characeterization of the sample with a high dynamic range in both16
the spatial dimensions and composition and leading to an average size of a single dataset in the tens of GB17
range. Hence we also considered computational and memory complexity when developing the herein proposed18
algorithm. Taking on this application domain, we illustrate the proposed algorithm on a X-ray fluorescence19
spectral image collected on an ca. 100 Myr fossil fish, as well as on simulated data to assess the sensitivity20
of the results to the noise level. For such experiment, the lower sensitivity to noise simultaneously lead to an21
increase in the spatial definition of the collected spectral image, thanks to the faster acquisition time, and to22
a reduction in the potentially harmful radiation dose density to which the samples are subjected.23

Key words. Spectral image segmentation, Ward criterion, spatial constraint, ancient material, X-ray fluores-24
cence25

1. Introduction26

Spectral imaging, ie. the collection of images for which each pixel is characterized by a full27

spectrum (see eg. Fig. 1), is a tool of choice for simultaneously obtaining physico-chemical28

information (eg. elemental, chemical or mineralogical composition), and the morphological29

information essential for describing heterogeneous materials. Spectral images are particularly30

used to study ancient materials, such as encountered in archaeology and paleontology or as31
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part of the cultural heritage research, which are very diverse but share the particularity of32

being composite and heterogeneous on several scales [6]. They are also the results of multiple33

processes at various time scales, inducing strong constraints in terms of handling and physico-34

chemical characterization whilst often having limited a priori certainties concerning them35

[5, 4, 7], making spectral imaging a unique approach to collect information on past states36

recorded in the materiality of these objects, and to understand their alteration through time.37

Figure 1. Synchrotron XRF mapping of major-to-trace elements of the anterior part (skull on the right)
of the yet undescribed fish MHNM-KK-OT 03a from the Jbel Oum Tkout Lagerstätte (Upper Cretaceous, 100
Myr, Morocco). (a): optical photograph. (b): false color overlay of the distributions of two rare earth elements,
neodymium (red) and yttrium (green), and of iron (blue), reconstructed from a full spectral decomposition of
the data (modified from [16]). Acquisition parameters: 100 x 100 µm2 scan step, 50,851 pixels. Lighter tones
indicate higher concentrations. Arrows and asterisks in b are discussed in the text. (c): Mean (dark colored; 90
pixels) and central individual (light colored) spectra from the boxes in b, corresponding to fossilized muscles (red
and orange), bone (dark and light green) and the sedimentray matrix (dark and light blue), respectively. Spectra
are shown using a logarythmic scale, vertically shifted for clarity. Main peaks are labelled. Abbreviations: esc.,
escape peak; ES, elastic scattering; IS, inelastic scattering; x2, sum (double) peak. Note that the Ar-peak does
not arise from the sample but is due to excitation of Ar in the air (ca. 0.93 %) between the sample and the
detector.

Spectral imaging datasets make several GB or even tens of GB, depending on the type of38

detection used. Indeed, while 1D detectors typically record thousands of values (ie. a few KB)39

per pixel, 2D array detectors record images of several MB per pixel (eg. [1, 3, 17]). As such,40
2
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these datasets are too massive to be timely exploited with standard algorithms and we need to41

develop algorithms able to analyze such images and if possible in a timeframe compatible with42

the data collection time to provide feedback possibilities on the measurements (eg. [1, 3]). To43

our knowledge, no existing method tackles this very problem. One should also consider that44

on those measurements involving a probe, increasing the signal to noise ratio (SNR) comes at45

a cost: increasing probe/material interaction indeed most often leads to longer measurement46

times and always to a higher radiation dose deposited in the material. In such a framework47

one has to find a balance between SNR and dose/time, so that the experiment is conclusive48

without producing alteration of the samples during the analysis (eg. [15]).49

In this article, we focus on the question of image segmentation when the dataset comes50

from X-ray fluorescence (XRF) mapping, a technique by which each individual pixel is char-51

acterized by its XRF spectrum, providing elemental composition information on that pixel52

(Fig. 1). The classical approach to plot quickly or even live elemental distributions recorded53

by XRF mapping consists of integrating the signal (ie. photons counted by the detector) in54

spectral regions of interest (ROI) corresponding to targeted element peaks. This does not,55

however, hold true elemental distribution images as such ROI integrations additionally in-56

clude significant contributions from other elements or phenomena (namely scattering, and57

sum and escape peaks); these overlapping biases can only be circumvented by applying slower58

approaches allowing a spectral decomposition of the dataset (eg. [16, 1]). Furthermore, while59

providing dimensional reduction, such processing does not provide a segmentation of the ma-60

terial and could only be an intermediate step towards the identification of specific constituent61

of the material and their morphological features. An efficient model when it comes to analyse62

this type of samples is to consider that an image is made of a set of patches of uniform com-63

position taken from a small, but unknown, set of compositions. This leads to two determining64

parameters for the model, the number of present compositions, ie. the number of classes in65

the segmentation, and the mean size of the patches which can also be measured as the patch66

density, that is the number of patches per unit surface of the image.67

In the following, in Sect. 2, we propose a hierarchical segmentation algorithm combining68

the characteristics of hierarchical clustering with the imaging properties of a composite mate-69

rial. Compared to other methods, such k-means, agglomerative clustering provides a natural70

entry to apply spatial constraints. Furthermore, in the targeted imaging applications, the71

number of classes (K) is not known a priori, and hierarchical clustering provides a structured72

way for the application domain scientist to assess the likely value(s) of K. In other words, we73

aim at proposing a hierarchical classification procedure with spectral dissimilarities allowing74

to take into account the spatial proximities between the pixels. Furthermore, the proposed75
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method is able to estimate the patch density when it is not known a priori.76

It is important to understand the nature of the signal measured in such experiment. In77

XRF, we measure the energy of the photons emitted by the material when it is subjected78

to monochromatic incident radiation. Because this re-emission phenomenon is a stochastic79

process, the measured spectrum is an empirical sampling of the law of this process. Instead80

of analyzing the signal using generic tools for Euclidean spaces, such as the ℓ2 distance, it is81

therefore more relevant to use tools adapted to the comparison of population samples. On82

this respect, the algorithm we propose is based on the χ2 as a tool to assess homogeneity83

between two samples, in the present case two pixels for which we want to test the potential84

similarity in composition.85

After defining the terms and notations used throughout this article, we expose the general86

framework of our dissimilarity measure (using a Ward criteria based on χ2, Sect. 2.2), and87

then propose an approach to impose spatial constraint upon the agglomerative process of the88

hierarchical clustering in Sect. 2.3, effectively segmenting the image into patches. Then, in89

Sect. 3, we concentrate on the proper steps at which the spatial constraint should be released90

to properly account for non connex domains made of the same material. We further consider91

the appropriate number of classes at which the agglomeration process should be stopped92

in Sect. 4. To illustrate our approach, we apply the proposed algorithm on a true dataset93

corresponding to the XRF mapping of a fossil teleost fish, including both the analysis of the94

experimental dataset in Sect. 5, and, in Sect. 6, the analysis of a synthetic dataset resembling95

the experimental one but providing the possibility to simulate various signal to noise ratio96

and giving insight into the robustness of the proposed algorithm to the noise level.97

2. The proposed hierarchical clustering method98

2.1. Notations and definitions99

A spectral image of N pixels is considered. And each pixel i ∈ {1, ..., N} is characterized100

by a spectrum101

Si = (si(p))p∈{1,...,P}, where si(p) is the number of photon counts for pixel i in energy canal102

p.103

For i ∈ {1, ..., N} and p ∈ {1, ..., P}, let104

fi,p =
si(p)

s��
and tip =

si(p)

si �
where si � =

P∑
p=1

si(p) and s�� =
N∑
i=1

si �.105

The aim is to propose a hierarchical classification procedure of spectra (Si)i∈{1,...,N} using106

the conditional distributions (or profiles) of pixels107

((tip)p∈{1,...,P},i∈{1,...,N}), the pixel i being weighted by fi � = si �/s�� (i ∈ {1, ..., N}).108

Since these profiles are probability distributions and the aim is to assess homogeneity109
4
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between two pixels from their spectra (i.e. their potential similarity in composition), the110

comparaison of two profiles is made using the χ2 euclidean distance.111

So for two pixels i and j, let

d2χ2(Si,Sj) =

P∑
p=1

(tip − tjp)2

f� p

with f� p =
N∑
i=1

fi,p =
1

s��

N∑
i=1

si(p).112

Remarks:113

• It is assumed that f� p ̸= 0 for all p. If there is a canal p such that f� p = 0, then114

si(p) = 0 for all i ∈ {1, ..., N}, hence tip = tjp = 0 for all (i, j) ∈ {1, ..., N}2. Thus, such115

canals are removed beforehand.116

• It is assumed that si � ̸= 0 for all pixel i (otherwise it would mean that the detector117

did not received any photon for the corresponding pixel).118

2.2. The Ward criterion119

Using the χ2 euclidean distance as the proximity measure between the spectra of pixels,120

the hierarchical clustering is designed with the agglomerative Ward criterion δχ2 [23], which121

consists of minimizing the increase of the within-cluster inertia at each step. This agglomer-122

ative criterion for two clusters C and C ′ is:123

(2.1) δχ2(C,C ′) =
µCµC′

µC + µC′
d2χ2(SgC , SgC′ )124

where µC =
∑
i∈C

fi � is the weight of cluster C and SgC the gravity center of cluster C;125

SgC = (gc(p))p∈{1,...,P} with gc(p) =
1

µC

∑
i∈C

fi �t
i
p.126

Note that the gravity center of the union of two clusters is SgC∪C′ =
µCSgC + µC′SgC′

µC + µC′
.127

128

Usually, the dissimilarity matrix between clusters is updated with a specific occurrence of129

the general Lance and Williams formula, see [12, 18] for example. The dissimilarity between130

the possible aggregation Ci ∪ Cj of two clusters Ci and Cj and any other cluster Ck can be131

expressed by:132
5
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a b

Figure 2. Schematic representation of the second-order neighborhoods approach. (a): neighbors for a
pixel that is not located on an edge or at a corner. (b): example of clusters spatially neighboring; on the top,
the blue and purple clusters are spatially neighboring, while on the bottom left the green and orange clusters
are spatially neighboring. All are spatially neighboring to the grey cluster. On another hand, for example, the
purple and orange clusters are not spatially neighboring.

δχ2(Ck, Ci ∪ Cj) =
1

µCi + µCj + µCk

×(
(µCk

+ µCi)δχ2(Ck, Ci)

+ (µCk
+ µCj )δχ2(Ck, Cj)

−µCk
δχ2(Ci, Cj)

)
(2.2)133

134

2.3. Taking the spatial constraint into account135

With spectral images, the dimension of the dissimilarity matrix at the start is too large136

(O(N2) ≈ 20 GB) and it is computationally too expensive (O(N2P ) ≈ 5× 1012 operations to137

design directly a hierarchical clustering with the Ward criterion described above). Moreover,138

as mentioned in the introduction, an image is made of a set of patches of uniform composition.139

Hence it is desirable that the clusters form unions of patches, that is spatially connected sub-140

clusters.141

For these two reasons, following [19], we propose a first hierarchical clustering algorithm142

that only aggregates two spatially neighboring clusters. More precisely, two clusters C and143

C
′ are spatially neighboring if there exists (i, i

′
) ∈ C × C

′ such that i and i
′ are neighboring144

pixels.145

In our application, we will consider second-order neighborhoods (Fig. 2). It implies that146

most of the pixels have eight neighbors (Fig. 2a), while the pixels on an edge or at the corners147

have only five and three neighbors, respectively.148

The advantage of this algorithm is, at each step, that for each cluster only a few dissimi-149
6
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larities have to be computed. Nevertheless, for this reason, it is not possible to use the Lance150

and Williams formula [12, 18] to update the dissimilarities. Therefore, equation 2.1 is used to151

compute the dissimilarities needed to design the hierarchy.152

153

The hierarchical algorithm with the spatial constraint operates following the steps below:154

Algorithm 2.1 Hierarchical spatial clustering
Initialization : computes the χ2 distances between two spectra for neighboring pixels
Define L := 1
while L < N do

Aggregates the two neighboring clusters with the smallest Ward criterion value (or χ2

distances at the first step)
Updates the neighborhoods of clusters.
Updates the dissimilarity matrix (for spatially neighboring clusters).
L := L+ 1

end while

If this algorithm is run until it remains only two clusters, we get a hierarchy where at each155

step the clusters are spatially connected. However, it is not desirable to impose such clusters156

connexion during the final steps. Indeed, from the point of view of the application domain157

scientist/specialist, the relevant clusters, while connected at fine scale, have no reason to be158

spatially connected at large scale. For example, when imaging a fossil, several bones will have159

a similar composition without touching each other.160

As a consequence, the proposed algorithm taking the spatial constraint into account is run161

for J steps leading to spatially connected clusters, J being large (the choice of the switching162

step J will be discussed hereafter in Sect. 3). It leads to (N − J) spatially connected clusters163

or patches as called before. Then from these (N − J) patches, unconstrained agglomerative164

hierarchical clustering algorithm with the Ward criterion is used. Thus, the proposed final165

clusters are union of the (N − J) patches. Obviously, a relevant number of final clusters is to166

be chosen; this point is discussed in Sect. 4.167

3. Selecting the switching step J168

In the following, the patch density (for a unit surface of one pixel) is noted δp(∈]0, 1[).169

When the patch density of the sample is known a priori, the switching step is set so that the170

number of patches is an integer close to δp × N . This leads to release the spatial constraint171

at the step being the closest integer to (1 − δp) × N . Still, in most cases, the patch density172

is unknown and we herein propose a method to estimate this morphological characteristic of173

the sample and to select J .174
7
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3.1. The proposed criterion175

In order to select the switching step J in the proposed hierarchical algorithm, a crite-
rion balancing the between-cluster inertia with a regularization term measuring the spatial
homogeneity of the clusters is proposed. This criterion to be maximized has the form:

H(J) = B(J) + αG(J),

where α ∈ R+, B(J) is the between-cluster inertia of a partition of the pixels into (N − J)176

patches and G(J) is a measure of the spatial homogeneity of this partition. Following [2], we177

consider178

G(J) =
1

2

J∑
k=1

N∑
i=1

N∑
j=1

cikcjkvij

where vij = 1 if i and j are neighbors, and 0 otherwise (with vii = 0 by convention), and179

cik = 1 if i ∈ Ck and 0 otherwise.180

181

To weight the B(J) and G(J) terms of the criterion, we can choose the scalar α to get182

a perfect balance between the two extreme cases : N clusters (ie. a nul intra-cluster inertia)183

and one cluster (ie. a perfect spatial homogeneity).184

In the extreme situation of a partition into N clusters, we have G(N) = 0 and in the185

opposite extreme situation G(1) =
1

2

N∑
i=1

N∑
j=1

vij ≈
1

2

N∑
j=1

8 = 4N. (For simplicity, we consider186

here improperly that each pixel has 8 neighbors.)187

188

Assuming a balance between these two extreme situations H(N) = H(1) leads to α =
T

4N
,189

with T = B(N) being the total inertia of the whole set of pixels. Thus, the criterion to be190

maximized is191

H(J) = B(J) +
T

4N
G(J).192

193

194

However, as it will be apparent in the case study in Sect. 5, the choice of this criterion195

leads to the selection of a too large number of agglomerative steps Jmax, in other words of196

(N − Jmax) patches that are too small.197
8

This manuscript is currently submitted to peer-review.



In order to select a more relevant number of patches, from which to release spatial con-198

straints in the clustering, we propose to make use of the “one standard deviation” proce-199

dure proposed in [8] to cut a decision tree. This procedure consists of computing H(K) for200

K = N, . . . , 1, then to compute the standard error sd(H) of the resulting (H(K))K=N,...,1 and201

choosing the smallest Ĵ such that202

H(Ĵ) ≥ H(Jmax)− sd(H).

The rationale for this procedure is to determine the value of Ĵ that corresponds to a203

balanced number of patches that provides a good compromise between the between-cluster204

inertia and the spatial homogeneity. Note that, while it is expected that H(J) increases205

from H(N) to H(Jmax) and then decreasing back to H(1), there is no guarantee for such a206

behaviour. Such an unexpected behaviour of the H criterion is obtained in particular for low207

signal to noise ratio image in Fig. 6e and g. In order to also address these types of behaviour208

of H we express the choice of Ĵ in a different way :209

Ĵ = max{J |(J ≤ Jmax) and (H(J) ≤ H(Jmax)− sd(H))}

And this leads to estimate the patch density δp by δ̂p =
N − Ĵ

N
.210

3.2. Heuristic to obtain Ĵ in practice211

In practice, depending on the image size, it can be too long to compute H(K) for all212

K ∈ {N, ..., 1}. In this case, the following heuristic approach is proposed to determine Ĵ213

using the patch density:214

As a first step, the idea is to compute (H(ℓ×by))l, with by ≥ 1 chosen to have a reasonable215

computing time and ℓ ∈ N∗ such that ℓ×by ≤ N . However, after testing on the studied dataset216

described in Sect. 5, we noticed that the obtained Ĵ can change significantly according to the217

value by. Hence, by must be small enough to obtain a correct value for Ĵ (but we do not know218

its order of magnitude).219

On the other hand, as seen above, the proper switching step Ĵ and the proposed estimation220

of the patch density δp are related. Therefore, in this case, we first propose to evaluate the221

“constant” δp, which is linked to the morphology of the studied image, by cutting the image222

into q sub-images (Ik)k∈{1,...,q} with size (Nk)k∈{1,...,q}. Then, for each sub-image Ik, Ĵk is223

computed with the criterion described in Sect. 3.1 leading to an evaluation of δp: δ̂p,k =224
Nk − Ĵk

Nk
. For the studied dataset in Sect. 5, we used four sub-images combined with a small225

value of by. We could verify that obtained δ̂p,k have approximately the same values.226
9
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Finally, we take as estimation of δp: δ̄p =
1

q

q∑
k=1

δ̂p,k and Ĵ is chosen as the closest integer227

to (1− δ̄p)×N .228

Remark: q must be chosen small enough so that the sub-images are large enough to reflect229

the studied image in terms of patch density. And q is also chosen to obtain an estimation of230

δp in a “reasonable” computation time.231

4. Selecting the number of clusters232

4.1. Statistical heuristics233

A first and simple way to properly assess the number of clusters from a dendrogram is to234

select the numbers of clusters producing the greater jumps in the plot of the cluster criterion235

values (ie. here the Ward criterion), against the number of clusters. We refer to this strategy236

as the jump heuristic.237

An another natural and popular criterion for choosing a relevant number of clusters K in238

a hierarchy designed with the Ward criterion is to use the value of K corresponding to the239

maximum value of the Calinski and Harabasz criterion (CHC, [9])240

CHC(K) =
Tr(BK)

(K − 1)
/
Tr(WK)

(N −K)
,241

where BK and WK are respectively the between-cluster matrix and the within-cluster matrix
of the partition C1, . . . , CK . In the present context, we have

Tr(BK) =
K∑
k=1

µCk
d2χ2(SgCk

, Sg)

and

Tr(WK) =

K∑
k=1

∑
i∈Ck

fi.d
2
χ2(SgCk

,Si)

where Sg is the gravity center of the N pixels, and for k = 1, . . . ,K, SgCk
is the gravity center242

of cluster Ck.243

This criterion has been shown to perform well in practical situations (see [20]).244

4.2. Particular considerations in the case of spectral images from Ancient materials science245

Although we listed above several ways to statistically determine the number of clusters to246

retain, it is however not recommended to choose a unique number of clusters with a formal247

technique in the case of ancient material studies. Instead, we here prefer to use the following248

strategy:249
10
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• Preselect several number of clusters using the jump heuristic and the CHC.250

• Analyze the preselected clusterings with the help of a specialist of the application251

domain. Having this purpose in mind, it is desirable to provide the specialist with the252

mean spectra of the preselected clusters, which represent complementary information253

to those obtained from usual spectral image processing (eg. ROI integration and full254

spectral decomposition, see Sect. 1) and are, as such, critical to assess the robustness255

and benefits of the approach.256

• Select with this person the clustering(s) to be interpreted.257

The present paper exemplifies in the following section this way of assessing ancient material258

clusterings.259

5. Application to a real world dataset260

5.1. Data description261

The proposed algorithm has been applied to a spectral image dataset collected on a yet262

undescribed ca. 100-million-year-old new teleost fish from Morocco (Fig. 1, [16]). The infor-263

mation embedded in this dataset is a synchrotron micro-X-ray fluorescence (µXRF) major-264

to-trace-elemental map, where a full XRF spectrum has been recorded for each pixel, over265

a 22.5 × 22.5 mm2 area using a scan step of 100 × 100 µm2 and a 500 ms counting time266

(211 × 241 = 50, 851 pixels in total; Fig. 1b,c). The experiment was performed at the Dif-267

fAbs beamline (SOLEIL synchrotron, Gif-sur-Yvette, France) using a 17.2 keV incident beam268

focused down to a diameter of 10× 7 µm2.269

Very interestingly, the distribution of strontium and yttrium Kα lines, which substi-270

tute for calcium in calcium phosphates such as bone apatite [16, 14] and whose information271

depths under hard X-rays reach 200-300 µm in pure apatite with the used geometry, revealed272

previously indiscernible anatomical features in this peculiar new fish (Fig. 1b, [16]). They273

particularly unveil the morphology of the first vertebrae (white arrows in Fig. 1b), the neuro-274

cranium that extends into a sharp supraoccipital at the top of the skull, the metapterygoid,275

and the hyomandibular that appears dorsally flared. These new information help decipher-276

ing the affinities of this new fossil species (in preparation). The other main outcome of this277

work was that a false color overlay of the distribution of different rare earth elements (REEs;278

eg. neodymium and yttrium, red and green distributions in Fig. 1b, respectively) discriminates279

phosphatized muscles (yellow arrows in Fig. 1b and bone [16].280

281
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5.2. Resulting hierarchical spatial clustering282

In the following, the proposed algorithm has been implemented with R [21] on this image283

of N = 211 × 241 = 50, 851 pixels, for which at each pixel i the spectrum Si has P = 1780284

values. The size of the file containing the dataset is 1.7 GB.285

For such a dataset, it is too long to compute the criterion H described in Sect. 3 for all286

K ∈ {N, ..., 1} in order to determine the switching step Ĵ . Hence, as explained in Sect. 3.2, the287

image has been cut into q = 4 sub-images with size 100×115 and Ĵ has been computed. So δp288

is evaluated from four (δ̂p,k)k values obtained on the four sub-images with H computed every 5289

agglomerative steps (by = 5). We obtained: 0.15913, 0.06957, 0.14435 and 0.14478 respectively290

for top right, bottom right, bottom left and top left sub-images leading to δ̄p ≃ 0.12946 and291

consequently Ĵ = 44268. Note that the (δ̂p,k)k values are close for the three sub-images having292

a similar type of morphology, whilst the bottom-right sub-image consist mostly of sediment293

and is more homogeneous than other sub-images.294

To select the number of clusters, we plotted the jump heuristic and the CHC against the295

number of clusters (starting with two clusters) (Fig. 3). These criteria are here to complement296

the knowledge of the application domain specialist, in the case of the present example a297

paleontologist (PG). The jump heuristic leads to propose 6 clusters, whilst the CHC leads to298

propose either 6 or 9 clusters, corresponding to the two local maxima of the curve.299

Looking more precisely at the differences between 6 and 9 clusters, it can be seen that300

only the light green cluster of the 6-cluster solution is modified (Fig. 3c–e). The difference301

image (Fig. 3e) illustrates how the light green cluster incorporates three smaller clusters: one302

with 5 black isolated pixels, one green cluster with 50 isolated pixels, and a light-red cluster303

with 3014 pixels spread out it several patches. If the additional clusters with 5 and 50 isolated304

pixels seem of little interest, the light-red cluster appears to be interesting, as it highlights305

areas richer in iron (asterisks in Fig. 1b) that are not clearly obvious in the µXRF elemental306

maps obtained using ROI integration or spectral decomposition.307

From a paleontological point of view, the segmentation offered by the selected clustering308

(Fig. 4a) does not improve the visualization of hidden anatomical details, but provides new309

insights into the chemical composition of the different tissues and materials present in the310

sample through the mean spectra of the clusters (Fig. 4b). While individual elemental distri-311

butions show no strong contrast in the incorporation of light REEs between bone and muscles312

(Fig. 4c), following the distribution of calcium, which they substitute and that originates from313

a comparable depth (Fig. 4d), the yttrium distribution shows strong enrichment in the bone314

as compared to the muscles (Fig. 4e). In fact, in the muscles area (yellow arrows in Fig. 1b),315

rather than following the type of tissue the yttrium distribution largely follows the thickness of316
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Figure 3. Defining the number of clusters used for hierarchical segmentation.(a, b): Ward (a) and Calin-
ski and Harabasz (b) criteria against the number of clusters (starting with 2 clusters). (c–e): False color
distributions obtained for 6 (c) and 9 (d) clusters, and difference (e).

the material as shown by X-ray microtomography where most of the muscles region appear to317

be very thin or not discernible (Fig. 4f). Consequently, thickness and information depth were318

likely responsible for the apparent REE contrast. Nevertheless, the selected clustering clearly319

discriminates bone from phosphatized muscles (blue/purple and dark red clusters in Fig. 4a,320

respectively) on the basis on the full µXRF spectra. The muscles dark red cluster appears321

richer in Fe and Pb (Fig. 4b), which come from a reddish fossil biofilm made of iron hydroxides322

and covering the phosphatized muscles [15, 11, 13] rather than the phosphatic material itself.323

In turn, the bone blue and purple clusters contain much higher contents in heavier REEs (Lβ1324

emission lines from erbium and ytterbium particularly stand out in Fig. 4b, as they do not325

fall in the same energy domain as major elements [16]). This is most likely again an effect of326

information depths and thickness of the tissues.327
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This manuscript is currently submitted to peer-review.



On another hand, the selected clustering isolates well the large, highly absorbing iron328

grains situated posteriorly to the orbit (asterisks in Fig. 1b; light red cluster in Fig. 4a,b)329

that prevent segmentation of the first vertebrae and posterior part of the head from the X-ray330

tomography data (asterisks in Fig. 4f). These grains are particularly rich in Fe, Ti, Cu and331

Ga, but not so much in Pb (Fig. 4b) and are therefore, besides their larger size, a different332

material than the reddish thin film of iron hydroxides covering most of the fossil.333

By providing a global discrimination of the different materials composing the fossil much334

faster than a full spectral decomposition (approximatively two hours here for a computer335

with specifications i5-4590 @ 3.3GHz, 4 Core, four days using the freeware PyMCA [22]),336

the proposed clustering methodology provides a robust and quick way to extract, “live” at337

the beamline, chemical information not hampered by local heterogeneity or contamination338

for further higher resolution mapping of areas of interest, or point analyzes using, e.g., X-ray339

absorption spectroscopy.340

Figure 4. Hierarchical segmentation of the synchrotron µXRF spectral image dataset of the yet un-
described fish (MHNM-KK-OT 03a) from the Jbel Oum Tkout Lagerstätte (Upper Cretaceous, 100 Myr,
Morocco). (a): Segmentation results when 9 classes are selected with the proposed algorithm, disabling spatial
constraint at agglomerative step Ĵ = 44268. (b): mean spectra from 4 of the 9 classes visible in (a). (c–e): con-
centration maps of neodymium (c), calcium (d) and yttrium (e). The color scale goes from dark blue (for low
concentration) to red (high concentration) going through green and yellow. (f): micro-computed tomography
3D rendering of the fossil within the sedimentary matrix after rapid segmentation. Voxel size: (24.7 mm)3.
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5.3. Regarding the chosen switching step J341

One may wonder if the value of the switching step, J , has an influence on the results for342

the choice of the number of clusters and for the clusters shape. In this section we tackle this343

question by applying the algorithm using switching steps equal to J = 43000 and J = 46000.344

In Fig. 5 are the graphic representations of the jump heuristic and the CHC for J = 43000345

and J = 46000, respectively.346

For J = 43000, the jump heuristic plot leads to propose 6 or 10 clusters while the CHC347

leads to 3, 10 or 12 clusters (Fig. 5a,b). For J = 46000, the jump heuristic plot leads to348

propose 5 clusters or maybe 9, and the CHC leads to propose 9 clusters (first local maximum)349

or more (Fig. 5e,f). These results show that the value of the switching step has an influence350

on the result of the hierarchical clustering. Comparisons of the graphic representations for351

J = 43000, 44268 and 46000 (Fig. 5c,d,g) clearly identify the segmentation resulting from352

the latter as absolutely unsatisfactory as many fossil areas are found mixed up with the353

surrounding sediment (Fig. 5g). Graphic representations for J = 43000 and 44268 appear354

in turn very similar. Nevertheless, representation for J = 44268 (the computed Ĵ value, see355

Sect. 5.2) more accurately reflects elemental distributions (Fig. 1b), particularly regarding the356

iron-rich phase located around the fish orbit.357

6. Assessing robustness of the segmentation to signal to noise ratio358

To assess the robustness of the proposed segmentation method in regard of the signal-359

to-noise ratio (SNR) we prepared simulated data having features close to the one of the360

experimental dataset used in the previous section, i.e. a spectral image with N = 211×241 =361

50, 851 pixels and at each pixel is associated a spectrum of size P = 1, 700 canals. Starting362

with a single realistic model, we generated a family of simulated observation with a decreasing363

SNR. Performing the segmentation on this family of simulated data, which are all originating364

from the same generative model, enabled us to assess the effect of SNR levels on the proposed365

segmentation results. To achieve consistency we generated this simulated dataset in two steps:366

(i) we constructed a zero noise model that would correspond to a likely observed object; (ii)367

from this zero noise model we generated simulated observation by applying a noise generation368

process that mimics the physical observation process while providing control on the noise level369

of the simulated data. We will present the two steps of this procedure, then the results in370

terms of segmentation.371

6.1. Building a zero noise model and simulating data with controlled SNR372

We based our zero noise model on the above studied experimental dataset that we regu-373

larized using local polynomial regression smoothing, through the loess function in R [21, 10].374
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Figure 5. Hierarchical segmentation for different choices of switching step J = 43000 and J = 46000. (a,
b): Ward (a) and Calinski and Harabasz (b) criteria against the number of clusters (starting with 2 clusters)
for J = 43000. (c): False color distributions obtained for J = 43000 (10 clusters). (d): False color distributions
obtained for J = 44268 (9 clusters). (e, f): Ward (e) and Calinski and Harabasz (f) criteria against the number
of clusters (starting with 2 clusters) for J = 46000. (g): False color distributions obtained for J = 46000 (9
clusters).

To account for the nature and the dynamic of the signal on the observed X-ray fluorescence375

data, the weight was set to the reciprocal square root (1/
√
·) of the observation when the376
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observation is not 0, and to 1 otherwise. The second important parameter was the span of377

the filter that we set to 0.02 in order to account for the approximate width of the fluorescence378

bands on such spectra. Finally, a thresholding was performed on the regularized form so that379

its value is never lower than 0.001.380

While this procedure is producing a realistic zero noise X-ray fluorescence spectra in each381

pixel of our image, it has to be noted that this should not be considered as a ground truth382

version of the observation. Indeed, since each spectrum is dealt with independently from383

its neighbors, there is no spatial regularization and the estimations performed are far from384

optimal for detector channels that have measured a low level of photons.385

The noise present in the observation is mostly due to the counting statistic of each channel386

of the detector. Hence, we can generate a simulated observed spectra with the same SNR as the387

raw observation, by simply replacing the value of the zero noise spectra by a single realization388

of a Poisson random process with its parameter being the zero noise spectra’s value. We389

generated such a dataset, for which we have, by construction, the ground truth and a SNR390

equal to the one of the raw dataset. This simulated dataset is later on referred as a plus 0db391

dataset (p0db in short).392

Starting from the same zero noise model, we also generated simulated observation with393

lower SNR. Since each theoretical value is replaced by a Poisson realization, dividing the model394

by a factor of 2 would decrease the SNR by a factor of
√
2, which correspond to removing395

3db to the SNR. This simulated dataset is later on referred as a minus 3db dataset (m3db in396

short). Repeating this procedure two more times enabled us to generate a minus 6db dataset397

(m6db) and finally a minus 9db dataset (m9db).398

Each of these datasets resembles what could have been measured if the exposure time399

was divided by two incrementally. In other words, obtaining for the m3db dataset a spatial400

clustering similar to that obtained for the p0db dataset would lead to the conclusion that the401

experiment could have been done twice faster without significant loss in term of the explained402

morphology of the fossil. A shorter exposure time also means a lower radiation dose for the403

sample and correspondingly lower risk of alteration during and due to the measurements.404

One has to note that the protocol we use here to smooth the data is not valid as a denoising405

algorithm since it has some advert effects on the concentration of the trace elements, and in406

particular the REEs. Still, while the obtained spectra are not properly estimating the ground407

truth of this particular fossil, they have all the features making them likely to be present in408

a fossil. Hence, the generated dataset should be considered as the XRF spectral image of a409

purely phantom fossil, enabling us to test the proposed hierarchical clustering algorithm on410

totally controlled data.411
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6.2. Impact of noise on hierarchical spatial clustering results412

Following the same process as in Sect. 5.2, we use the criterion H to determine the switch-413

ing step Ĵ . In Fig. 6, we can see that the curve of H has the expected shape for datasets414

p0db (Fig. 6a) and m3db (Fig. 6c), while the shape begins to change for dataset m6db (Fig. 6e)415

and is significantly different in m9db (Fig. 6g) (the curve correspond to the top left quadrant416

sub-image but the same behaviour is observed for the three other sub-images). The values417

obtained for these dataset are: Ĵ = 44063 for p0db, Ĵ = 45871 for m3db, Ĵ = 48988 for418

m6db. Such choice is not possible for dataset m9db for the exact reason explained at the419

end of Sect. 3.1, hence for each of the four sub-image we took the smallest Ĵk on the right420

(greater than 8000) such that H(Ĵk) ≥ H(Jmax) − sd(H) (where here Jmax and sd(H) are421

values computed for the associated sub-image Ik). This lead to choose Ĵ = 50387 for m9db.422

The higher the noise, the higher the Ĵ , getting closer to the total number of pixels N in the423

image.424

According to the plot of the jump heuristic, to the CHC and to clusters appearing to425

be interesting from a paleontological point of view, the selected number of clusters is 11 for426

p0db (Fig. 6b), 10 for m3db (Fig. 6d) and 9 for m6db (Fig. 6f). Concerning the m9db dataset,427

no fossil morphology can be seen when the selected number of clusters is 10 or lower, hence428

we have decided to represent the 11-cluster segmentation for this dataset (Fig. 6h).429

As expected, similarity of the graphic representations as compared to the original and430

simulated datasets quickly degrades with increasing noise, and most morphological information431

is lost for dataset with a SNR greater than or equal to 6db from the original data. Increasing432

further the level of noise leads to totally unexploitable data, with which the morphology of the433

sample could hardly be observed, as demonstrated on the m9db simulation (Fig. 6h). Note434

that, in the m3bd representation (Fig. 6d), the pale yellow triangular area that “appears” on435

the top right of the image and clusters with some of the fossil corresponds to air (there is no436

sample there, see Fig. 1a); it otherwise clusters with the sediment in the other noise models,437

which can be explained by the geometry used during the experiment where the beam came438

from the right of the sample with a 45◦ angle, leading for pixels in that area to record the439

X-rays-sediment interaction below the fossil surface.440

7. Discussion441

In this article we propose a spatially constrained hierarchical clustering method to be442

applied on spectral images, in particular on energy resolved X-ray fluorescence images. The443

first aspect of the method is to choose an agglomerative criteria based on a dissimilarity444

measure that is consistent with the noise model of the measured spectra. Then, the main445
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aspect of this method is to apply constraints during the agglomerative process such that only446

spectra belonging to neighboring pixels could be clustered together. While this constraint is447

meaningful as long as the classes form small clusters on the image, it is obvious that when448

the number of classes is small this spatial constraint should not be applied anymore, bringing449

the problem of the proper step at which the spatial constraint should be released. To address450

this problem, we proposed a heuristic criterion that balances the spatial coherence of the451

proposed segmentation, as measured through the G penalization, and the between-cluster452

inertia deriving from the Ward agglomerative criteria. The outcome of this algorithm is a453

hierarchy of possible segmentations that the practitioner should choose from. To aid this final454

selection step, the Ward and Calinski and Harabasz criteria are both computed to determine455

the most significant segmentation within the full hierarchy.456

The advantages of such a simple minded algorithm is two-fold: first the general principles457

of the method do not require deep knowledge of statistical methods and as such can be grasped458

by the application domain specialist, the paleontologist in the presented example. Second,459

the computational cost of the segmentation is relatively low, even for a rather large dataset,460

and the processing time is on par with the typical measurement time for such spectral images,461

at least few hours. Hence, this method can be applied to the data while the experiment is462

still ongoing and used for a rapid diagnostic and experimental feedback within the global data463

acquisition strategy.464

As a diagnostic tool, this method helps at finding a balance between a higher signal to465

noise ratio of individual spectra and the measurement time and radiation dose to which the466

sample is subjected. In such µXRF imaging modality, the SNR is inversely proportional to467

the square root of the radiation dose. Increasing the SNR increases the risk of producing468

radiation-induced damages to the sample during the experiment, but also often leads to in-469

creased measurement time and fewer (or smaller) samples being characterized in the allocated470

time slot. In such a situation it is therefore important to quickly and properly assess the op-471

timal exposure parameters (mostly time, but possibly also beam intensity), which need to be472

sufficient to produce exploitable spectra while avoiding any risk of radiation-induced damages473

to the simple and enabling large maps to be collected. Using simulated data, we have shown474

that the algorithm is robust to an increased level of measurement noise and as such is not475

only helpful in asserting an optimal measurement time but also in reducing it and lowering476

the radiation dose.477

In our SNR test application, it seems indeed that the behavior of H is a good early indica-478

tor of the quality of the observed data, providing insight into the discrimination power of the479

collected spectra. Indeed the curve in Fig. 6g illustrates a behavior significantly different from480
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the ones of Fig. 6a,c,e which we link to the fact that the segmentation obtained in Fig. 6h is481

not very informative. In other words, the behavior of the H criterion as classes get aggregated482

is a good predictor of the usefulness of the segmentation that will be attained with the data.483

Note that while the simulated data tested herein demonstrate that the behavior of the H484

criterion depends on the SNR, it also depends on the type of morphology of the sample being485

imaged and in particular in the patch density. This is evidenced in our real data test when486

comparing the H criterion found in the four quadrants of the image, three of which have a487

very similar morphology and H criterion curve, while the fourth bottom-right quadrant, with488

mostly sediment and very little fossil features, produces a slightly different H criterion curve.489

As a continuation of the present work, one could assess how the H criterion depends on490

patch density of the sample. From our currently limited experience, it seems likely that if491

the studied dataset exhibits a similar type of morphology in all the image, a possibility is to492

choose a sub-image of size N0 representative of the image morphology. The parameter δp can493

be then evaluated by δp,0 = N0−Ĵ0
N0

(and Ĵ is chosen as the nearest integer to (1− δp,0)×N),494

leading to a drastic reduction of the computational cost of the evaluation of this parameter.495

Furthermore, this promotes δp as a scalar descriptor of the image’s morphology.496

Last but not least, this method provides to the practitioner a complete view of the infor-497

mation contained in a given spectral image dataset. When such data are collected, the prior498

knowledge on the chemistry of the sample often leads to the selection of very specific features499

of the spectra to be analyzed. Moreover, although entire µXRF spectra mostly contain XRF500

elemental information they also include additional, non-elemental signal including escape and501

sum peaks, as well as inelastic and elastic scattering and peaks from elements present in the502

air between the sample and the detector such as Ar (Fig. 1c). Depending on the sample, some503

of these peaks can carry interesting signal and one could need to keep them in the analysis.504

However, it is often preferred to remove them from the analysis and crop the spectra to the505

“true” elemental signal only, or only a few peaks, prior to the analysis. This can simply be506

done at the practitioner’s discretion prior to applying the algorithm.507

Conversely, we here propose to confront the result of such focused analysis with an analysis508

based on the full spectra. Indeed, both the focused and complete analysis could be performed509

using the same algorithm but selecting for each one either a subset or the fullset of the510

spectral channels of the image. Using such an approach the application scientist could both511

use the data in a prior knowledge directed approach, verifying pre-existing hypothesis on the512

nature of the signal to be detected in the spectral image, as well as a unsupervised discovery513

approach where the full spectral dataset is subjected to the segmentation with a priori on514

which channel is of importance to exploit the image. Finally, this algorithm might even be515
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used as a post-hoc analysis to test a posteriori the importance of unexpected features of the516

spectra as discovered discriminant features of the sample, as exemplified herein with the iron-517

rich phase located around the fossil fish orbit for which the cluster mean spectrum provided518

complementary and new information to decipher its chemistry.519
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