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Hierarchical clustering of spectral images with spatial constraints for the rapid processing1

of large and heterogeneous data sets2

Gilles Celeux∗ , Serge X. Cohen† , Agnès Grimaud‡ , and Pierre Gueriau§3

Abstract.4
When dealing with full spectrum images in which each pixel is characterized by a full spectrum,5

i.e. spectral images, standard segmentation methods, such as k-means or hierarchical clustering6
might be either inapplicable or inappropriate ; one aspect being the multi-GB size of such data set7
leading to very expensive computations. In the present contribution, we propose an approach to8
spectral image segmentation combining hierarchical clustering and spatial constraints. On the one9
hand spatial constraints allow to implement an algorithm with a reasonable computation time to obtain10
a segmentation and with a certain level of robustness with respect to the signal-to-noise ratio since the11
prior knowledge injected by the spatial constraint partially compensates for the increase in noise level.12
On the other hand hierarchical clustering provides a statistically sound and known framework that13
allows accurate reporting of the instrument noise model. In terms of applications, this segmentation14
problem is encountered particularly in the study of ancient materials that benefits from the wealth of15
information provided by the acquisition of spectral images. In the last few years, data collection has16
been considerably accelerated, enabling the characeterization of the sample with a high dynamic range17
in both the spatial dimensions and composition and leading to an average size of a single data set in the18
tens of GB range. Hence we also considered computational and memory complexity when developing19
the herein proposed algorithm. Taking on this application domain, we illustrate the proposed algorithm20
on a X-ray fluorescence spectral image collected on an ca. 100 Myr fossil fish, as well as on simulated21
data to assess the sensitivity of the results to the noise level. For such experiment, the lower sensitivity22
to noise simultaneously lead to an increase in the spatial definition of the collected spectral image,23
thanks to the faster acquisition time, and to a reduction in the potentially harmful radiation dose24
density to which the samples are subjected.25

Key words. Spectral image segmentation , and Ward criterion , and spatial constraint , and ancient26
material , and X-ray fluorescence27
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1. Introduction28

Spectral imaging, i.e. the collection of images for which each pixel is characterized29

by a full spectrum (see e.g. Fig. 1), is a tool of choice for simultaneously obtaining30

physico-chemical information (e.g. elemental, chemical or mineralogical composi-31

tion), and the morphological information essential for describing heterogeneous ma-32

terials. Spectral images are particularly used to study ancient materials, such as33

encountered in archaeology and paleontology or as part of the cultural heritage re-34

search, which are very diverse but share the particularity of being composite and35

heterogeneous on several scales [6]. They are also the results of multiple processes36

at various time scales, inducing strong constraints in terms of handling and physico-37

chemical characterization whilst often having limited a priori certainties concerning38

them [5, 4, 7], making spectral imaging a unique approach to collect information39

on past states recorded in the materiality of these objects, and to understand their40

alteration through time.41

Conversely, extracting exhaustively the information contained in spectral images42

is also challenging, and requires the use of multivariate analysis strategies that al-43

low for the segmentation and/or the reduction of the dimensionality of the data set.44

The earliest and most commonly used methods are principal component analysis45

(PCA) and k-means clustering [31, 8, 32, 34, 28, 29, 14, 23]. Recently, the use46

of advanced statistical algorithms including Kullback-Leibler divergence [19] and t-47

distributed stochastic neighbourhood embedding (t-SNE) [15, 25, 23] have shown48

great promise to further discriminate and/or classify heterogeneities in spectral im-49

ages. Yet, the application of these approaches is often limited by the fact that modern50

spectral imaging data sets make several GB or even tens of GB, depending on the51

type of detection used. Indeed, while 1D detectors typically record thousands of52

values (i.e. a few KB) per pixel, 2D array detectors record images of several MB per53

pixel (e.g. [1, 3, 20]). As such, these data sets are too massive to be timely exploited54

with the standard algorithms aforementioned, and we need to develop algorithms55

able to analyze such images and if possible in a timeframe compatible with the data56

collection time to provide feedback possibilities on the measurements (e.g. [1, 3]).57

One should also consider that on those measurements involving a probe, increasing58

the signal-to-noise ratio (SNR) comes at a cost: increasing probe/material interac-59

tion indeed most often leads to longer measurement times and always to a higher60

radiation dose deposited in the material. In such a framework one has to find a61

balance between SNR and dose/time, so that the experiment is conclusive without62
2
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Figure 1. Synchrotron XRF mapping of major-to-trace elements of the anterior part (skull on the right)
of the yet undescribed fish MHNM-KK-OT 03a from the Jbel Oum Tkout Lagerstätte (Upper Cretaceous,
100 Myr, Morocco). (a): optical photograph. (b): false color overlay of the distributions of two rare earth
elements, neodymium (red) and yttrium (green), and of iron (blue), reconstructed from a full spectral
decomposition of the data (modified from [19]). Acquisition parameters: 100 x 100 µm2 scan step, 50,851
pixels. Lighter tones indicate higher concentrations. Arrows and asterisks in b are discussed in the text.
(c): Mean (dark colored; 90 pixels) and central individual (light colored) spectra from the boxes in b,
corresponding to fossilized muscles (red and orange), bone (dark and light green) and the sedimentray
matrix (dark and light blue), respectively. Spectra are shown using a logarythmic scale, vertically shifted
for clarity. Main peaks are labelled. Abbreviations: esc., escape peak; ES, elastic scattering; IS, inelastic
scattering; x2, sum (double) peak. Note that the Ar-peak does not arise from the sample but is due to
excitation of Ar in the air (ca. 0.93 %) between the sample and the detector.

producing alteration of the samples during the analysis (e.g. [18]).63

In this article, we focus on the question of image segmentation when the data64

set comes from X-ray fluorescence (XRF) mapping, a technique by which each indi-65

vidual pixel is characterized by its XRF spectrum, providing elemental composition66

information on that pixel (Fig. 1). The classical approach to plot quickly or even live67

elemental distributions recorded by XRF mapping consists of integrating the signal68

(i.e. photons counted by the detector) in spectral regions of interest (ROI) correspond-69

ing to targeted element peaks. This does not, however, hold true elemental distribu-70
3
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tion images as such ROI integrations additionally include significant contributions71

from other elements or phenomena (namely scattering, and sum and escape peaks);72

these overlapping biases can only be circumvented by applying slower approaches73

allowing a spectral decomposition of the data set (e.g. [19, 1]). Furthermore, while74

providing dimensional reduction, such processing does not provide a segmentation75

of the material and could only be an intermediate step towards the identification of76

specific constituent of the material and their morphological features. An efficient77

model when it comes to analyse this type of samples is to consider that an image is78

made of a set of patches of uniform composition taken from a small, but unknown,79

set of compositions. This leads to two determining parameters for the model, the80

number of present compositions, i.e. the number of clusters in the segmentation,81

and the mean size of the patches which can also be measured as the patch density,82

that is the number of patches per unit surface of the image.83

In the following, in Sect. 2, we propose a hierarchical segmentation algorithm84

combining the characteristics of hierarchical clustering with the imaging properties85

of a composite material. Compared to other methods, such as k-means, ascending86

hierarchical clustering provides a natural entry to apply spatial constraints. Fur-87

thermore, in the targeted imaging applications, the number of clusters (K) is not88

known a priori, and hierarchical clustering provides a structured way for the appli-89

cation domain scientist to assess the likely value(s) of K. In other words, we aim at90

proposing a hierarchical clustering procedure with spectral dissimilarities allowing91

to take into account the spatial proximities between the pixels. The herein proposed92

hierachical clustering with spatial constraint algorithm will be abbreviated by HCSC.93

Furthermore, the proposed method is able to estimate the patch density when it is94

not known a priori.95

It is important to understand the nature of the signal measured in such experi-96

ment. In XRF, we measure the energy of the photons emitted by the material when97

it is subjected to monochromatic incident radiation. Because this re-emission phe-98

nomenon is a stochastic process, the measured spectrum is an empirical sampling99

of the law of this process. Instead of analyzing the signal using generic tools for100

Euclidean spaces, such as the ℓ2 distance, it is therefore more relevant to use tools101

adapted to the comparison of population samples. On this respect, the algorithm102

we propose is based on the χ2 as a tool to assess homogeneity between two samples,103

in the present case two pixels for which we want to test the potential similarity in104

composition.105

4
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After defining the terms and notations used throughout this article, we expose106

the general framework of our dissimilarity measure (using a Ward criteria based on107

χ2, Sect. 2.2), and then propose an approach to impose spatial constraint upon the108

ascending process of the hierarchical clustering in Sect. 2.3, effectively segmenting109

the image into patches. Then, in Sect. 3, we concentrate on the proper steps at110

which the spatial constraint should be released to properly account for non connex111

domains made of the same material. We further consider the appropriate number112

of clusters at which the agglomeration process should be stopped in Sect. 4. To113

illustrate our approach, we apply the proposed algorithm on a true data set corre-114

sponding to the XRF mapping of a fossil teleost fish, including the analysis of the115

experimental data set in Sect. 5. In Sect. 6 we apply the proposed algorithm to a116

purely synthetic data set for which, by construction, the ground truth is both known117

and abides by the uniform patches model exposed supra. This allows us to compare118

the results of our proposed algorithm to both k-means and unconstrained hierar-119

chical ascending clustering in presence of various SNR. Whilst the uniform patches120

model is useful in the context of spectral image processing, it is still wrong, hence121

we perform, in Sect. 7, the analysis of a synthetic data set closer to the experimental122

one but providing the possibility to simulate various signal to noise ratio and giving123

insight into the robustness of the proposed algorithm to the noise level.124

2. The proposed hierarchical clustering method125

2.1. Notations and definitions126

A spectral image of N pixels is considered. Each pixel of the set I is indexed by127

i ∈ {1, ..., N} and is characterized by a spectrum128

Si = (si(p))p∈{1,...,P}, where si(p) is the number of photon counts for pixel i in energy129

channel p.130

For i ∈ {1, ..., N} and p ∈ {1, ..., P}, let131

fi,p =
si(p)

s��
and tip =

si(p)

si �
where si � =

P∑
p=1

si(p) and s�� =

N∑
i=1

si �.132

The aim is to propose a hierarchical classification procedure of spectra (Si)i∈{1,...,N}133

using the conditional distributions (or profiles) of pixels134

((tip)p∈{1,...,P},i∈{1,...,N}), the pixel i being weighted by fi � = si �/s�� (i ∈ {1, ..., N}).135

Since these profiles are probability distributions and the aim is to assess ho-136

mogeneity between two pixels from their spectra (i.e. their potential similarity in137

composition), the comparaison of two profiles is made using the χ2 euclidean dis-138

tance.139
5
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So for two pixels i and j, let

d2χ2(Si,Sj) =
P∑

p=1

(tip − tjp)2

f� p

with f� p =

N∑
i=1

fi,p =
1

s��

N∑
i=1

si(p).140

Remarks:141

• It is assumed that f� p ̸= 0 for all p. If there is a channel p such that f� p = 0,142

then si(p) = 0 for all i ∈ {1, ..., N}, hence tip = tjp = 0 for all (i, j) ∈ {1, ..., N}2.143

Thus, such channels are removed beforehand.144

• It is assumed that si � ̸= 0 for all pixel i (otherwise it would mean that the145

detector did not received any photon for the corresponding pixel).146

2.2. The Ward criterion147

Using the χ2 euclidean distance as the proximity measure between the spectra of148

pixels, the hierarchical clustering is designed with the agglomerative Ward criterion149

δχ2 [33], which consists of minimizing the increase of the within-cluster inertia at150

each step. This agglomerative criterion for two clusters C and C ′ is:151

(2.1) δχ2(C,C ′) =
µCµC′

µC + µC′
d2χ2(SgC , SgC′ )152

where µC =
∑
i∈C

fi � is the weight of cluster C and SgC the gravity center of cluster C;153

SgC = (gc(p))p∈{1,...,P} with gc(p) =
1

µC

∑
i∈C

fi �t
i
p.154

Note that the gravity center of the union of two clusters is SgC∪C′ =
µCSgC + µC′SgC′

µC + µC′
.155

156

Usually, the dissimilarity matrix between clusters is updated with a specific oc-157

currence of the general Lance and Williams formula, see [13, 21] for example. The158

dissimilarity between the possible aggregation Ci ∪ Cj of two clusters Ci and Cj and159

any other cluster Ck can be expressed by:160
6
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a b

Figure 2. Schematic representation of the second-order neighborhoods approach. (a): neighbors for
a pixel that is not located on an edge or at a corner. (b): example of clusters spatially neighboring; on the
top, the blue and purple clusters are spatially neighboring, while on the bottom left the green and orange
clusters are spatially neighboring. All are spatially neighboring to the grey cluster. On another hand, for
example, the purple and orange clusters are not spatially neighboring.

δχ2(Ck, Ci ∪ Cj) =
1

µCi + µCj + µCk

×(
(µCk

+ µCi)δχ2(Ck, Ci)

+ (µCk
+ µCj )δχ2(Ck, Cj)

−µCk
δχ2(Ci, Cj)

)
(2.2)161

162

2.3. Taking the spatial constraint into account163

With spectral images, the dimension of the dissimilarity matrix at the start is164

too large (O(N2) ≈ 20 GB) and it is computationally too expensive (O(N2P ) ≈ 5 ×165

1012 operations to design directly a hierarchical clustering with the Ward criterion166

described above). Moreover, as mentioned in the introduction, an image is made of167

a set of patches of uniform composition. Hence it is desirable that the clusters form168

unions of patches, that is spatially connected sub-clusters.169

For these two reasons, following [22], we propose a first hierarchical clustering170

algorithm that only aggregates two spatially neighboring clusters. More precisely,171

two clusters C and C
′ are spatially neighboring if there exists (i, i

′
) ∈ C × C

′ such172

that i and i
′ are neighboring pixels.173

In our application, we will consider second-order neighborhoods (Fig. 2). It im-174

plies that most of the pixels have eight neighbors (Fig. 2a), while the pixels on an175

edge or at the corners have only five and three neighbors, respectively.176

The advantage of this algorithm is, at each step, that for each cluster only a few177
7
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dissimilarities have to be computed. Nevertheless, for this reason, it is not possi-178

ble to use the Lance and Williams formula [13, 21] to update the dissimilarities.179

Therefore, equation 2.1 is used to compute the dissimilarities needed to design the180

hierarchy.181

182

The hierarchical algorithm with the spatial constraint operates following the183

steps below:184

Algorithm 2.1 Hierarchical spatial clustering
Initialization : computes the χ2 distances between two spectra for neighboring
pixels
Define L := 1
while L < N do

Aggregates the two neighboring clusters with the smallest Ward criterion value
(or χ2 distances at the first step)
Updates the neighborhoods of clusters.
Updates the dissimilarity matrix (for spatially neighboring clusters).
L := L+ 1

end while

If this algorithm is run until it remains only two clusters, we get a hierarchy185

where at each step the clusters are spatially connected. However, it is not desirable186

to impose such clusters connexion during the final steps. Indeed, from the point187

of view of the application domain scientist/specialist, the relevant clusters, while188

connected at fine scale, have no reason to be spatially connected at large scale.189

For example, when imaging a fossil, several bones will have a similar composition190

without touching each other.191

As a consequence, the proposed algorithm taking the spatial constraint into ac-192

count is run for J steps leading to spatially connected clusters, J being large (the193

choice of the switching step J will be discussed hereafter in Sect. 3). It leads to194

(N − J) spatially connected clusters or patches as called before. Then from these195

(N−J) patches, unconstrained ascending hierarchical clustering algorithm with the196

Ward criterion is used. Thus, the proposed final clusters are union of the (N − J)197

patches. Obviously, a relevant number of final clusters is to be chosen; this point is198

discussed in Sect. 4.199

8
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3. Selecting the switching step J200

In the following, the patch density (for a unit surface of one pixel) is noted δp(∈201

]0, 1[). When the patch density of the sample is known a priori, the switching step is202

set so that the number of patches is an integer close to δp ×N . This leads to release203

the spatial constraint at the step being the closest integer to (1−δp)×N . Still, in most204

cases, the patch density is unknown and we herein propose a method to estimate205

this morphological characteristic of the sample and to select J .206

3.1. The proposed criterion207

In order to select the switching step J in the proposed hierarchical algorithm, a
criterion balancing the between-cluster inertia with a regularization term measuring
the spatial homogeneity of the clusters is proposed. This criterion to be maximized
has the form:

H(J) = B(J) + αG(J),

where α ∈ R+, B(J) is the between-cluster inertia of a partition of the pixels into208

(N − J) patches and G(J) is a measure of the spatial homogeneity of this partition.209

Following [2], we consider210

G(J) =
1

2

J∑
k=1

N∑
i=1

N∑
j=1

cikcjkvij

where vij = 1 if i and j are neighbors, and 0 otherwise (with vii = 0 by convention),211

and cik = 1 if i ∈ Ck and 0 otherwise.212

213

To weight the B(J) and G(J) terms of the criterion, we can choose the scalar214

α to get a perfect balance between the two extreme cases : N clusters (i.e. a nul215

intra-cluster inertia) and one cluster (i.e. a perfect spatial homogeneity).216

In the extreme situation of a partition into N clusters, we have G(N) = 0 and in217

the opposite extreme situation G(1) =
1

2

N∑
i=1

N∑
j=1

vij ≈ 1

2

N∑
j=1

8 = 4N. (For simplicity, we218

consider here improperly that each pixel has 8 neighbors.)219

220

Assuming a balance between these two extreme situations H(N) = H(1) leads to

α =
T

4N
, with T = B(N) being the total inertia of the whole set of pixels. Thus, the

9
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criterion to be maximized is

H(J) = B(J) +
T

4N
G(J).

However, as it will be apparent in the case study in Sect. 5, the choice of this221

criterion leads to the selection of a too large number of agglomerative steps Jmax, in222

other words of (N − Jmax) patches that are too small.223

In order to select a more relevant number of patches, from which to release spatial224

constraints in the clustering, we propose to make use of the “one standard devia-225

tion” procedure proposed in [9] to cut a decision tree. This procedure consists of226

computing H(J) for J = N, . . . , 1, then to compute the standard error sd(H) of the227

resulting (H(J))J=N,...,1 and choosing the smallest Ĵ such that228

H(Ĵ) ≥ H(Jmax)− sd(H).

The rationale for this procedure is to determine the value of Ĵ that corresponds
to a balanced number of patches that provides a good compromise between the
between-cluster inertia and the spatial homogeneity. Note that, while it is expected
that H(J) increases from H(N) to H(Jmax) and then decreasing back to H(1), there
is no guarantee for such a behaviour. Such an unexpected behaviour of the H cri-
terion is obtained in particular for low signal to noise ratio image in Fig. 8e and g.
In order to also address these types of behaviour of H we express the choice of Ĵ in
a different way :

Ĵ = max{J |(J ≤ Jmax) and (H(J) ≤ H(Jmax)− sd(H))}

And this leads to estimate the patch density δp by δ̂p =
N − Ĵ

N
.229

3.2. Heuristic to obtain Ĵ in practice230

With the advent of fast detectors and rapid data collection capabilities larger231

spectral images may be collected to access higher spatial definition of the sample.232

When the image size becomes too large, it can be too long to compute H(J) for all J ∈233

{N, ..., 1}. In this case, two following heuristic approaches are proposed to determine234

Ĵ faster:235

At first, the idea is to compute (H(ℓ×by))l, with by ≥ 1 chosen to have a reasonable236

computing time and ℓ ∈ N∗ such that ℓ×by ≤ N . After testing on the studied data set237
10
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described in Sect. 5, we noticed a significant speed gain (see Tab. 1 showing a 35%238

gain between by = 1 and by = 5). Notice that the obtained Ĵ can change significantly239

according to the value by. Hence, by must be small enough to obtain a correct value240

for Ĵ (but we do not know its order of magnitude). Anyway, increasing further the by241

parameter is not leading to much speed increase (data not shown).242

If the gain from this first approach is not sufficient to compute the value of the243

switching step Ĵ , we can tap on the relation seen above between Ĵ and the proposed244

estimation of the patch density δp. We propose to evaluate the “constant” δp, which is245

linked to the morphology of the studied image, by cutting the image into q sub-images246

(Ik)k∈{1,...,q} with size (Nk)k∈{1,...,q}. Then, for each sub-image Ik, Ĵk is computed with247

the criterion described in Sect. 3.1 leading to an evaluation of δp: δ̂p,k =
Nk − Ĵk

Nk
.248

Finally, we take as estimation of δp: δ̄p =
1

q

q∑
k=1

δ̂p,k and Ĵ is chosen as the closest249

integer to (1− δ̄p)×N .250

Remark: q must be chosen small enough so that the sub-images are large enough251

to reflect the studied image in terms of patch density. And q is also chosen to obtain252

an estimation of δp in a “reasonable” computation time.253

4. Selecting the number of clusters254

4.1. Statistical heuristics255

A first and simple way to properly assess the number of clusters from a dendro-256

gram is to select the numbers of clusters producing the greater jumps in the plot257

of the cluster criterion values (i.e. here the Ward criterion), against the number of258

clusters. We refer to this strategy as the jump heuristic.259

An another natural and popular criterion for choosing a relevant number of clus-
ters K in a hierarchy designed with the Ward criterion is to use the value of K corre-
sponding to the maximum value of the Calinski and Harabasz criterion (CHC, [10])

CHC(K) =
Tr(BK)

(K − 1)
/
Tr(WK)

(N −K)
,

where BK and WK are respectively the between-cluster matrix and the within-cluster
matrix of the partition C1, . . . , CK . In the present context, we have

Tr(BK) =
K∑
k=1

µCk
d2χ2(SgCk

, Sg)

11
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and

Tr(WK) =
K∑
k=1

∑
i∈Ck

fi.d
2
χ2(SgCk

,Si)

where Sg is the gravity center of the N pixels, and for k = 1, . . . ,K, SgCk
is the260

gravity center of cluster Ck.261

This criterion has been shown to perform well in practical situations (see [24]).262

4.2. Practical considerations in the case of segmentation of spectral images263

Although we listed above several ways to statistically determine the number of264

clusters to retain, it is however not recommended to choose a unique number of265

clusters with a formal technique when dealing with data coming from an applied266

scientifc domain, as it is the case of ancient material studies. Instead, we here267

prefer to use the following strategy:268

• Preselect several number of clusters using the jump heuristic based on the269

Ward criterion or local maximum of the CHC.270

• Analyze the preselected clusterings with the help of a specialist of the appli-271

cation domain. Having this purpose in mind, it is desirable to provide the272

specialist with the mean spectra of the preselected clusters, which represent273

complementary information to those obtained from usual spectral image pro-274

cessing (e.g. ROI integration and full spectral decomposition, see Sect. 1) and275

are, as such, critical to assess the robustness and benefits of the approach.276

• Select with this person the clustering(s) to be interpreted.277

The present paper exemplifies in the following section this way of assessing ancient278

material clusterings.279

4.3. Matching colors when representing multiple segmentations280

Visual comparison of different segmentation results might be a difficult task281

since visual perception of a segmentation may be strongly affected by the mere per-282

mutation of the false color palette used to differentiate between clusters. When the283

segmentations to be compared belong to the same hierarchy, as is the case in Fig. 3,284

one may use the hierarchy itself to propose an optimal match of the palettes used285

to represent both segmentations. At each ascending step, the newly agglomerated286

cluster takes the color of its larger ascendant, hence minimizing the perceptual dif-287

ference between the ascendant and the descendant segmentation.288

False color palette matching is more tricky when the segmentation do not have
a hierarchical relationship, as is the case of most representation proposed in this

12
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article. We based our appraoch onto the use of the Rand index [27] which provides a
global measure of similarity between two different segmentations of the same image.
Given (Xl)l∈{1,..,r} and (Ym)m∈{1,..,s} two segmentations of the same image, in other
words they are two partitions of the set I, their similarity is measured by :

R((Xl), (Ym)) =
a+ b(

N
2

)
with a being the number of pairs of pixels, {i, j} ⊂ I, which are elements of the same289

cluster both in segmentation (Xl) and (Ym) and b being the number of pairs of pixels290

which are elements of different clusters both in segmentation (Xl) and (Ym) :291

a = |{{i, j} ⊂ I | ∃(l,m) such {i, j} ⊂ Xl and {i, j} ⊂ Ym}|292

b = |{{i, j} ⊂ I | ∃(l,m) such i ∈ Xl, j /∈ Xl, i ∈ Ym, j /∈ Ym}|293294

Both these cardinals may be decomposed as a double summation on indices of
both segmentation, l and m. Precisely :

a =
r∑

l=1

s∑
m=1

|{{i, j} ⊂ Xl ∩ Ym}|

while b needs a 1
2 factor to ensure that each pair is not counted twice :

b =
1

2

r∑
l=1

s∑
m=1

|{{i, j} | i ∈ Xl ∩ Ym, j ∈ Xc
l ∩ Y c

m}|

where Xc
l and Y c

m are respectively the complements of Xl and Ym in I. Using these295

decomposition, we can now express the Rand index as a sum over {1, .., r} × {1, .., s}296

of partial Rand indices measuring how well a given cluster Xl match to cluster Ym :297

R((Xl), (Ym)) =
1(
N
2

) r∑
l=1

s∑
m=1

(al,m + bl,m)298

with al,m = |{{i, j} ⊂ Xl ∩ Ym}|299

bl,m =
1

2
|{{i, j} | i ∈ Xl ∩ Ym, j ∈ Xc

l ∩ Y c
m}|300

301302
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To match colors of segmentation (Ym) onto the one used for segmentation (Xl),303

we use the index matching injection {1, .., r} → {1, .., s}, l 7→ h(l) that maximizes the304

sum of corresponding partial Rand indices :305

r∑
l=1

(
al,h(l) + bl,h(l)

)
considering that, when r > s, al,h(l) = bl,h(l) = 0 when h(l) is not defined. Conversely,306

when r < s all indices m not in the image of injection h have to be colored by a color307

not used in the representation of (Xl).308

5. Application to a real world data set309

5.1. Data description310

The proposed algorithm has been applied to a spectral image data set collected311

on a yet undescribed ca. 100-million-year-old new teleost fish from Morocco (Fig. 1,312

[19]). The information embedded in this data set is a synchrotron micro-X-ray fluo-313

rescence (µXRF) major-to-trace-elemental map, where a full XRF spectrum has been314

recorded for each pixel, over a 22.5×22.5 mm2 area using a scan step of 100×100 µm2315

and a 500 ms counting time (211× 241 = 50, 851 pixels in total; Fig. 1b,c). The exper-316

iment was performed at the DiffAbs beamline (SOLEIL synchrotron, Gif-sur-Yvette,317

France) using a 17.2 keV incident beam focused down to a diameter of 10× 7 µm2.318

Very interestingly, the distribution of strontium and yttrium Kα lines, which sub-319

stitute for calcium in calcium phosphates such as bone apatite [19, 17] and whose320

information depths under hard X-rays reach 200-300 µm in pure apatite with the321

used geometry, revealed previously indiscernible anatomical features in this pecu-322

liar new fish (Fig. 1b, [19]). They particularly unveil the morphology of the first323

vertebrae (white arrows in Fig. 1b), the neurocranium that extends into a sharp324

supraoccipital at the top of the skull, the metapterygoid, and the hyomandibular325

that appears dorsally flared. These new information help deciphering the affinities326

of this new fossil species (in preparation). The other main outcome of this work was327

that a false color overlay of the distribution of different rare earth elements (REEs;328

e.g. neodymium and yttrium, red and green distributions in Fig. 1b, respectively)329

discriminates phosphatized muscles (yellow arrows in Fig. 1b and bone [19].330

5.2. Resulting hierarchical spatial clustering331

In the following, the proposed algorithm has been implemented with R [26] on332

this image of N = 211× 241 = 50, 851 pixels, for which at each pixel i the spectrum Si333
14
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Figure 3. Defining the number of clusters used for hierarchical segmentation (a, b): Ward (a) and
Calinski and Harabasz (b) criteria against the number of clusters (starting with 2 clusters). (c–e): False
color distributions obtained for 5 (c) and 10 (d) clusters, and difference (e).

has P = 1780 values. The size of the file containing the data set is 1.7 GB.334

For this data set, it is possible to compute the criterion H described in Sect. 3335

for all J ∈ {N, ..., 1} in order to determine the switching step Ĵ . We obtain Ĵ = 44175336

(and an evaluation of the patch density δ̂p ≃ 0.13139).337

To select the number of clusters, we plotted the Ward criterion and the CHC338

against the number of clusters (starting with two clusters) (Fig. 3). These criteria are339

here to complement the knowledge of the application domain specialist, in the case340

of the present example a paleontologist (PG). The jump heuristic leads to propose 5341

clusters, whilst the CHC leads to propose 10 clusters (or 5), corresponding to the342

local maxima of the curve.343

Looking more precisely at the differences between 10 and 5 clusters, two major344
15

This manuscript is currently submitted to peer-review.



clusters merging (in terms of number of pixels involved) are observed: they involve345

the purple and gold clusters (6729 and 8123 pixels, respectively), and the light-346

red and light-green clusters (3204 and 21945 pixels) (Fig. 3c,d). In addition, the347

smaller jade and pale yellow clusters (87 and 435 pixels; mostly distributed on the348

top right corner of the image) also merge. The remaining mergers (the dark- and349

light-orange clusters–50 and 5 pixels– that merge into the light-green one), can be350

better pinpointed on the difference image (Fig. 3e). Of particular interest is the351

light-red cluster, as it highlights areas richer in iron (asterisks in Fig. 1b) that are352

not clearly obvious in the µXRF elemental maps obtained using ROI integration or353

spectral decomposition. On another hand, merging of the purple and gold clusters354

makes it possible to see again the neural spines behind the skull (top right corner355

of the image), well visible on the specimen but not discriminated in the 5-classes356

clustering analysis.357

From a paleontological point of view, the segmentation offered by the selected358

clustering (Fig. 4a) does not improve the visualization of hidden anatomical details,359

but provides new insights into the chemical composition of the different tissues and360

materials present in the sample through the mean spectra of the clusters (Fig. 4b).361

While individual elemental distributions show no strong contrast in the incorpo-362

ration of light REEs between bone and muscles (Fig. 4c), following the distribu-363

tion of calcium, which they substitute and that originates from a comparable depth364

(Fig. 4d), the yttrium distribution shows strong enrichment in the bone as com-365

pared to the muscles (Fig. 4e). In fact, in the muscles area (yellow arrows in Fig. 1b),366

rather than following the type of tissue the yttrium distribution largely follows the367

thickness of the material as shown by X-ray microtomography where most of the368

muscles region appear to be very thin or not discernible (Fig. 4f). Consequently,369

thickness and information depth were likely responsible for the apparent REE con-370

trast. Nevertheless, our clustering clearly discriminates bone from phosphatized371

muscles (blue/purple and dark red clusters in Fig. 4a, respectively) on the basis372

on the full µXRF spectra. The muscles dark-red cluster appears richer in Fe and373

Pb (Fig. 4b), which come from a reddish fossil biofilm made of iron hydroxides and374

covering the phosphatized muscles [18, 12, 16] rather than the phosphatic material375

itself. In turn, the bone blue and purple clusters contain much higher contents in376

Sr, Y and heavy REEs (Lβ1 emission lines from erbium and ytterbium particularly377

stand out in Fig. 4b, as they do not fall in the same energy domain as major ele-378

ments [19]). This is most likely again an effect of information depths and thickness379
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Figure 4. Hierarchical segmentation of the synchrotron µXRF spectral image data set of the yet
undescribed fish (MHNM-KK-OT 03a) from the Jbel Oum Tkout Lagerstätte (Upper Cretaceous, 100 Myr,
Morocco). (a): Segmentation results when 10 clusters are selected with the proposed algorithm, disabling
spatial constraint at step Ĵ = 44175. (b): mean spectra from 4 of the 10 clusters visible in (a). (c–e):
concentration maps of neodymium (c), calcium (d) and yttrium (e). The color scale goes from dark blue
(for low concentration) to red (high concentration) going through green and yellow. (f): micro-computed
tomography 3D rendering of the fossil within the sedimentary matrix after rapid segmentation. Voxel
size: (24.7 mm)3.

of the tissues.380

On another hand, the obtained clustering isolates well the large, highly absorb-381

ing iron grains situated posteriorly to the orbit (asterisks in Fig. 1b; light-red cluster382

in Fig. 4a,b) that prevent segmentation of the first vertebrae and posterior part of383

the head from the X-ray tomography data (asterisks in Fig. 4f). These grains are par-384

ticularly richer in Ti, Cr, Fe and Pb (Fig. 4b) and are therefore, besides their larger385

size, a different material than the reddish thin film of iron hydroxides covering most386

of the fossil.387

388

Concerning the computational time, the proposed algorithm, as well as all other389

algorithm used for comparison herein, has been run on a computer with an AMD390

EPYC-3 CPU (EPYC 7542) with 32 cores running at 3.4GHz and having 512GB of391
17
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Algorithm Step Parameters Processing time

HCSC

spat. const. clust.

211× 241 px ; not est. H 102 s
211× 241 px ; by = 1 181 s
211× 241 px ; by = 5 118 s
100× 115 px ; by = 5† 13 s

dist. mat. comp.

J = 44175/6676 patches 127 s
J = 46000/4851 patches 111 s

J = 44175/6676 patches ; OpenCL‡ 12 s
J = 46000/4851 patches ; OpenCL‡ 7 s

clustering J = 44175/6676 patches 3 s
J = 46000/4851 patches 1 s

k-means
k = 10, n = 100 64min
k = 15, n = 100 78min
k = 20, n = 100 104min

Table 1
Computational cost of the herein implemented or tested spectral image segmentation algorithms. All

computations were performed on the exact same computer, based on a AMD EPYC-3 CPU (EPYC 7542)
with 32 cores running at 3.4GHz and having 512GB of shared RAM. All computations were done using
single threaded code except † for which each quadrant is computed in a separate thread (4 threads in
total) and ‡ exploiting all the 32 cores of the CPU through the use of OpenCL on CPU (POCL). Independent
runs of each of these processes show small timing variation, in the range of up to 20%.

shared RAM. Tab. 1 provides the timing of the computation decomposed in the spa-392

tially constrained phase (spat. const. clust) and, for the final round of unconstrained393

hierarchical clustering, the full distance matrix computation (dist.mat.comp) and the394

clustering (clustering) itself which uses Lance-William formulae.395

Full segmentation of the image took three to four minutes when estimating Ĵ396

and using the estimated value to release spatial constraints. This time could be397

decreased to slightly above two minutes if Ĵ is estimated using an aggressive tech-398

nique (using a by = 5 value for computing H(J)). If the patch density δp is known a399

priori fifteen extra seconds could be spared on the computation. While this is not400

significant on the tested data set, we expect this difference to increase with larger401

images.402

We also tried to determine the switching step Ĵ by cutting the image into q = 4403

sub-images with size 100×115 which took 15s by sub-image. While using sub-images404

to estimate H(J) does not brings any time benefit on this image, we foresee that it will405

help keeping low computational time on larger spectral images. So δp is evaluated406

from four (δ̂p,k)k values obtained on the four sub-images with H computed every 5407

steps (by = 5). Moreover we obtained: 0.15913, 0.06957, 0.14435 and 0.14478 respectively408
18
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for top right, bottom right, bottom left and top left sub-images leading to δ̄p ≃ 0.12946409

and consequently Ĵ = 44268 (compared to Ĵ = 44175 when considering the full image).410

Note that the (δ̂p,k)k values are close for the three sub-images having a similar type411

of morphology, whilst the bottom-right sub-image consist mostly of sediment and is412

more homogeneous than other sub-images.413

By providing a global discrimination of the different materials composing the414

fossil much faster than a full spectral decomposition (less than four minutes here415

(Tab. 1) and several hours to a few days using the freeware PyMCA [30]), the pro-416

posed clustering methodology provides a robust and quick way to extract, “live” at417

the beamline, chemical information not hampered by local heterogeneity or contam-418

ination for further higher resolution mapping of areas of interest, or point analyzes419

using, e.g., X-ray absorption spectroscopy.420

5.3. Regarding the chosen switching step J421

One may wonder if the value of the switching step, J , has an influence on the422

results for the choice of the number of clusters and for the clusters shape. In this423

section we tackle this question by applying the algorithm using switching steps equal424

to J = 43000 and J = 46000. In Fig. 5 are the graphic representations of the jump425

heuristic and the CHC for J = 43000 and J = 46000, respectively.426

For J = 43000, the jump heuristic plot leads to propose 6 or 10 clusters while the427

CHC leads to 3, 10 or 12 clusters (Fig. 5a,b). For J = 46000, the jump heuristic plot428

leads to propose 5 clusters or maybe 9, and the CHC leads to propose 9 clusters (first429

local maximum) or more (Fig. 5e,f). These results show that the value of the switch-430

ing step has an influence on the result of the hierarchical clustering. Comparison of431

the graphic representations for J = 43000, 44175 and 46000 (Fig. 5c,d,g) clearly identi-432

fies the segmentation resulting from the latter as absolutely unsatisfactory as many433

fossil areas are found mixed up with the surrounding sediment (Fig. 5g). Graphic434

representations for J = 43000 and 44175 appear in turn very similar. Nevertheless,435

representation for J = 44175 (the computed Ĵ value, see Sect. 5.2) more accurately436

reflects elemental distributions (Fig. 1b), particularly regarding the iron-rich phase437

located around the fish orbit.438

5.4. Comparison with k-means based segmentation439

In this paragraph we compare the results obtained with the proposed HCSC
algorithm with k-means clustering. To be close to what was done above, we apply
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Figure 5. Hierarchical segmentation for different choices of switching step J = 43000 and J = 46000.
(a, b): Ward (a) and Calinski and Harabasz (b) criteria against the number of clusters (starting with 2
clusters) for J = 43000. (c): False color distributions obtained for J = 43000 (10 clusters). (d): False color
distributions obtained for J = 44175 (10 clusters). (e, f): Ward (e) and Calinski and Harabasz (f) criteria
against the number of clusters (starting with 2 clusters) for J = 46000. (g): False color distributions
obtained for J = 46000 (9 clusters). Colors of (c) and (g) were matched to the colors of (d) using the
approach presented in Sect. 4.3
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the k-means algorithm to the data (Di)i∈{1,...,N} with

Di =

(
tip√
f� p

)
p∈{1,...,P}

i.e. the conditional distributions of pixels, the pth coordinate being divided by
√
f� p440

(see Sect. 2.1).441

The number of clusters K is a priori unknown so here it must be arbitrarily442

determined in advance with the advice of the application domain specialist or the443

k-means algorithm must be run for several values. In general it is safer to overesti-444

mate the number of clusters rather than risking underestimating it, hence we used445

K = 15 and K = 20 clusters. Tests were performed using the function kmeans from446

the stats package of R and requesting 100 random initializations (parameter n in the447

suite of the text) to limit the risk of finding a sub optimal local minimum due to the448

stochastic nature of the algorithm. On our test computer, these runs took respec-449

tively 1h18 and 1h44. Obviously, estimating the value of K through analysis of results450

of multiple run of the k-means with different K would then lead to a much higher451

computational time, even-though we may decide to run less random initializations,452

practically trading off quality of the results to decrease computational time as ex-453

emplified and illustrated in Sect. 6. For sake of full comparison, we also performed454

k-means using K = 10 (completed in 1h04) to meet the best conditions for comparing455

the segmentation resulting from k-means with the best result of the proposed HCSC456

algorithm. Segmentations obtained by these runs of k-means are visible in Fig. 6.457

From the point of view of data interpretation, all three segmentations obtained458

using k-means clustering (using K = 10, K = 15 and K = 20) pinpoint the muscles459

(dark-red cluster) and highly absorbing iron grains (light-red cluster), with growing460

differences as the number of classes increases. The results obtained with our HCSC461

approach and k-means with K = 10 are highly comparable, except for two main fea-462

tures that appear on the k-means segmentation but are not discriminated using463

HCSC, namely (i) a nearly vertical light-red line to the right of the fossil, and (ii) a464

pink and gray triangle in the top-right corner of the image (Fig. 6a,b). The latter465

results from the discrimination between air around the sample (see Fig. 1a) and466

the sediment, which clearly represents an improvement as compared to the HCSC467

segmentation because air should be discriminated from sediment as both have very468

different compositions. Nonetheless, such a lack of discrimination in the HCSC469
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Figure 6. Comparison of the graphic representations obtained using our hierarchical clustering with
spatial constraints (a) and k-means clustering for 10 (b), 15 (c) and 20 (d) clusters. Correspondence
between colors and clusters is shown at the bottom, with only the first 10 colors used in (a) and all 20 in
(d). Using the approach proposed in Sec. 4.3, colors of (d) were matched to those of (a), then colors of (b)
and (c) were matched to those of (d)

segmentation can easily be explained by the geometry used during the experiment.470

Indeed, as the X-ray beam came from the right of the sample with a 45◦ angle, pixels471

corresponding to air in that area recorded the X-rays-sediment interaction below the472

fossil surface, which albeit at much lower concentrations produced similar spectra473

that clustered together when applying spatial constraints. The other feature that474

appears on the k-means segmentation but not in the HCSC one (i.e. the nearly ver-475

tical light-red line to the right of the fossil) is, on the other hand, rather problematic.476

Indeed, it clusters with the highly absorbing iron grains whereas it is purely artefac-477

tual and surely does not have the same elemental composition; it only corresponds478

to sample topography (see Fig. 1a,b). Furthermore, we can also notice that there is479

much more isolated small groups of pixels in the k-means segmentations than in480

the HCSC one, illustrating the main interest of using spatial constraints. Finally,481

another major difference is that k-means clustering takes a significantly longer time482

than the proposed HCSC algorithm (64 minutes for k-means using K = 10 and 100483

random initializations vs. 2–3 minutes for HCSC; Tab. 1) for a segmentation that484

usually looks like the HCSC results but is less readable, and in the present case485

mixes up topographical and chemical information.486
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6. A fully synthetic spectral image data set487

Unfortunately, the study of the above mentioned data set can not address the488

question of how well the proposed algorithm is able to produce the true model from489

the data. This is because we do not have access to the ground truth of the observed490

sample. To our knowledge there is no publicly accessible data set for which both491

the data and a validated ground truth model are widely available, and such data492

set are very hard to produce on true sample since synchrotron-based XRF mapping493

is considered to be one of the most informative methods. Hence we propose to use494

a fully synthetic (and generative) model for which we can simulate likely measured495

data. The synthesis of the data is performed in two successive steps in order to be496

able to control the SNR of the generated data. First, we use our model to generate,497

for each pixel, a noise-less spectrum that leads to what we call the zero noise model.498

Then, the spectrum of each pixel is replaced by a spectrum which noise resembles499

that of the physical XRF measurements. Note that we decided to generate a smaller,500

N = 100× 100, image so that we can rapidly test many different options of the HCSC501

algorithm but also, more importantly, of other algorithms for comparison.502

6.1. Building a fully synthetic zero noise model503

To be able to propose a noiseless spectrum for each pixel of the image, we start504

from the uniform patches model exposed in the introduction. We drew a fossil com-505

posed of six classes, namely sediment, bone, bone coating, muscles, eye and iron-506

rich grains. Each of those classes is assigned a reference spectrum taken from the507

mean spectra of the clusters identified above using HCSC (these mean spectra are508

obtained from a large number of pixels and hence exhibit the strong regularity of509

noiseless spectra, as can be seen on Fig. 4b). We also want our model to account510

for the overall amplitude variations that are due to small fluctuations of the incident511

beam as well as local sample density variations, since these amplitude variations512

affect the SNR of the spectra measured for each pixel. Each pixel is then assigned513

the reference spectrum of its class multiplied by an amplitude factor being the ex-514

ponential of a zero-mean Gaussian random field of appropriate variance and spatial515

regularity. While being very regular, as would be noiseless spectra, the generated516

pixel spectra exhibit levels in correspondence with the noisy ones observed in our517

real data set. This synthetic model provides ground truth both in terms of class and518

spectrum for each pixel.519
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6.2. Simulating data with controlled SNR from the zero noise model520

The noise present in the observation is mostly due to the counting statistic of521

each channel of the detector. Hence, we can generate a simulated observed spectra522

with the same SNR as the raw observation, by simply replacing the value of the zero523

noise spectra by a single realization of a Poisson random process with its parameter524

being the zero noise spectra ’s value. We generated such a data set, for which we have,525

by construction, the ground truth and a SNR equal to the one of the experimental526

data set. This simulated data set is later on referred as a plus 0dB data set (p0dB527

in short).528

Starting from the same zero noise model, we also generated simulated observation529

with lower SNR. Since each theoretical value is replaced by a Poisson realization,530

dividing the model by a factor of 2 would decrease the SNR by a factor of
√
2, which531

corresponds to removing 3dB to the SNR. This simulated data set is later on referred532

as a minus 3dB data set (m3dB in short). Repeating this procedure two more times533

enabled us to generate a minus 6dB data set (m6dB) and finally a minus 9dB data534

set (m9dB).535

Each of these data sets resembles what could have been measured if the data536

acquisition exposure time was divided by two incrementally. In other words, ob-537

taining for the m3dB data set a spatial clustering similar to that obtained for the538

p0dB data set would lead to the conclusion that the experiment could have been539

done twice faster without significant loss in term of the explained morphology of the540

fossil. A shorter exposure time also means a lower radiation dose for the sample and541

correspondingly lower risk of alteration during and due to the measurements.542

6.3. Tentative segmentation of the data set, comparing HCSC, k-means and un-543

constrained hierarchical clustering544

The four data sets, p0dB, m3dB, m6dB and m9dB, were all subjected to seg-545

mentation using three different algorithms, namely HCSC, k-means and standard546

hierarchical clustering (HC). Unconstrained hierarchical clustering was possible on547

this data set owing to its limited size. It was performed using the hclust function548

from the stats package of R together with the OpenCL accelerated version of the dist549

function implemented for use by HCSC.550

The obtained segmentations are presented in Fig. 7, including the parameter551

used (the switching step Ĵ for HCSC, or number of initializations n for k-means). The552

figure also reports the computational time taken by each algorithm. As expected, the553
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Figure 7. Effectiveness and efficiency of our hierarchical clustering with spatial constraints as
compared to that of k-means (with both 10 and 100 initializations) and standard hierarchical clustering
(HC) on the purely synthetic data set, when removing 0dB (a), 3dB (b), 6dB (c) and 9dB (d).to the SNR.
Note that HC was performed using the OpenCL accelerated version of the dist function to compute the
complete distance matrix, using the default function would have led to much higher execution times as
exposed in Tab. 1.
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execution time of HC is nearly constant and unaffected by the SNR of the data sets554

while k-means execution is strongly affected by SNR as higher noise levels impact555

the convergence speed of the algorithm. HCSC is in an intermediate position, with556

computational speed being affected by the SNR, but at a lower level than k-means.557

In terms of effectiveness of classification, all three tested algorithms performed558

perfectly for the reference SNR (p0dB data set), showing not a single miss-classification.559

When the SNR decreases by 9dB, that is for the m9dB data set, both HC and HCSC560

start producing miss-classified pixels, with HC producing significantly more of those561

compared to HCSC. While both effectiveness and efficiency of HC and HCSC seems562

rather similar, even on the m9dB data set, one has to remember that HC has a563

O(N2) memory complexity and O(N2P ) computing complexity as compared to only564

O(N) and O(NP ) complexities for HCSC. In other words, the cost of HC will very565

rapidly increase to intractable levels when the image size increases, while HCSC will566

incur much lower costs with increasing image size. For larger images, effectiveness567

of HC and HCSC would likely remain similar but HCSC would be much more efficient568

than HC thanks to its complexity advantage. Indeed, this complexity difference is569

the reason why we could not run HC on the experimental data set used in Sect. 5.570

Due to its stochastic nature, k-means has a fairly different behaviour than HC571

or HCSC. The user has to choose for a balance between quality of the result and572

computation time. For data sets m6dB and m9dB, with lower SNR, one may favour573

fast computation (n = 10 in Fig. 7) at the cost of poor effectiveness with a high level574

of miss-classified pixels, or quality of the results (no miss-classified pixels) at the575

cost of very low efficiency (n = 100, computational time of 346 s). Note that the k-576

means results we are showing are overestimating the efficiency since the reported577

time corresponds only to processing the data set with a single value of K, known a578

priori, which you could typically not do on a real data set.579

In this comparison, HCSC seems to provide a good balance between effective-580

ness and efficiency, and provides a rich set of information to the application do-581

main specialist by proposing segmentations at different scales of complexity. Unlike582

HC, HCSC keeps this property for even rather large spectral images. Moreover for583

HCSC, we can notice on Fig. 7 that the curve of the criterion H(J) used to deter-584

mine the switching step Ĵ has an expected shape for data sets p0dB (Fig. 7a) and585

m3dB (Fig. 7b), while the shape begins to change for data set m6dB (Fig. 7c) and is586

significantly different for m9dB (Fig. 7d). This change in shape of the H(J) might be587

used to propose an early detection of a SNR which starts to be too low for the data588

26

This manuscript is currently submitted to peer-review.



set to be exploitable. This change of behaviour when the SNR is decreasing will be589

further exemplified in Sect. 7, see Fig. 8.590

Finally, comparing the results obtained on the real data set and the fully syn-591

thetic data set as exposed respectively in Fig. 3 or Fig. 6 and Fig. 7, one may feel that592

the segmentation of the synthetic data set behaves more nicely than that of the real593

data set. The difference between the two data set might lead to the conclusion that594

the uniform patches model, used to generate the synthetic data, while being useful is595

still sufficiently wrong to significantly underestimate the variation existing between596

the spectra collected on the pixels of the image. Hence we propose, infra, a second597

synthetic zero noise model which produces spectra with variation closer to the one598

experienced in the real data set.599

7. A more realistic synthetic model to assess robustness of the segmentation to600

signal to noise ratio601

To assess the robustness of the proposed segmentation method in regard of the602

signal-to-noise ratio (SNR) we prepared a second simulated data set having features603

closer to the one of the experimental (real) data set used in Sect. 5, i.e. a spectral604

image with N = 211 × 241 = 50851 pixels and at each pixel is associated a spectrum605

of size P = 1780 channels. As in Sect. 6, starting with a single zero noise model,606

we generated a family of simulated observations with a decreasing SNR. Performing607

the segmentation on this family of simulated data, which are all originating from608

the same generative model, enabled us to assess the effect of SNR levels on the609

proposed segmentation results. As compared to the model built in in Sect. 6, this610

one differs only in the way the zero noise model is prepared. While proposing a more611

realistic ground truth for the spectra of each pixel, the model proposed in the current612

section lacks ground truth for the class of each pixel. As a result, the segmentation613

resulting from HCSC can not be compared to some true segmentation. With this614

aspect in mind, we will mention here, as we did in Sect. 5, the cluster, rather than615

the class, of a pixel.616

7.1. Building the zero noise model617

We based our zero noise model on the above studied experimental data set that we618

regularized using local polynomial regression smoothing, through the loess function619

in R [26, 11]. To account for the nature and the dynamic of the signal on the observed620

X-ray fluorescence data, the weight was set to the reciprocal square root (1/
√
·) of621

the observation when the observation is not 0, and to 1 otherwise. The second622
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important parameter was the span of the filter that we set to 0.02 in order to account623

for the approximate width of the fluorescence bands on such spectra. Finally, a624

thresholding was performed on the regularized form so that its value is never lower625

than 0.001.626

While this procedure is producing a realistic zero noise X-ray fluorescence spectra627

in each pixel of our image, it has to be noted that this should not be considered as628

a ground truth version of the observation. Indeed, since each spectrum is dealt629

with independently from its neighbors, there is no spatial regularization and the630

estimations performed are far from optimal for detector channels that have measured631

a low level of photons.632

One has to note that the protocol we use here to smooth the data is not valid as633

a denoising algorithm since it has some advert effects on the concentration of the634

trace elements, and in particular the REEs. Still, while the obtained spectra are635

not properly estimating the ground truth of this particular fossil, they have all the636

features making them likely to be present in a fossil. Hence, the generated data set637

should be considered as the XRF spectral image of a purely phantom fossil, enabling638

us to test the proposed hierarchical clustering algorithm on totally controlled data.639

From this zero noise model, data sets with various SNR were generated in much640

the same ways as that exposed in Sect. 6.2, leading again to p0dB, m3dB, m6dB641

and m9dB data sets.642

7.2. Impact of noise on hierarchical spatial clustering results643

Following the same process as in Sect. 5.2, we use the criterion H to determine644

the switching step Ĵ . In Fig. 8, we can see, as in Sect. 6.3, that the curve of H645

has the expected shape for data sets p0dB (Fig. 8a) and m3dB (Fig. 8c), while the646

shape begins to change for data set m6dB (Fig. 8e) and is significantly different for647

m9dB (Fig. 8g). The values obtained for these data set are: Ĵ = 44063 for p0dB,648

Ĵ = 45871 for m3dB, Ĵ = 48988 for m6dB and Ĵ = 50387 for m9dB. Here the higher649

the noise, the higher the Ĵ , getting closer to the total number of pixels N in the image;650

the decrease in SNR leads to giving more relative weight to the spatial homogeneity,651

leading to the later release of the spatial constraint in the process.652

According to the plot of the jump heuristic and CHC (curves not shown), and653

for the obtained clusters to be interesting from a paleontological point of view, the654

selected number of clusters is 11 for p0dB (Fig. 8b), 11 for m3dB (Fig. 8d) and 12655

for m6dB (Fig. 8f). Concerning the m9dB data set, no fossil morphology can be656
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Figure 8. Behavior of the H criterion for selecting the switching step J , and resulting HCSC images
for the zero noise model (adding 0dB) (a,b), and after removing 3dB (c,d), 6dB (e,f) and 9dB (g,h) to the
SNR.

seen when the selected number of clusters is 11 or lower, hence we have decided to657

represent the 12-cluster segmentation for this data set (Fig. 8h).658

From the paleontological point of view, none of the obtained representations pro-659

vides as much information as that of the original experimental data set. This is660

absolutely normal as the generated synthetic model is different from the original661

data. Instead, there are pros and cons to favoring the p0dB or m3dB segmentation662

(Fig. 8b,d; the former better resolves some bones, whereas only the latter features663

the muscles and highly absorbing iron-rich grains, though without discriminating664

between them). Note that, in the p0dB representation (Fig. 8b), the blue triangular665

area that “appears” on the top right of the image and clusters with some of the fossil666

corresponds to air (there is no sample there, see Fig. 1a); it otherwise clusters with667

the sediment in the other noise models, which can be explained by the geometry668

used during the experiment where the beam came from the right of the sample with669

a 45◦ angle, leading for pixels in that area to record the X-rays-sediment interaction670

below the fossil surface.671

Nevertheless, from m3dB and on, and as expected, the graphic representations672

quickly degrade with increasing noise, and most morphological information is lost673
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for data set with a SNR greater than or equal to 6dB from the original data. In-674

creasing further the level of noise leads to totally unexploitable data, with which the675

morphology of the sample could hardly be observed, as demonstrated on the m9dB676

simulation (Fig. 8h).677

8. Discussion678

In this article we propose a spatially constrained hierarchical clustering method679

to be applied on spectral images, in particular on energy resolved X-ray fluorescence680

images. The first aspect of the method is to choose an agglomerative criteria based681

on a dissimilarity measure that is consistent with the noise model of the measured682

spectra. Then, the main aspect of this method is to apply constraints during the683

agglomerative process such that only spectra belonging to neighboring pixels could684

be clustered together. While this constraint is meaningful as long as the clusters685

form small patches on the image, it is obvious that when the number of cluster is686

small this spatial constraint should not be applied anymore, bringing the problem of687

the proper step at which the spatial constraint should be released. To address this688

problem, we proposed a heuristic criterion that balances the spatial coherence of the689

proposed segmentation, as measured through the G penalization, and the between-690

cluster inertia deriving from the Ward agglomerative criteria. The outcome of this al-691

gorithm is a hierarchy of possible segmentations that the practitioner should choose692

from. To aid this final selection step, the Ward and Calinski and Harabasz criteria693

are both computed to determine the most significant segmentation within the full694

hierarchy.695

The advantages of such a simple minded algorithm is two-fold: first the general696

principles of the method do not require deep knowledge of statistical methods and697

as such can be grasped by the application domain specialist, the paleontologist in698

the presented example. Second, the computational cost of the segmentation is very699

low, even for a rather large data set, and the processing time, a few minutes, is sig-700

nificantly smaller than the typical measurement time for such spectral images, at701

least few hours. Hence, this method can be applied to the data while the exper-702

iment is still ongoing and used for a rapid diagnostic and experimental feedback703

within the global data acquisition strategy. As illustrated in Sect. 6, this is in sharp704

contrast with the other two simple methods we have tested, namely k-means and705

unconstrained hierarchical clustering (HC). HC has the required properties in term706

of processing speed for small spectral images, it is inapplicable as soon as the image707
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size starts to increase; it seems also to be more sensitive to noise level than HCSC.708

The other tested method, k-means, while applicable to even large spectral images, is709

time consuming and, in its simple form, is not providing estimation of the number,710

K, of clusters present in the sample.711

As a diagnostic tool, this method helps at finding a balance between a higher712

signal to noise ratio of individual spectra and the measurement time and radiation713

dose to which the sample is subjected. In such µXRF imaging modality, the SNR is714

inversely proportional to the square root of the radiation dose. Increasing the SNR715

increases the risk of producing radiation-induced damages to the sample during716

the experiment, but also often leads to increased measurement time and fewer (or717

smaller) samples being characterized in the allocated time slot. In such a situation718

it is therefore important to quickly and properly assess the optimal exposure param-719

eters (mostly time, but possibly also beam intensity), which need to be sufficient to720

produce exploitable spectra while avoiding any risk of radiation-induced damages to721

the sample and enabling large maps to be collected. Using simulated data, we have722

shown that the algorithm is robust to an increased level of measurement noise and723

as such is not only helpful in asserting an optimal measurement time but also in724

reducing it and lowering the radiation dose.725

In the fully synthetic data set and in our SNR test application, it seems indeed726

that the behavior of H is a good early indicator of the quality of the observed data,727

providing insight into the discrimination power of the collected spectra. Indeed, the728

curves in Fig. 7d and Fig. 8g illustrate a behavior significantly different from the ones729

of Fig. 7a,b,c and of Fig. 8a,c,e. With respect to the SNR, we link this to the fact730

that the segmentation obtained in Fig. 8h is not very informative. In other words,731

the behavior of the H criterion as clusters get aggregated is a good predictor of the732

usefulness of the segmentation that will be attained for the data set.733

Note that while the simulated data tested herein demonstrate that the behavior734

of the H criterion depends on the SNR, it also depends on the type of morphology735

of the sample being imaged and in particular in the patch density. Morphology is736

particularly having an effect when applying the proposed algorithm to only part of737

the image, as evidenced by our attempt to cut our real data set into four sub-images738

(see Sect. 5.2), one of which having a different morphology than the other three. In739

this case, the three sub-images with a very similar morphology were found to also740

have a similar H criterion curve, while the fourth sub-image, with mostly sediment741

and very little fossil features, produces a slightly different H criterion curve.742
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As a continuation of the present work, one could assess how the H criterion743

depends on patch density of the sample. From our currently limited experience,744

it seems likely that if the studied data set exhibits a similar type of morphology in745

all the image, a possibility is to choose a sub-image of size N0 representative of the746

image morphology. The parameter δp can be then evaluated by δp,0 = N0−Ĵ0
N0

(and Ĵ747

is chosen as the nearest integer to (1 − δp,0) × N ), leading to a significant reduction748

of the computational cost of the evaluation of this parameter. Furthermore, this749

promotes δp as a scalar descriptor of the image’s morphology. Here again, we see750

an advantage of HCSC over k-means since this latter is not providing any synthetic751

figure characterizing the morphology of the sample.752

Last but not least, this method provides to the practitioner a complete view of753

the information contained in a given spectral image data set. When such data are754

collected, the prior knowledge on the chemistry of the sample often leads to the755

selection of very specific features of the spectra to be analyzed. Moreover, although756

entire µXRF spectra mostly contain XRF elemental information they also include ad-757

ditional, non-elemental signal including escape and sum peaks, as well as inelastic758

and elastic scattering and peaks from elements present in the air between the sam-759

ple and the detector such as Ar (Fig. 1c). Depending on the sample, some of these760

peaks can carry interesting signal and one could need to keep them in the analysis.761

However, it is often preferred to remove them from the analysis and crop the spectra762

to the “true” elemental signal only, or only a few peaks, prior to the analysis. This763

can simply be done at the practitioner’s discretion prior to applying the algorithm.764

Conversely, we here propose to confront the result of such focused analysis with765

an analysis based on the full spectra. Indeed, both the focused and complete analy-766

sis could be performed using the same algorithm but selecting for each one either a767

subset or the fullset of the spectral channels of the image. Using such an approach768

the application scientist could both use the data in a prior knowledge directed ap-769

proach, verifying pre-existing hypotheses on the nature of the signal to be detected770

in the spectral image, as well as an unsupervised discovery approach where the full771

spectral data set is subjected to the segmentation without a priori on which channel772

is of importance to exploit the image. Finally, this algorithm might even be used as a773

post-hoc analysis to test a posteriori the importance of unexpected spectral features,774

as exemplified herein with the iron-rich phase located around the fossil fish orbit for775

which the cluster mean spectrum provided complementary and new information to776

decipher its chemistry.777
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[23] Mihalić, I.B., Fazinić, S., Barac, M., Karydas, A.G., Migliori, A., Doračić, D., Desnica, V., Mu-862
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