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Abstract Biological computation involves the design and development of compu-
tational techniques inspired by natural biota. On the other hand, computational
biology involves the development and application of computational techniques to
study biological systems. We present a comprehensive review showcasing how bi-
ology and computer science can guide and bene�t each other, resulting in im-
proved understanding of biological processes and at the same time advances in the
design of algorithms. Unfortunately, integration between biology and computer
science is often challenging, especially due to the cultural idiosyncrasies of these
two communities. In this study, we aim at highlighting how nature has inspired
the development of various algorithms and techniques in computer science, and
how computational techniques and mathematical modeling have helped to better
understand various �elds in biology. We identi�ed existing gaps between biolog-
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ical computation and computational biology and advocate for bridging this gap
between �wet� and �dry� research.

Keywords Biological Computation · Computational Biology · Survey

1 Introduction

Computer science and biology have communally lived a long history together while
enjoying a productive and fruitful collaboration for several decades. For many
years, computer scientists have designed several computational methods and al-
gorithms all inspired by the biological systems. Likewise, biologists relied on com-
puter science frameworks to retrieve and analyze biological data; among other
needs. Nonetheless, in spite of the convergence of these two directions, both pro-
duce questions that require us to consider their deep implications to not only build
successful applications and more accurate models but also in providing a further
�ne-grained biological understanding leading to new biological insights.

It is known that nature has always served as inspiration for scientists across
various disciplines and computer science is, de�nitely, no exemption. Computer
scientists have relied on biological systems for inspiration to develop new, nature
based techniques for solving di�cult computational problems. Back in the 60s,
works from arti�cial intelligence highlighted the development of a class of com-
putational methods known as neural networks which are related to the activity
of neurons in the brain. These have been used in many machine learning appli-
cations such as �nancial predictions and miscellaneous applications. Other works
were inspired by common operations in Deoxyribonucleic Acid (DNA) sequence
evolution which led to the development of genetic algorithms used to solve opti-
mization problems. A number of additional inspired methods, including what the
human immune system can teach us about protecting computer networks has also
capitalized on biological insights to derive new computing paradigms.

The reverse direction, that of applying studies and ideas from theoretical com-
puter science to improve our understanding of biological phenomena, is called
computational biology. This �eld has emerged in the early 1950s when the British
mathematician and logician Alan Turing used early computers to implement a
model of biological morphogenesis. By 1953, computers had been applied to deal
with much more-varied sets of analyses, namely those examining protein structure,
leading to the discovery of the structure of DNA. Computational biology o�ers the
development and application of data-analytical and theoretical methods, mathe-
matical modeling and computational simulation techniques to the study of biolog-
ical systems. Great strides have been made in understanding the complexity and
diversity of biological phenomena. It became essential to use various techniques
from computer science, math and statistics in biological research. The recent un-
precedented growth in the size and scope of biological data sets completely changed
the landscape of regular biological research. In our days, it is almost impossible
to make a discovery in biology without representing, manipulating, analyzing, and
interpreting biological data. For helping biologists to address emerged challenges
dealing with data, among other challenges, computational biology community has
developed profound approaches in the past four decades.

Although biological computation and computational biology have much in com-
mon, the two directions - relying on biological ideas to develop computational
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methods and using computational methods to study biology - remained somehow
disconnected. For example, while computational methods inspired by nature led
to fruitful applications, unfortunately they only relied on a high-level and a gen-
eral understanding of the biological principals they were based on, and therefore
most of the time they did not directly lead to new biological insights. Likewise,
although the development of novel computational methods that aim at helping
researchers learn new biology, the application of these methods to the biological
problem rarely fed back to help computer scientists design better algorithms.

In this paper, we identify and deeply discuss various challenges in building a
fruitful collaboration between the biological computation and the computational
biology communities. This discussion motivates the global contributions of this
work which are (i) an up-to-date review on nature inspired algorithms, referred
to as biological computation, while describing how nature has inspired the devel-
opment of di�erent algorithms and computational techniques, (ii) an up-to-date
review on how computational techniques and mathematical modeling have helped
to study biological systems, and (iii) highlighting the impact of each of these two
disciplines, i.e., biology and computer science, on each other and how they can
guide and bene�t each other to not only improve the understanding of biologi-
cal processes but also to make notable advances in the design of algorithms. In
this concern, we have also discussed the possible reasons for such gap between
biological computation and computational biology while addressing the following
questions: How can we apply our knowledge of computer science, math and statis-
tics to enhance the study of biology? What challenges do both disciplines share?
What challenges may both directions o�er to each other? How can we further
boost the communication between the two directions?

For seeking answers to all these questions, we will �rst provide a comprehen-
sive review of the concepts encountered in biological computation by describing
di�erent kinds of nature-inspired models. This will be presented in Section 2. Note
that the aim of this section is not to provide a comparative study by determining
the strengths and pitfalls of the bio-inspired algorithms or to guide researchers
into which techniques to use for various problems. Instead, the objective of this
up-to-date survey is to show the tremendous impact and contribution that nature
has on developing computational techniques. In Section 3, we provide a review
on various important topics in computational biology with an emphasis on how
the mathematical and computational techniques have been used to tackle various
problems in biology. Since the number of questions addressed by computational
biology is almost the same as the number of biological phenomena, we focus on
a few of the major research areas, especially the topics related to computational
and evolutionary genomics. In Section 4, we will discuss the existing gaps and
challenges with respect to conducting research in the interface of computational
techniques and biology. We will identify a set of challenges that needs to be con-
sidered for better synergies between the computational biology and the biological
computation communities. Finally, we draw our conclusions in Section 5.

2 Biological Computation

Nature has always been a rich source of inspiration for many researchers in several
and di�erent ways. By far a large set of nature-inspired algorithms are those which



4 Zaineb Chelly Dagdia et al.

are based on special characteristics of the biological system. Thus, the largest frac-
tion of nature-inspired algorithms are biology-inspired, or bio-inspired for short.
Even with emphasizing the source of inspiration, we can still have various ways
to categorize the nature-inspired algorithms, depending on the details and the
sub-sources to be used. In this section, we will categorize the nature-inspired algo-
rithms into four main branches namely Arti�cial Immune Systems, Connectionist
Systems, Evolutionary Computing, and Swarm Intelligence. A summary of the
main biological systems that have inspired computational algorithms and their
related application domains will be given at the end of this section in Table 1. As
previously mentioned, the aim of this section is not to provide a comparative study
of the bio-inspired algorithms. The aim is to show the tremendous impact and con-
tribution that nature has on developing the up-to-date discussed computational
techniques.

Please, also, note that di�erent versions of the biological computation algo-
rithms were proposed and a discussion of these and their representative software
is out of scope of this Section. For a speci�c bio-inspired algorithm, the di�erent
proposed algorithmic versions are similar in their basic approach and in making
use of the bio-inspired concepts, but they mainly di�er either in the way they rep-
resent the information or in the way they are structured, e.g., optimized version,
additional components, etc. In what follows, we will give an overview of the basic
bio-inspired techniques within the de�ned four main branches.

2.1 Arti�cial Immune Systems

Although we are in permanent contact with innumerable germs in the environment
of which some are pathogenic, the infections which we develop are relatively rare.
The reason is that our organism has multiple means of defense which constitute
the immune system (IS). Notable and remarkable characteristics are expressed
by the IS as it is highly distributed, highly adaptive, self-organizing in nature,
maintains a memory of past encounters, and has the ability to continually learn
about new invaders. From a computational viewpoint, the natural immune system
has much to o�er by way of inspiration for the creation of novel approaches to
computational problems. This �eld of research is referred to as �Immunological
Computation� (IC) or �Arti�cial Immune System� (AIS) [82]. The study and design
of AIS still represent a relatively new area of research that tries to build bio-
inspired computational systems. In what follows, we give an overview of the main
natural immunological concepts used by AIS as well as a synopsis of the bio-
inspired approaches.

2.1.1 Immunological Concepts

The natural immune system is a network of cells, tissues, and organs that work
together to defend the body against attacks by �foreign� invaders that are trying
to do harm to it. This main task is achieved thanks to its capability to recognize
the presence of infectious foreign cells and substances, known as �non-self� ele-
ments and to respond to them by eliminating them or by neutralizing them. This
distinction between the �non-self� and the body's �self� cells is based on a pro-
cess called �self-non-self discrimination� [163]. The non-self elements, also called
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�antigens� or �pathogens�, are mainly microbes; tiny organisms such as bacteria,
parasites, and fungi. All of these can, under the right conditions, cause damage
and destruction to parts of the body and if these were left unchecked, the human
body would not be able to function appropriately. Thus, it is the purpose of the
immune system to act as the body's own army by preventing antigens from doing
harm to it. This is achieved through several lines of defense of the immune system
and several immune strategies. These are explained as follows:

The protection layers can be divided as physical barriers such as the skin and
the respiratory system that provide e�ective barriers to the entry of most micro-
organisms, physiological barriers such as destructive enzymes and stomach acids
that provide unsuitable living conditions for foreign pathogens, and the immune
system which can be broadly divided into two heads which are the innate immunity
and the adaptive immunity. These are interlinked and they in�uence each other.

The innate immunity is the �rst line of defense against invading antigens. It is
those parts of the immune system that work no matter what the damage is caused
by. They are always at work and do not need to have seen the o�ending invader be-
fore to be able to start attacking it. The innate immune system, which protects the
body non speci�cally, includes phagocytic barriers, blood proteins, and cytokines.
The phagocytic barriers work on ingesting and destroying microbes, and they
ensure the interaction with the rest of the immune system. These tasks are medi-
ated by antigen presenting cells and phagocytes such as neutrophils, macrophages
and natural killer cells. Blood proteins, known as �complement proteins�, perform
four major functions including the lysis of infectious organisms, i.e., rupturing
membranes of foreign cells, the activation of in�ammation, the opsonization, i.e.,
enhancing phagocytosis of antigens, and ensuring immune clearance. The last com-
ponents of the innate immunity are the cytokines which are proteins produced in
response to antigens. They mediate and regulate immune and in�ammatory reac-
tions, and allow cells to communicate with each other.

On the other hand, the second line of defense is the adaptive immune system
which a�ords protection against re-exposure to the same pathogen. The adaptive
immune system is called into action against pathogens that are able to evade or
overcome innate immune defenses. The cells of the adaptive immune system are
mainly lymphocytes, the B-cells and the T-cells, but there are also other important
parts of the adaptive immune system such as the complement cascade and the
production of antibodies. These mentioned elements of the immune system do not
work separately, but all work together in a co-operative fashion. If they have to
work e�ectively then they need a good system for communicating messages. This
system is provided by the released cytokines.

Based on these di�erent lines of defense and immune strategies, we refer to a
multi-layered immune system.

2.1.2 Synopsis of Arti�cial Immune Systems

An inspiration from the remarkable properties expressed by the natural immune
system led to the conception and the design of arti�cial immune systems exhibiting
similar functionalities. These systems are discussed in what follows.

Clonal Selection Theory Clonal selection theory [47] is the algorithm used by the
immune system to clarify the basic response of the adaptive immune system to
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antigenic stimulus. Clonal selection involves two main concepts which are cloning
(or proliferation) and selection (or a�nity maturation). More precisely, it estab-
lishes the idea that only those cells capable of recognizing an antigen will proliferate
while other cells are selected against. Clonal selection calls both B-cells and T-cells.
When B-cells antibodies � which are a group of proteins � interact with an antigen
(also referred to as antigen binding), cells become activated and they di�erenti-
ate either to be plasma cells or memory cells. The closer the matching between
an antibody and a speci�c antigen is, the stronger is the bind. This property is
called �a�nity�. Plasma cells make large amounts of speci�c antibodies that work
against speci�c antigens to destroy them. As the genes for antibodies in B-cells
frequently su�er mutation, the antibody response improves after repeated immu-
nizations; this phenomenon is called �a�nity maturation� (see the part below the
di�erentiation line). On the other hand, in the upper part of the di�erentiation
line, memory cells remain with the host and promote a rapid secondary response.
However, before this process, clones of B-cells are produced and undergo somatic
hypermutation. Consequently, diversity is introduced into the B-cell population.

Based on this theory, various clonal selection algorithms have been proposed in
the literature and most of them are devoted to perform computational optimisa-
tion and pattern recognition tasks [356]. In particular, inspiration has been taken
from the antigen driven a�nity maturation process of B-cells with its associated
hypermutation mechanism. These key features are exploited from a computational
viewpoint where an antibody, for instance, represents a solution to the problem
being solved, the a�nity de�nes the �tness function as a quantitative measure of
e�ectiveness of the system, the antigen represents the value of the �tness func-
tion to optimize, the cloning process is seen as the reproduction of solutions, the
somatic hypermutation represents the mutation of a solution, and the a�nity
maturation represents the mutation and the selection of best solutions. Adding to
these, the developed clonal selection based algorithms utilize the idea of memory
cells to retain good solutions to the problem being solved. A detailed description
and applications of AIS clonal selection algorithms can be found in [356].

Immune Network Theory The immune system, being a dynamic and auto-regulated
system, is a network of cells and antibodies that have a profound sense of self and
the ability to remember and learn. The immune network theory states that the
recognizers of the immune system, the B-cells and antibodies, not only recognize
foreign particles but also recognize and interact with each other. This created net-
work is based on interconnected B-cells for antigen recognition. The strength of
the B-cells connections is directly proportional to the a�nity that they share. In-
deed, B-cells can stimulate, activate, and suppress each other even in the absence
of antigens in order to stabilize the network.

Basic concepts of the immune network theory have been implemented leading
to several immune algorithms dedicated to data analysis, unsupervised clustering,
data visualization, and to solve optimization problems [139]. From a computa-
tional viewpoint, the main objective of the immune network based algorithms is
to prepare a repertoire of pattern detectors for a given problem domain. In such
con�guration, the better performing cells will suppress low-a�nity (or similar)
cells in the network. This process is achieved through an interactive procedure of
exposing the population to external information to which it responds. A detailed
description of AIS immune network algorithms can be found in [139].
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Self-Non-Self Theory The self-non-self theory is able to tell the di�erence be-
tween what is foreign and potentially harmful, and what is actually a part of its
own system. The representative self-non-self theories are the negative selection
and positive selection theories. The purpose of the negative selection theory is to
provide tolerance for self cells. During the process of generating T-cells, and based
on a pseudo-random genetic rearrangement process, a set of receptors are made.
After that, and in the thymus, these receptors undergo a censoring process that is
named the negative selection. There, the T-cells which react against self-proteins
get destroyed. Therefore, only a limited set of T-cells which do not bind to self-
proteins leave the thymus. These circulate throughout the human body to protect
it against foreign antigens; by performing immunological functions [4]. As for the
positive selection theory, it works as the opposite of the negative selection process.
Speci�cally, positive selection is a process which is responsible for controlling sur-
vival: T-cells are tested for recognition of MHC molecules which are a group of
genes that code for proteins found on the surfaces of cells that help the immune
system recognize foreign substances. If a T-cell fails to recognize any of the MHC
molecules, it is discarded; otherwise, it is kept.

From a computational perspective, the negative selection based algorithms
focus on the principles of T-cells maturation which are capable of binding only non-
self antigens, and on the fact of considering these cells a kind of anomaly detectors.
This principle is achieved by building a model of anomalous or unknown (non-self)
data through the generation of a set of patterns that do not match an existing
corpus of available self (or normal) patterns. The prepared non-self model is then
used to monitor the existing self data by seeking matches to the non-self patterns.
An inspiration from the negative selection and positive selection theories gave
rise to numerous AIS algorithms which are mainly applied to computer security,
network intrusion detection problems [150], classi�cation problems [127] and to
solve optimization problems [52]. A review of the progress of negative selection
algorithms can be found in [164], and a survey of methods and tools to detect
recent and strong positive selection can be found in [282].

Danger Theory The danger theory [234] is a new theory that has become popular
amongst immunologists. It was proposed to explain current anomalies in the under-
standing of how the immune system recognizes foreign invaders. The central idea
in danger theory is that the immune system does not respond to non-self but to
danger. Thus, just like the self-non-self theory, it fundamentally supports the need
for discrimination. However, it di�ers in the answer to what should be responded
to. Instead of responding to foreignness, the immune system reacts to danger based
on environmental context (signals) rather than the simple self-non-self principle.
Speci�cally, upon cell death, cells release speci�c signals that urge the behavior of
the system since they are a re�ection of the state of the environment. There are
three main categories of released signals namely the Safe Signals (SSs) which are
released as a result of normal cell death (apoptosis), Pathogen Associated Molecu-
lar Pattern Signals (PAMPs) which are essential molecules produced by microbes
but not produced by the host, and Danger Signals (DSs) which are released as a
result of an accidental cell death by harmful pathogens (necrosis). Those signals
are recognized by antigen presenting cells, speci�cally by Dendritic Cells (DCs),
and based on this phenomena the immune system recognizes the danger zone and
then evaluates the vulnerability of the system. AIS algorithms based on danger
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theory have been mainly used to solve computer security and machine learning
problems [392,315].

Meanwhile, it is important to mention that danger theory is still considered
as a relatively new addition to the �eld of immunology, and therefore danger
theory inspired algorithms are still in their infancy. The key algorithm which was
proposed in the literature and which introduced the concepts of danger signals is
the Dentritic Cell Algorithm (DCA) [135]. The algorithm is inspired by the role
and behavior of natural DCs. These cells are in charge of catching, processing
and revealing antigens to T-cells. They, also, express receptors on their surfaces to
receive signals (SS, DS and PAMPs) from their neighborhood. The �rst status of
a DCs is the immature state (iDCs) where they collect antigens and signals. Based
on the combination of the various signals received, the cells di�erentiate into two
di�erent maturity levels. Under the reception of safe signals, iDCs migrate to the
semi-mature state and they cause antigens tolerance. iDCs migrate to the mature
state (mDCs) if they are more exposed to danger signals and to PAMPs than
to safe signals. In this case, they present the collected antigens in a dangerous
context.

Based on these DCs immunological concepts, the information processing ob-
jective of the DCA is to prepare a set of mature DCs (seen as prototypes) that
o�er context speci�c information about how to classify normal (safe) and anoma-
lous (dangerous) input patterns. This is achieved based on three key asynchronous
steps, namely migrating su�ciently stimulated iDCs, promoting migrated cells to
either the semi-mature (safe) or to the mature (danger) context depending on
their accumulated response, and �nally labeling the patterns as safe or as danger-
ous based on the composition of the sub-population of cells that respond to each
pattern.

As noticed, the DCA was originally designed and used as an anomaly detec-
tion algorithm. In literature, a variety of DCA versions were developed aiming
at improving the algorithm by conducting investigations on it, and by addressing
and resolving its limitations. A full review of the DCA and its applications can be
found in [60] while some other recent DCA versions can be found in [77,76].

2.2 Connectionist Systems

In recent years, connectionism has re-emerged as a dynamic and active area of re-
search. Initially, the main motivation of connectionist systems was the aspiration
to comprehend and mimic the information processing principles of the biological
nervous system. By now, these systems have grown and spread into various sub-
disciplines for which cognitive science no longer represent the lone concern. From a
methodological perspective, connectionist systems aim at studying cognitive phe-
nomena using architectures of processing units which are interrelated via weighted
connections. These architectures, presenting analogies to the natural neural sys-
tems, are referred to as �Arti�cial Neural Networks� (ANN) [312]. In literature,
several neural network models have been proposed and implemented to explain
various aspects of cognition. In what follows, we will outline the key functioning
of the biological neural network and then discuss the main ANN taxonomy and
types.
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2.2.1 Biological Neural Network

Up to now, much is still unknown about how the human brain trains itself to pro-
cess information. In the brain, a neural network is seen as a chain of interlinked
neurons. Its activation de�nes a recognizable linear pathway. More precisely, a
neuron gathers signals from other neurons by means of a host of �ne branches
called �dendrites�. The neuron sends out pulses of signals, over a long and thin
stand termed �axon� that splits into many branches. A structure named �synapse�
is at the end of each of these branches. Synapses are membrane-to-membrane con-
nections containing molecular machinery that allow a fast transmission of signals.
If the neuron receives a high enough level of input signals within a de�nite period
of time, the neuron sends an action potential, in the form of an electrical pulse,
at the axon and transmits this signal along the axon into the terminals. These
outgoing signals are then received by other neurons.

2.2.2 Arti�cial Neural Networks

Biological neural networks have inspired the design of Arti�cial Neural Networks
(ANNs) [312] as a novel structure for information processing. ANNs are made of
arti�cial neurons, considered as processing elements, and are prearranged in three
inter-connected layers; namely the input layer, the hidden layer that may include
more than one single layer, and the output layer. The �rst layer encloses input
neurons that send information to the hidden layer that in turn sends data to the
output layer. The basic structure of an ANN is given in Figure 1.

Fig. 1 Basic structure of an arti�cial neural network: input layer, the hidden layer(s), and
the output layer .

In the ANNs' structure, every single neuron has its weighted inputs which are
mapped as synapses, an activation function which de�nes the output given the
collected inputs, and some output(s) to produce. In such structure, the synapses
represent the adjustable parameters that convert a neural network to a parame-
terized system. Based on the weighted sum of the inputs, an activation signal is
generated that is transferred to the activation function, e.g., recti�ed linear ac-
tivation function, radial basis function, logistic function, linear function, etc., to
obtain some output(s) from the neuron. The training process consists in optimiz-
ing the weights in a way that the error of predictions is minimized and the network
reaches a de�nite level of accuracy. The approach that is commonly used to de-
termine the error contribution of each neuron is named �backpropagation� and it
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aims at computing the gradient of the loss function with respect to the weights of
the network for a single input�output example.

As mentioned, any ANNs structure may be composed of several additional
hidden layers. This is to make the system more �exible and more powerful. ANNs
with more than two hidden layers between the input layer and the output layer
are named �deep neural networks�. These can model more complex relationships.
Numerous ANNs architectures and approaches have been proposed in the literature
[128], and are exponentially growing. In what follows, we will discuss the most
common taxonomy of arti�cial neural networks.

Feed Forward Networks Feed Forward neural networks (FF) [306] are very simple
and straightforward architectures. They allow signals (information) to travel in
one direction only between the nodes. A layer alone never has connections and
in general two adjacent layers are fully connected (every neuron form one layer
to every neuron to another layer)1. In such architectures, data move from the
input nodes to the output nodes, passing through the hidden nodes (if any). The
activation �ows from the input to the output layer without any feedback (no cycles
or back loops), i.e., the output of any layer does not a�ect that same layer. In a
supervised learning, the network is given a paired data sets of �what goes in�
and �what the user want to have as output� while in an unsupervised learning
only the input is given to the network which will try to learn and �gure out the
most appropriate output. Given that the network has enough hidden neurons, it
can theoretically always model the relationship between the input and output.
Practically, the use of these ANNs is somehow limited but they are popularly
hybridized with other ANNs to build new networks.

Various version of the FF network have been proposed where these use di�erent
activation functions. Among the various functions and networks, we mention the
Radial Basis Function (RBF) network [45] which is a FF network applying the
radial basis function. It functions exactly as a FF network but its speci�city is the
use of this speci�c activation function.

Multilayer Perceptron Multilayer Perceptron (MLP) networks opened the gate
to deep learning. This class of networks involves multiple layers of computational
units which are usually interconnected in a feed forward way. It applies a nonlinear
activation function, e.g., hyperbolic tangent, logistic function, etc., that allows the
network to classify data that is not linearly separable. In an MLP architecture,
every node in a layer connects to each node in the next layer making the network
fully connected. MLP is trained using the backpropagation approach involving the
adjustment of the parameters (weights) of the model in order to minimize the
error. The error being backpropagated is usually the variation of the di�erence
between the input and the output, and it can be measured in a variety of ways,
e.g., Mean Squared Error, Root Mean Squared Error, etc.

Auto-encoders The main idea of Auto-encoders (AEs) [40] is to automatically
encode information, i.e., as in compress, not encrypt. The AE network has an
hourglass shape where the hidden layers are smaller than the input and the output
layers. AEs are also symmetrical around the middle layer(s). In such architecture,

1 https://www.asimovinstitute.org/blog/

https://www.asimovinstitute.org/blog/
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the hidden layers represent the checkpoints of the network where the information is
most compressed. The part of the network which is up to the middle is named the
�encoding part�, the part which is after the middle is called the �decoding� part,
and the middle re�ects the �code�. AEs may be trained using the backpropagation
approach.

Variants of AEs have emerged and among these, we mention the Sparse Auto-
Encoders (SAEs) [292], the Variational Auto-Encoders (VAEs) [180] and the De-
noising Auto-Encoders (DAEs) [358]. SAE can be seen as the opposite architecture
of AEs. More precisely, the network instead of learning and representing the in-
formation in less �space� or nodes, it will try to encode information in more space.
Consequently, the network instead of converging in the middle and then expanding
back to the input size, the structure will grow in the middle. SAE networks can
be used to extract many small features from a given data set. On the other hand,
VAEs are based on the same architecture as AEs but are trained di�erently as they
compress an approximated probability distribution of the input samples. They rely
on Bayesian mathematics regarding probabilistic inference and independence, as
well as a re-parametrization trick to achieve this di�erent representation. The key
idea is to take into account the in�uence that one node may have on another.
Practically, if one thing happens in one part of the network and something else
happens in another part, then they are not essentially correlated. If they are not
linked then the error propagation should consider this. Because ANNs are gener-
ally large graphs, VAEs become very useful as they help to rule out in�uence from
some nodes to other nodes as one dives into deeper layers. As the name suggests,
DAEs are based on noise. More precisely, DAEs take a partially corrupted input
(also referred to as noise) and are trained to recover the original undistorted input.
The objective of DAEs is to clean the corrupted input; or denoising. This is a key
characteristic of DAEs where the network is encouraged to not learn details but
to learn wider features. This is because learning smaller features often turns out
to be mistaken or insu�cient due to its constant change with noise.

Convolutional Neural Network Convolutional Neural Networks (CNN) [200] are
relatively di�erent from most other neural networks. They feature convolutional
layers, pooling layers and fully connected layers; each perform a di�erent task.
Convolution layers apply a convolution operation to the input data and pass the
result to the following layer. This operation allows the network to be deeper with
much fewer parameters. Pooling layers simplify the network by reducing unneces-
sary features. This is achieved by combining the outputs of a convolutional layer
into a single output and pass it to the next convolutional layer. Fully connected
layers connect every neuron in one layer to every neuron in another layer. CNNs
are typically used for image processing and speci�cally for image recognition.

They tend to start with an input �scanner� which is not intended to parse all
the training data at once, i.e., the input window is sliding along the image, pixel
by pixel. This input data is passed afterwards to the convolutional layers. These
convolutional layers can be seen as a funnel since they compress the features which
are detected and �lter out details.

Real world CNNs implementations often attach deep feed forward networks,
e.g., MLP, to the �nal convolutional layer to further process the data.

Among the variants of CNNs, we mention Deconvolutional Networks (DNs)
[382] and Deep Convolutional Inverse Graphics Networks (DCIGNs) [191]. DNs
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are seen as reversed CNNs. In the context of image processing, for instance, the
structure is seen as if the network is fed the output, e.g., the word cat, and trained
to generate the right corresponding input image, e.g., cat-like pictures. DCIGNs,
on the other hand, are essentially VAEs but with CNNs and DNs used as encoders
and decoders, respectively. DCIGNs can learn to model complex transformations
on images such as changing the source of light or the rotation of a 3D object.
These networks tend to be trained with backpropagation.

Recurrent Neural Networks Unlike feed forward neural networks, the Recurrent
Neural Networks (RNNs) [103] are variants of recursive ANNs that allow for a
bi-directional �ow of data, i.e., in which connections between neurons make a
directed cycle. In such architecture, neurons are fed information not only from the
previous layer but also from themselves from the previous pass. Accordingly, the
order in which the input is fed and the network is trained matters. For instance,
in the context of texts, a word can be analyzed only in context of previous words
or sentences. This RNNs memory characteristic lets users solve natural language
processing problems such as handwriting recognition and speech recognition.

Long Short-term Memory Long Short-Term Memory (LSTM) networks [149] are
speci�c RNNs that introduce a memory cell, which is a special cell capable of
processing data when data have time gaps. These cells comprise components named
�gates� which are of three main types; namely input, output and forget gates. The
key function of these recurrent gates is to safeguard and control the information by
stopping or passing the �ow forward, erase memory, etc. The input gate determines
the information, received from the previous layer, that will be kept in memory (gets
stored in the cell), the output gate regulates the amount of data passed to the next
layer, and the forget gate controls the tearing rate of the stored memory. Each of
these gates has its own weight and sometimes activation functions. This makes
them requiring more resources to run. LSTM networks are also widely used for
writing and speech recognition.

Many other architectures exist for the LSTM networks such as the Gated
Recurrent Units networks (GRU) [62]. GRUs are slightly di�erent from LSTMs as
they have di�erent gates. GRUs lack the output gate, and have an update gate
and a reset gate. The update gate decides both how much information to keep
from the last state and how much information to pass forward to the next layer.
The reset gate functions similarly to LSTM forget gate. Generally, in comparison
to LSTMs, GRUs are slightly faster as they are less resource consuming, and are
easier to run.

Further ANNs have been proposed in literature, and a mostly complete chart
of these topologies accompanied by their illustrations was given by Fjodor van
Veens2. It is notable that ANNs have this remarkable and unique ability to derive
meaning from complex and imprecise data. ANNs can extract patterns and detect
trends that are too complicated and excessively di�cult to be perceived by humans
or other computer techniques. They are, also, adaptive learning techniques capable
of learning how to perform tasks based on the input training data, self-organized as
they can create their own representation of the information received during learn-
ing time, and fault tolerant via the redundant information coding characteristic.

2 https://www.asimovinstitute.org/author/fjodorvanveen/

https://www.asimovinstitute.org/author/fjodorvanveen/
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The surge of interest in arti�cial neural networks has created an impact across a
remarkably broad range of disciplines and applications such as in classi�cation,
prediction, decision-making, visualization, and many others [326].

2.3 Evolutionary Computing

Evolutionary computation includes a set of metaheuristics that are inspired by
biological evolution. These metaheuristics seek to emulate the mechanisms and the
main principles inferred from Darwin's theory of natural selection and population
[79]; aiming to solve complex optimization problems. In what follows, we will
describe the main principles of the natural evolution and then discuss the most
popular evolutionary computing metaheuristics.

2.3.1 Natural Evolution

From the beginning, biological life has been evolving every year; where unicellu-
lar life organisms get progressively mutated to complex life form organisms. This
gradual change is evolved by the process of genetic evolution. Evolution refers
to the change over time that occurs in populations of species (organisms) in re-
action to environmental changes. The changes which are coded in the molecules
of species' Deoxyribonucleic Acid (DNA) are transferred from one generation to
another, and over the history of primitive life have resulted in gradually more
complex life forms. These changes cause organisms to adapt and familiarize to
their environment, and turn out to be extinct. In this concern, Darwin's theory
of evolution [79] asserts that species survive through a process named �natural
selection�. The theory states that individuals in a species show a varied range of
variation caused by the di�erences in their genes. Those individuals that success-
fully adapt, or evolve, to meet the changing requirements of their natural habitat
are more likely to survive and reproduce. The genes that allow these individuals
to be successful are passed to their o�spring. On the other hand, individuals that
fail to evolve and reproduce die o�. Consequently, their genes are less likely to be
passed to the next generation [130]. Given enough time, a species will gradually
evolve.

2.3.2 Evolutionary Computing Metaheuristics

Inspired by biological evolution, several potentials arise to design advanced evolu-
tionary algorithms, i.e., metaheuristics that are able to e�ciently explore complex
search spaces in order to solve complex optimization problems. These mathemati-
cal models operate on a population involving individuals or chromosomes. Each in-
dividual represents a potential solution to the problem being solved and is codi�ed
according to the problem's speci�c requirements. The goodness of an individual
that re�ects how apt that individual is to survive in the environment is represented
by an objective function which is a quantitative measure of e�ectiveness of the sys-
tem, and the constraints to the problem which describe the relationships between
the system's variables and de�ne the allowable values to be taken by the variables
[96]. Those individuals having lower �tness value are gradually eliminated by the
dominant competitors. Within a population and for each individual, re-production
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operators, typically chromosomal crossover and mutation, are applied over some
individuals (parents) to produce new features in the chromosome. These new fea-
tures represent new individuals (o�spring) that maintain some properties of their
ancestors which are conserved or are eliminated via a selection. This evolution pro-
cess repeats itself during a certain number of cycles or generations; where species
continuously strive to reach a speci�c genetic structure of the chromosomes that
maximizes their probability of survival in a given environment. Speci�cally, this
process continues until an acceptable result is achieved, i.e., the maximal �tness
solution is found. An illustration of a generation in evolutionary algorithms is
given in Figure 2. As presented in Figure 2, the key components of any evolu-
tionary algorithm are the selection, the reproduction which includes the crossover
and the mutation, and the replacement. Each of these components can be real-
ized using di�erent operators. For instance, selection can be performed using the
roulette wheel, the tournament or the ranking approach, crossover can be achieved
via single/multi-point or a uniform method, and mutation can be performed using
bit-�ipping, uniform or the shrink approach. A full review of the operators can be
found in [84,360].

Fig. 2 A generation in evolutionary algorithms: Within a population and for each individual,
re-production operators are applied over some individuals (parents) to produce new individ-
uals (o�spring) that maintain some properties of their ancestors which are conserved or are
eliminated via a selection .

In the literature, a wide range of di�erent evolutionary optimization algorithms
have been proposed [342,85] and applied to various domains [80,64]. All of these
algorithms are similar in their basic approach and in making use of the bio-inspired
concepts, but they essentially di�er in the way they represent the information. In
what follows, we will give an overview of the most popular metaheuristics.

Genetic Algorithm Genetic Algorithms (GAs) have been �rstly proposed in [152]
to understand the adaptive processes of natural systems. After that, they have
been applied to solve optimization and machine learning problems [151] [83]. The
classical versions of GAs use a binary representation where the chromosome repre-
sentation is based on a binary string of �xed length. However, the later implemen-
tations of GAs make use of several other types of representations such as integer or
real-valued representations, order-based representations or chromosomes of vari-
ables length and many more [55]. For the selection process, the algorithm originally
uses the roulette wheel operator. A replacement selection is also performed, i.e.,
the selection of survivors of the parent and the o�spring populations. Basically,
there are two kinds of replacement strategies: generational replacement and steady
state replacement. In generational replacement, the parents are replaced system-
atically by the o�spring. In the steady state replacement, only a small fraction of
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parents is replaced by the o�spring during each iteration. Concerning the reproduc-
tion process, it is traditionally made via the crossover and the mutation operators
with a �xed probability for each of them. Nevertheless, the algorithm emphases
more the importance of the crossover operator over mutation. The crossover op-
erator is based on the single/multi-point or uniform crossover while the mutation
is generally bit-�ipping.

Evolutionary Strategy Unlike GAs which are mostly applied to discrete optimiza-
tion problems, Evolution Strategies (ESs) [300] are mostly applied to continuous
optimization where representations are based on real-valued vectors. In ES, the
representation of an individual is made by its genetic material and by a so-called
strategy parameter which determines the behavior of the individual or de�ne the
individual in more detail. The genetic material is represented by �oating-point
variables while the strategy parameter is, generally, de�ned by the standard de-
viation of a Gaussian distribution associated with each individual. In many ESs,
the selection operator is mostly deterministic and is based on the �tness ranking.
Two types of mutation operators are commonly used namely the discrete muta-
tion, in which the gene value of the o�spring is the gene value from the parent,
and intermediate mutation in which the midpoint between the gene value of the
parents gives the gene value of the o�spring. The mutation operator has a special
implementation in ES as it mutates both the strategy parameter and the genetic
material. Therefore, the evolution process evolves the genetic material and the
strategy parameter at the same time; and accordingly, ES is considered to be a
�self-adaptive� mechanism [242]. The main ESs advantage is their e�ciency in
terms of time complexity.

Evolutionary Programming Evolutionary Programming (EP) [115] is a stochastic
optimization strategy similar to GA. EP emphasizes the behavioral linkage be-
tween parents and their o�spring, rather than seeking to emulate speci�c genetic
operators as observed in nature. Its working is similar to the working of ESs.
It uses Gaussian distributed mutations and the self-adaptation paradigm. In EP,
the parent selection mechanism is deterministic, and the replacement process is
probabilistic and is based on a stochastic tournament selection [100]. Unlike ES,
it has no restriction regarding the use of data types of attributes. EP has �xed
structure of program and it allows numerical parameters to evolve. Like both the
ESs and GAs, EP is a useful method of optimization when other techniques such
as gradient descent or direct analytical discovery are not possible. Speci�cally,
combinatory and real-valued function optimization � in which the optimization
surface or �tness landscape is �rugged� � having several local optimal solutions
are well suited for EP. However, it is important to note that EP has rather slow
convergence rates, on some function optimization problems.

Genetic Programming Genetic Programming (GP) [187] is considered to be a GA
extension, in which the structures in the population are not �xed length strings
that encode candidate solutions to a problem but programs expressed as syntax
trees, i.e., nonlinear representation based on trees. In GP, generally, the parent
selection is a �tness proportional and the replacement selection is a generational
one. The crossover operator exchanges parts of two parent trees resulting in two
new trees and the mutation randomly changes a function of the tree into another
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function, or a terminal into another terminal. One of the main problems in GP
is the uncontrolled growth of trees which is a phenomenon called �bloat�. The
cause of bloat, as stated by the Crossover-Bias Theory, is that the distribution of
program sizes during evolution is skewed in a way that encourages bloat to appear,
by punishing small individuals and favoring larger ones. Indeed, GPs need a huge
population and then they are very computationally intensive.

2.4 Swarm Intelligence

Swarming behavior is common in biology. An inspiration from the collective be-
havior of social swarms in nature such as �ocks of birds, honey bees, schools of
�sh, and ant colonies led to the development of an innovative intelligent paradigm
called �swarm intelligence� [38]. Swarm intelligence is based on the common com-
portment of these species that compete for food. The main features of swarm
intelligence based algorithms are their simplicity and their particle aspect. They
are based on agents, i.e., insects or swarm individuals, which are relatively unso-
phisticated and which cooperate, by doing movements in the decision space, to
achieve tasks necessary for their survival. Among the most successful swarm intel-
ligence based algorithms are Ant Colony, Particle Swarm Optimization, and Bee
Colony Optimization. These will be detailed in what follows.

Ant Colony Optimization Ant Colony Optimization (ACO) algorithms are based
on the idea of imitating the foraging behavior of real ants [93]. The inspiration
comes from the collective behavior of ants to perform complex tasks such as trans-
portation of food and �nding shortest paths to the food sources. In nature, ants
communicate by means of chemical trails; called �pheromone�. This substance as-
sists ants in �nding the shortest paths between their nest and food. In a natural
observation, ants usually wander randomly. When they �nd food, they return to
their nest while laying down pheromone trails on the ground. This chemical, if
found by other ants, will not keep them wander at random, but will help them to
follow the trail and to quickly return to their nest, i.e., this trail will guide the
other ants toward the target point. Meanwhile, these ants will reinforce the path
if they �nd food. However, ants have to travel the path back and forth and as the
pheromone is olfactive and volatile, it has to evaporate. Hence, the path becomes
less prominent. In such situation, ants will look for the path having a higher den-
sity of pheromone. This means that this particular path was visited by more ants
and is de�nitely the shortest path to take. In other words, the larger the amount
of pheromone on a particular path, the larger the probability that the ants will
select that speci�c path. Hence, there is an emergence of the shortest path. Based
on this inspiration, ant colony optimization algorithms can be seen as multi-agent
systems in which each single agent is inspired by the behavior of a real ant. In lit-
erature, there are numerous successful implementations of the ACO metaheuristic.
A review of their applications to a wide range of di�erent optimization problems
can be found in [94].

Particle Swarm Optimization Another successful swarm intelligence model is par-
ticle swarm optimization [63]. It draws inspiration from the sociological behavior
of natural organisms such as bird �ocking and �sh schooling to �nd a place with
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su�cient food. Within these swarms' populations, a synchronized behavior using
local movements emerges without any dominant control. Each individual within
its community (population) is moved to a good area based on its �tness for the
environment, i.e., its �exible velocity (position change) in the search space. In-
deed, based on the particle's memory, the best position the individual has ever
visited in the search space is remembered. Following this natural observation, the
movements of swarms is seen as an aggregated acceleration towards their best
previously visited position and towards the best particle of a topological neigh-
borhood, i.e., the social in�uence between the particles. This phenomenon led to
several e�cient particle swarm optimization algorithms which are mainly applied
to solve optimization problems [63].

Bees Algorithm The behavior of bee colonies exhibits various features that can be
used as models for intelligent and collective behavior. Among these features, we
mention nectar search, mating during �ight, food foraging, and the waggle dance.
More precisely, in nature, a bee colony holds a single reproductive female called the
�queen�, males known as �drones�, and many sterile females called the �workers�.
After mating with some drones, the queen breeds numerous young bees called
�broods�. Based on the behavior of these bees, three of their main activities have
inspired researchers to develop bee colony based optimization algorithms [172].
These activities are essentially the search for the nest site, the food foraging and
the marriage behavior.

To search and select the appropriate nest site, bees go through a pre-organized
process. In a colony, some scout bees leave to explore few nest sites while the
remaining bees stay quiescent in the colony; possibly, to conserve the swarms'
energy supply until decision-making, and then migrate to the selected nest site.
Once the foraging bees come back from their search, they indicate various nest sites
by following di�erent dances which have eight patterns called waggle dances [317].
The quality of the nest site, e.g., entrance area, entrance height, cavity volume, is
related to the speed and the orientation of the dance. To select the new nest site
among the possible proposed options, scouts vote by dancing for their favorite site
and then they make a group decision via a quorum sensing and not via consensus
sensing. Afterwards, scouts inform their nest mates by waggle dances. At the end,
the entire bee colony migrates toward the new nest site [317]. Little research has
been conducted in proposing optimization models based on the nest site searching.
One basic study which established this principle was proposed in [298] to deal with
making decision strategy of the bees over the new nest site selection and to solve
the resource allocation problems as a numerical optimization.

Similar to nest site search, for food foraging, some scout bees navigate and
explore the region with the aim to �nd a food source. When they discover an
appropriate source, they come back to the hive and enter a place called the dance
�oor to transmit and share their discovery with the others through the waggle
dance related to the discovery distance. When it happens, some bees are recruited
and become foragers. The number of the recruited bees is proportional to the food
quantity information communicated by the scouts. This step is called the explo-
ration phase which is followed by another phase called the exploitation. In the
later step, bees collect food and determine their quantity to make a new decision;
either they continue collecting food by the memorization of this best location, or
they leave the source and return to the hive as simple bees. Most research has



18 Zaineb Chelly Dagdia et al.

studied the food source searching behavior and based on this several bee colony
optimisation algorithms have been proposed to mainly solve optimization prob-
lems, whether combinatorial or numerical. The con�guration of such algorithms
is based on mapping the food source as a possible solution to the problem being
solved and the quality of the food source as the �tness function.

For instance, to solve the travelling salesman problem, the algorithm proceeds
as follows: First, a group of bees (a population) is created that contains active,
inactive and scout bees. This constitutes the initialization phase. After that, the
foraging process is initiated. During this process, bees explore and exploit the
search space, try to collect as much nectar as possible, to �nd the optimal solution
for the problem. Bees explore the search space in a random way during the �rst
bee cycle since they do not have any waggle dance to follow upon. In the next step,
cities data are given as an input parameter together with the number of cities that
are to be visited by the salesman. Next, a population of bees is created each of
which has a random solution. As bees consider that the shorter the link, the higher
the nectar quantity collected along that link when �ying, the solution having least
value of distance is taken to be the best solution. The bee optimisation is set to
�nd the best solution. Then, the three di�erent categories of bees are made to do
their part of work. Both of the active and the scout bees observe the waggle dance.
The active bee �rst gets a neighbour solution tied to its current solution stored
in its memory, and then determines the quality of that neighbour. If the current
bee �nds a better neighbour solution, then the algorithm determines whether the
bee has made a mistake and, hence, rejects the better neighbour or if the bee has
to accept the better found neighbour solution. Likewise, in case where the current
bee did not �nd a better neighbour solution, then the algorithm determines if the
bee has made a mistake and, hence, has to accept the worse neighbour solution or
if the bee did not make a mistake and, hence, has to reject the neighbour. In the
hypothesis where the bee has exhausted a speci�c food source without �nding the
better neighbour solution then the active bee is transformed to an inactive bee. In
this case, a scout bee generates a random solution, checks if the random solution is
better than the current solution in memory, and, if it is the case, copies the random
solution into memory. In case where the scout bee has found a better solution, then
the algorithm determines if the new solution is a global best solution. An active
bee or a scout bee returns to the hive and performs a waggle dance to inactive
the bees in order to convey information about the location and quality of a food
source. The termination criterion is the number of iterations when completed and
the optimal result for the travelling salesman problem is given by the obtained
result [250].

In literature, there are several other applications of the bees' colony optimiza-
tion algorithms that are based on this speci�c bees' behavior; applications to solve
stochastic vehicle routing problems for instance or the routing in wired computer
networks. A full review of the applications can be found in [35].

Another inspiring behavior of bees is the marriage behavior where, to repro-
duce, the queen has to mate several drones. The reproduction phenomenon is
carried out far from the hive and happens in the air. More precisely, the queen
performs a special dance engaging other drones to follow her and mate with her.
They will mate until the queen's spermatheca will be full. After that, the queen
lays her eggs. The unfertilized eggs will generate drones, while the fertilized eggs
will give birth to workers or queens depending on food quality given to larvae.
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There are several implementations of bees colony optimization algorithms which
are based on the marriage phenomenon. Among these, we mention the basic study
that was proposed in [29]. MBO is based on the mating �ight that can be visual-
ized as a set of transitions in a state space, i.e., the environment, where the queen
moves between the di�erent states in the space in some speed and mates with the
drones encountered at each state probabilistically. Several extensions of MBO have
been introduced where all of these try to improve some MBO algorithmic aspects
to improve the sough results, e.g by using more than one worker or more than
one queen. In literature, there are several applications of MBO and its extensions
where the algorithms have been applied to data mining clustering problems and
to the water resources management problems. A full review of MBOs applications
can be found in [35].

Another set of metaheuristics has been proposed lately in literature, which
were inspired by di�erent aspects from nature. Among the most popular algo-
rithms dedicated to solve NP-hard optimization problems, we mention the Fire�y
Algorithm [352] which is a metaheuristic inspired by the �ashing behaviour of �re-
�ies to carry out nonlinear design optimization. Basically, the algorithm mimics
how �re�ies interact with each other using their �ashing lights. The algorithm
assumes that all �re�ies are unisex, which means that any �re�y can be attracted
by any other �re�y; the attractiveness of a �re�y is directly proportional to its
brightness which depends on the objective function. In other words, a �re�y will
be attracted to another brighter �re�y. The brightness decreases with distance.
From an algorithmic perspective, a randomly generated feasible solution, called
�re�ies, will be assigned with a light intensity based on their performance in the
objective function. This intensity will be used to compute the brightness of the
�re�y, which is directly proportional to its light intensity. For minimization prob-
lems, a solution with smallest functional value will be assigned with highest light
intensity. Once the intensity or brightness of the solutions is assigned, each �re-
�y will follow �re�ies with better light intensity. For the brightest �re�y, it will
perform a local search by randomly moving in its neighbourhood. These updates
of the location of �re�ies continue with iteration until a termination criterion is
met. The termination criterion can be maximum number of iterations, a tolerance
from the optimum value if it is known or no improvement is achieved in consecu-
tive iterations [178]. It was shown that the Fire�y Algorithm is potentially more
powerful than other existing algorithms such as particle swarm optimization [352]
but at the same time it was criticized as di�ering from the well-established PSO
only in a negligible way [219]. Another nature-inspired recent algorithm is the
Bat Algorithm [379] which is inspired by the echolocation behaviour of microbats,
the Cuckoo Search optimization algorithm [119] which is inspired by the obligate
brood parasitism of some cuckoo species by laying their eggs in the nests of other
host birds (of other species), the krill herd biologically-inspired algorithm which
is based on the simulation of the herding behavior of krill individuals for solving
optimization tasks [362], and the Shu�ed Frog-Leaping Algorithm [104] for solving
combinatorial optimization problems and which is based on observing, imitating,
and modelling the behavior of a group of frogs when searching for the location
that has the maximum amount of available food.

Based on the descriptions of all these bio-inspired algorithms from Arti�cial
Immune Systems, Connectionist Systems, Evolutionary Computing, and Swarm
Intelligence, we can clearly see that nature has been a great source of inspiration
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for several researchers in many di�erent ways. These computational algorithms
have an important impact in solving a variety of real-world problems, as presented
in Table 1, and among these issues are the challenges faced in the biological domain.
Further discussions about this will be given in the remaining sections.

Biological system Bio-inspired algorithms Main computational ap-
plications

Immune System Arti�cial Immune System
Key features: cloning, se-
lection, memory cells, a�n-
ity maturation.

Clonal selection algorithm: a de-
tailed description and applica-
tions of various clonal selection
algorithms can be found in [356].

Modeling and optimization,
dimensionality reduction,
pattern recognition.

Key features: auto-
regulation, cells interaction,
cells and antigens recog-
nition, cells stimulation,
activation and suppression,
network stabilization.

Immune network algorithm: a de-
tailed description of numerous
immune network algorithms can
be found in [139].

Data analysis, clustering,
data visualization, modeling
and optimization.

Key features: self-non-self
discrimination, negative se-
lection, positive selection.

Negative/Positive selection algo-
rithms: a review of the progress
of negative selection algorithms
can be found in [164].

Computer security, network
intrusion detection, classi�-
cation, optimization.

Key features: discrimina-
tion, environmental context,
signals, danger, dendritic
cells.

The dendritic cell algorithm: a
full review of the DCA and its
applications can be found in [60].

Computer security, anomaly
detection, classi�cation.

Connectionist System Arti�cial Neural Network
Key features: information
processing, interlinked neu-
rons, memory, learning.

Feed forward, auto-encoders,
convolutional neural network,
etc. Further ANNs are high-
lighted in Section 2.2.

Image recognition, hand-
writing recognition, speech
recognition, network design,
classi�cation, prediction,
decision-making, data
visualization.

Biological Evolution Evolutionary Computing
Key features: environ-
mental changes, adaptation,
natural selection, reproduc-
tion.

Genetic algorithms, evolutionary
strategy, evolutionary program-
ming, etc. Further evolutionary
algorithms are highlighted in
Section 2.3 and a wider range of
other evolutionary optimization
algorithms can be found in [342,
85].

Safety systems, power ex-
traction, �ow shop prob-
lems, �ow-shop scheduling
problem, biometric Systems.

Social Swarms Swarm Intelligence
Key features: cooperative
behavior, foraging behav-
ior, marriage behavior, nest
search.

Ant colony optimization algo-
rithms, particle swarm optimiza-
tion algorithms, etc. A review of
swarm based algorithms as well
as their application domains can
be �nd in [94,35,188].

Search optimization, net-
work design, graph match-
ing, resource allocation,
decision-making, data
mining.

Table 1: Main biological systems that have inspired computational algorithms
and their related application domains.

3 Computational Biology

Computational Biology is the study of biology using computational, statistical,
and mathematical methods. This �eld signi�cantly relies on analyzing biological
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data. One of the main sources of biological data is molecular data that comes from
sequencing three major macromolecules, namely DeoxyriboNucleic Acid (DNA),
RiboNucleic Acid (RNA), and protein. Sequencing is a process of determining the
sequence of nucleotides in the case of DNA and RNA and the sequence of amino
acids in the case of protein. During the last decades, for each main macromolecule,
a number of the sequencing technologies have been developed. The progress in
such technologies facilitate the availability of biological data leading to easier and
comprehensive analyses of molecular data.

The Human Genome Project (HGP) [72] � an international research e�ort to
determine the sequence of the human genome � was one of the great feats of explo-
ration in history. Beginning on October 1, 1990 and completed in April 2003, the
HGP gave us the ability, for the �rst time, to understand the blueprint for build-
ing a person. This international e�ort to sequence the 3 billion DNA letters in the
human genome had a major impact in the �elds of medicine, biotechnology, and
the life sciences, as the human genome holds an extraordinary trove of information
about human development, physiology, medicine and evolution. In addition to the
human genome, the international network of researchers has produced a series of
amazing advances [350]: an advanced draft of the mouse genome sequence, pub-
lished in December 2002; an initial draft of the rat genome sequence, produced in
November 2002; the identi�cation of more than 3 million human genetic variations,
called single nucleotide polymorphisms (SNPs); and the generation of full-length
complementary DNAs (cDNAs) for more than 70 percent of known human and
mouse genes. As other great projects like 1000 Genomes Project [67,68,69], In-
ternational HapMap Project [70], and the Cancer Genome Atlas (TCGA) [349]
unfolded, sparked by HGP, scientists entered into the era of �genomics� [124].
Subsequently, the need to manage and analyze copious amounts of digital genome
data drove the growth of computational biology.

Advanced technologies for genome sequencing and assembly were fundamen-
tal to the success of the human genome project. The �rst sequencing technology
that has revolutionized biological research was Sanger sequencing technology in-
vented in 1977 (�rst-generation sequencing technology) for DNA and RNA [310].
Further innovations in reagents, biotechnologies, and computational methods al-
lowed to accomplish the HGP [72]. The release of the �rst high-throughput DNA
sequencing platforms, such as 454 sequencing by Roche in 2005 and Solexa 1G
by Illumina in 2006, have remarkably increased the sequencing data produced per
instrument and dramatically decreased its cost [181,240]. The developed DNA and
RNA sequencing platforms with the number of related biotechnologies in the next
�ve years are referred to as second-generation sequencing (sometimes called next-
generation sequencing) technologies [231]. Since the second-generation technolo-
gies have enabled sequencing of many new genomes and performing the population-
scale analysis of genomic diversity [69], they have facilitated an explosion in bi-
ological knowledge in the following decade. Although further signi�cant progress
in increasing the scale of data production and decreasing its cost, some techno-
logical limitations remain [212]. One of the key limitations is that the genomes
sequenced by second-generation platforms are often of lower quality as compared
to those sequenced using more expensive �rst-generation technologies. The ap-
pearance of single-molecule sequencing from Paci�c Biosciences (PacBio) [303] in
2010 and nanopore-based sequencing from Oxford Nanopore Technologies [162] in
2014 addressed some of the existing limitations of second-generation sequencing
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platforms. These two technologies together with the Chromium technology from
10X Genomics [390] and Hi-C technologies [297] are referred to as third-generation
sequencing technologies [316,232,132].

Unlike DNA and RNA sequencing technologies, there are much fewer of them
available for protein sequencing. The �rst automated technology for protein se-
quencing (protein sequenator) based on the Edman degradation reaction was in-
vented in 1967 [98]. The release of mass spectrometry (MS) techniques [174,173,
92] transformed proteomics studies. Further improvements in the sensitivity and
resolution of mass spectrometry instrumentation and the associated advances in
technologies for sample preparation have created the most comprehensive and
versatile technology in large-scale proteomics that is available in our days. Two
main techniques in the modern MS technologies are matrix-assisted laser des-
orption ionization (MALDI) [175] and electrospray ionization (ESI) [112]. Using
nanopore-based technology for proteins may lead to creating new techniques for
protein sequencing [353,304,376].

The aforementioned modern sequencing technologies generate a tremendous
amount of biological data from living species. As a consequence, the number of bi-
ological questions that can be addressed with mathematical, statistical, and com-
putational methods has signi�cantly increased. Computation biology has been
emerged as a huge interdisciplinary �eld that develops and applies computational
methods to analyze large collections of biological data to make new predictions,
and discover new biology. It includes, but not limited to, various analytical meth-
ods, mathematical modeling and simulation for a number of broad areas, including
analysis of protein and nucleic acid sequence, structure and function, evolutionary
genomics and proteomics, systems biology, population genomics, regulatory and
metabolic networks, biomedical image analysis and modeling, gene-disease asso-
ciations, and development and spread of disease. Since it is not feasible to give
an overview of all of these areas, we focus on a few of the major research areas
in computational biology, and discuss how the integration of mathematical mod-
eling, computer science and statistics with biology contributes towards signi�cant
advances in answering various biological questions, and in general the advance-
ment of computational biology. We begin with a discussion on genome assembly
which is one of the most important research areas in computational biology. Since
existing sequencing instruments typically cannot determine the entire sequence of
a genome, it requires computational methods to assemble the whole genome. We
present various state-of-the-art techniques for genome assembly in Section 3.1. An-
other important �eld of research in computational biology is comparative genomics
and evolution which we will discuss in Section 3.2, followed by a brief discussion
of genome rearrangement. Finally, in Section 3.3, we give an overview of Genome-
Wide Association Studies (GWAS) due to its immense applications and impact in
identifying genetic variations responsible of various traits (phenotypes).

3.1 Genome Assembly

Despite tremendous advances in sequencing technologies described above, modern
instruments can read only small segments of genomes [232]. A single continuous
segment of a DNA sequence produced by a sequencing instrument is called a
read [316]. The length of a DNA sequence or segment is often measured as the
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number of complementary nucleotide pairs (base pairs, bp). The lengths of the
reads produced by existing sequencing platforms range from approximately 100−
200 bp (e.g., Illumina technology) to approximately 10× 103 − 20× 103 bp (e.g.,
Paci�c Biosciences and Oxford Nanopore technologies) [232]. By contrast, the
human genome comprises more than 3×109 bp (≈ 3 Gb) [72]. Moreover, even some
bacteria genomes have a length more than 1 × 106 bp (≈ 1 Mb). Reconstructing
an entire genome thus requires merging together many reads into longer segments.
The simple approach that does not require time-consuming and labor-intensive
procedures, is to develop a computer program to do the merging. That leads to
the development of the scienti�c �eld called genome sequence assembly [236]. There
are two main directions of genome sequence assembly depending on the availability
of sequenced genomes of closely related organisms [322]. The �rst one is de novo
genome assembly, where only the reads from the sequenced organism are used to
assemble a whole genome. The second one is reference-guided genome assembly
(sometimes called assisted assembly), where the genome of a related organism is
used to aid the genome assembly of the organism being sequenced. In both cases,
as we will see in subsequent sections, applications of computational techniques,
including various algorithmic techniques, mathematical and graph modeling have
made notable progress towards assembling genome sequences.

3.1.1 De Novo Genome Assembly

The �simplicity� of the biological problem formulation of de novo genome assembly
captured the interest of mathematicians and computer scientists and led to the
development of the theoretical foundations for genome sequence assembly [195].
One of the earlier attempts to formalize the genome assembly problem was solving
the problem of �nding the shortest super-string that encompasses all the reads
as substrings [228]. The main assumption of such a formalization is that the re-
constructed genome is the parsimonious explanation of the set of reads [347,299].
However, such an assumption ignores the observation about the presence of iden-
tical or nearly identical segments of a DNA sequence, called repeats. Since most
genomes of living species have a complex structure which is comprised of nonran-
dom repeating elements, the corresponding DNA sequences stray from parsimony.
In other words, the correct assembly of a genome sequence may not be the shortest
super-string [177,134,237,371].

The requirement to account for repeats has led to new graph-based assembly
models of genome sequence assembly [177,237,253]. Graph-based assembly mod-
els represent sequence of reads and their inferred relationship to one another as
vertices and edges in the graph, respectively. In addition to such representations,
by contrary to the requirement to reconstruct a single string, the formalization
of genome assembly problem for graph-based models was shifted to strings recon-
struction that are substrings of a DNA sequence, called contigs (also known as
unitigs or omnitigs) [236]. Such graph-based models play a key role in virtually all
modern genome assemblers in our days [329]. Moreover, these graph-based models
allow to �measure� the �practical� complexity of genome assemblers that depends
on the ratio between read lengths and repeat lengths in the genome [256]. In other
words, longer reads imply better and more complete solution of genome assembly
problem. However, the practical success of genome assemblers even for Illimuna
reads has been observed over the past few decades [329]. In the rest of this section,
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we will overview two main graph-based assembly models. More detailed surveys of
De Novo genome assemblers, De Novo assembly algorithms, and theoretical results
can be found in [322,329,101,244,257,313,361].

Overlap-layout Consensus (OLC) Graphs In the OLC graphs, a read is a vertex,
and a pair of vertices are linked with an edge if they overlap [254]. Alternative
formulations have a pair of vertices for each read, one representing the start of the
read and one representing the end of the read, with an edge linking these vertices
that carries the read sequence. Read overlaps are represented by edges from the
terminal vertex of one read to the terminal vertex of another read. Regardless
of the representation of the OLC graph, the assembly process consists of four
main steps: detect overlapping pairs of reads, construct the OLC graph from the
obtained pairs, �nd the appropriate ordering and orientation of reads, and compute
the consensus sequence from the resulting ordering and orientation [321,253,322].
The overlap computation step is a particular bottleneck in this approach because
naive methods are scaled quadratically regarding the total number of sequenced
bases. Techniques that allow drastically reduce computational time for the overlap
computation step, have been proposed in [255,267,32,208].

From the given OLC graphs, it is easy to obtain the string graph as follows [254].
First, reads that are substrings of some other read are removed from the OLC
graph. Next, transitive edges in the OLC graph are removed from it. String graphs
have several advantages in comparison to OLC graphs. Surprisingly, for construc-
tion of string graphs, there exist several fast and memory-e�cient algorithms [321,
320,203,30,89,126]. Moreover, the string graph shares many properties with the
de Bruijn graph without the need to break the reads into k-mers (see below for a
discussion on de Brujn graphs) [254].

De Bruijn Graphs For constructing De Bruijn graphs, each read is broken into
a sequence of overlapping k-mers (a k-mer is just a string of of length k) [159,
285,287]. Then the distinct k-mers are assigned as vertices and two vertices are
connected by an edge if the corresponding k-mers originate from adjacent positions
in a read in the De Bruijn graph. The assembly problem corresponding to De
Bruijn graphs can be then formulated as �nding a walk through the graph that
visits each edge in the graph once (also known as a Eulerian path problem) [287,
286,385]. Due to the presence of repeats, there is a potentially exponential number
of Eulerian traversals of the graph, only one of which is correct. In most practical
instances, assemblers attempt to construct contigs consisting of the unambiguous,
unbranching regions (i.e., contigs) of the De Bruijn graph [385,19,51,54,74,221,
238,323].

3.1.2 Reference-Guided Genome Assembly

When a related genome is available, one may use this genome to guide the assembly
of the target genome. However, in nature, two identical genomes do not exist
even among individuals of one species. Such genomic variation is caused by point
mutations and genome rearrangements (see Section 3.2 for detailed discussions
about the reasons for genomic diversity). The necessity to account for genomic
di�erences poses challenges in developing approaches to assisted assembly.
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Reference-assisted assembly tools aligned reads against the reference and or-
dered them according to their positions in the reference genome [343,289,21,147,
328]. While this approach is still commonly used, it addresses genomic di�erences
caused by point mutations only. As a consequence, this approach introduces errors
when genome rearrangements between the reference and the assembled (target)
genome occur. In an attempt to address this problem, the ordering problem was
formulated [120], which asks for the order of reads so that the Double-Cut-and-Join
distance (see Section 3.2) between the resulting target genome and the reference
genome is minimized. This formulation has been further applied in some reference-
guided assembly methods [301,302]. Despite advances made by these tools, these
methods still generate erroneous contigs when there are rearrangements between
the target and reference genomes.

Thanks to increasing availability of good quality assembled genomes, an impor-
tant step toward a reliable reconstruction of the target genome has been made [179].
In contrast to previous methods, which use only one reference, the new approach
utilizes multiple reference genomes to guide the assembly. This approach proved
to be valuable since the order information in the reference genomes can also help
infer more accurate order information in the target assembly [179,183,20,39].

The rapid progress in the sequencing technologies poses many novel problems
in developing reference-guided assembly tools. For example, since the quality of
target assembly is often improved when multiple references are used, this approach
requires to develop new data structures that would allow storing and working with
a large number of genomes [245,246,320,28,53]. Moreover, better models that
capture the most possible di�erent types of genome rearrangements are needed
(see Section 3.2 for detailed discussion about models of genome rearrangements).

3.1.3 Chromosome Sca�olding

Sca�olds, like contigs, represent the assembled portion of a chromosome [316]. They
are formed by ordering and orienting contigs. Sca�olds are often much longer than
contigs, in some cases they include entire chromosomes. Unlike contigs, a sequence
of sca�olds may contain gap letters (often represented as Ns) where regions of
potentially unknown size remain unassembled [257]. The process of ordering and
orienting contigs into sca�olds is called sca�olding. Filling the gaps in sca�olds is
often referred to as gap �lling. As with genome assembly, repeat regions represent
the most challenging regions to resolve.

Due to the similar nature between sca�olds and contigs, all the approaches that
have been developed for sca�olding can be divided into two main methodologies.
One of the methodologies is to use one or more reference genomes for ordering and
orienting contigs [252,3,58]. The methods and ideas in this direction are extremely
similar to those that are used in the reference-guided genome assembly [207].

The other type of methodology is sca�olding without reference genomes [23,
329,257]. In this approach, additional supporting data from the assembled genome
are needed [158]. Typical examples of such data are optical maps (produced by
BioNanoGenomics technology) [258,345,225,239], linked reads (produced by 10X
Chromium Genomics technology) [373,190,380], long reads (produced by PacBio
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and Oxford Nanopore technologies) [367,19,23,37,193], jumping libraries3 (pro-
duced by Illumina technology) [158,323,184,136,221,81,36], higher order chro-
matin interactions (produced by Hi-C technology) [48], or other long-range se-
quencing information. Sca�olding algorithms that utilize one or more types of
data commonly use either �greedy� approaches that iteratively join together con-
tigs with the strongest linking support, or a �global optimization� that tries to
best satisfy all of the linked information at once. Among all methods, the combi-
nation of long reads with Hi-C based data has lead to high-quality chromosome-
length sca�olds [123,33]. By accurate usage of the linked read data, the assembler
(that includes the sca�older method as a step) from the 10X Chromium Genomics
technology called Supernova has provided sca�olds with lengths among the best
available for any human genome [373].

3.1.4 Error-Correction

In order to overview the genome assembly, a strong simplifying assumption about
the sequencing technologies was made [236] where the fact that reads may have
errors was ignored. If a read has an error in it (e.g., one position is a C instead of an
A), then it is no longer a substring of the genome. For example, reads produced by
the Illumina sequencer machine have an error rate of ≈ 0.1% [314,11]. Moreover,
reads produced by Paci�c Biosciences and Oxford Nanopore technologies have an
error rate of ≈ 10−15% [303] and ≈ 10−20% [198,226], respectively. Therefore, the
sequencing errors should be corrected for more accurate and contiguous De Novo
assembly. The essential problem [329] of correcting sequencing errors is identifying
sequencing errors and distinguishing them from the heterozygous alleles4.

Most of the error correction tools implement k-mer counting methods to detect
sequencing errors. In k-mer counting methods, low-depth k-mers (i.e., the k-mers
that occur relatively less frequently in the sequencing reads) are assumed to be er-
roneous [329,314,11]. In contrast to this method, the multiple sequence alignment-
based method detects sequencing errors by directly aligning reads with each other
and they are corrected by consensus. Despite the multiple sequence alignment-
based methods may be computationally expensive, it is commonly used for error
correction of long reads [321,319]. Since the error rate for long reads is higher than
for short ones, hybrid error correction approaches that use both short and long
reads are proposed to correct sequencing errors in long reads [226,161,131,308,
138,201,243]. Recently, methods for Oxford Nanopore reads have been proposed
that polish the resulting assemblies according to the raw signal from its sequencer
machine [218,324]. These methods make it possible to assemble highly contigu-
ous sequences with 99.9% accuracy or greater from Oxford Nanopore reads, even
though the initial sequencing reads may have 20% sequencing errors or worse [218].

3 A jumping library is a set of pairs mate-pair reads derived from long fragments of DNA. A
mate-pair read is a pair of sequence reads from a single fragment of DNA (often the distance
between the reads is approximately known).
4 An allele is a variant form of a given gene. Individuals who are heterozygous for a certain

gene carry two di�erent alleles.
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3.1.5 Discussion

Regardless of the sequencing technologies that are used, the basic strategy for as-
sembly comprises three steps [316,329,322]: contig assembly, sca�olding, and gap
�lling. In the contig assembly step, the reads are assembled into contigs without
gaps. Then, in the sca�olding step, the contigs are connected into sca�olds accord-
ing to the information from various technologies. After that, gaps remain between
the contigs in sca�olds if there is no overlap between the contigs and approximate
distances are estimated using di�erent technologies. The gaps are carefully �lled
by using other independent reads at the gap-�lling step to complete the assembly.
The sca�olding and gap-�lling steps can be performed iteratively to enhance the
quality of the resulted assembly until no contigs are sca�olded or no additional
gaps are resolved. The error correction must be performed before, during, or af-
ter [325,218] assembly because the errors might prevent extension of contigs or
sca�olds.

It should be noted that long read technologies have not made the assembly
problem irrelevant [208,185,170,204]. Instead, they have simply shifted the focus
from short repeats to longer repeats comparable in length to the median long read
size. Further progress in such sequencing technologies and appropriate assembly
algorithms may lead to signi�cant improvements in genome assembly.

3.2 Comparative Genomics and Evolutionary Biology

The genomes of di�erent organisms are widely di�erent and at the same time
amazingly similar. For example, the human genome comprises more than 3 billion
bases [357], while a virus genome may range from only a few thousands to a couple
of million base pairs (the HIV genome has a scant 10,000 bases, while Pandoravirus
salinus genome has around 2.4 million base pairs) [288]. Despite the di�erence in
lengths, various genomes may have similar genes. For example, many genes in
Humans and Fruit �ies (fruit �y has around 140 million bases [102]) are similar.
Moreover, almost 99% of all human genes are conserved across all mammals [168].

One of the main processes happening in the cells that contributes to genetic
di�erence across species and individuals in a particular species is the replication
(copying) of the genome. Using layman's terms, copying can be described as fol-
lows: two complementary strands of a DNA sequence are separated, and then each
of them spontaneously attracts �spare� bases that are present in the cell's environ-
ment. Since the nucleotide A will successfully pair only with its complementary
base pair T , and G only with C, each strand of DNA can serve as a �template�
and can specify the sequence of nucleotides in its complementary strand by DNA
base-pairing [6]. A double-helical DNA molecule can be precisely replicated in this
way.

A single strand of DNA or RNA whose nucleotide sequence acts as a guide for
the synthesis of a complementary strand.

Due to the complexity of involving machinery in the replication process, it
is also prone to errors. Such occurring errors in the replication process in general
explain the diversity of living organisms. This inaccuracy of the replication process
and natural selection is the main principle of molecular evolution. While the former
accounts for the possibility of obtaining new or loosing existing functionality, the
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latter ensures that only those mutations that are bene�cial in terms of adaptation
and survival are preserved throughout the generations.

A DNA sequence may evolve by means of point mutation, also known as single
nucleotide polymorphisms (SNP) (i.e., a mutation at the level of nucleotides), and
rearrangements, also known as structural variations (i.e., a mutation that modi�es
sequence organization at a larger scale). There are three di�erent kinds of point
mutations, namely:

� Substitutions: a nucleotide is replaced with another one,
� Insertions: a nucleotide is added to the DNA sequence,
� Deletions: a nucleotide is removed from the DNA sequence.

Due to a redundancy of the genetic code, point mutation events are often neutral
in the sense of evolution. Therefore, SNPs are the most common events that one
can detect based on genomes of living species. The main rearrangements that are
being observed and studied today are the following:

� Reversal or inversion: a contiguous segment of a chromosome is reversed, and
strands are exchanged respectively;

� Deletion: a contiguous segment of a chromosomes is deleted;
� Insertion: a new contiguous DNA segment is introduced into a chromosome;
� Fission: a single chromosome is split into two;
� Fusion: two chromosomes are merged together into a single larger chromosome;
� Translocation: a chromosome breaks and a portion of it reattaches to a di�erent
chromosome;

� Transposition: a contiguous segment of genome DNA is relocated into a loca-
tion on the same or a di�erent chromosome;

� Tandem duplication a contiguous DNA segment is copied and inserted next to
the original fragment;

� Whole genome duplication (WGD): each chromosome of a genome is simulta-
neously duplicated;

� Retrotranspositional duplication: a copied DNA fragment is inserted into an
arbitrary position in the genome that is not directly adjacent to the original
fragment;

� Horizontal (or lateral) gene transfer : a contiguous fragment of genome is copied
from one genome to another.

These rearrangements operate on contiguous parts of the genomes, rather than
on nucleotides. This is why, in studies of rearrangements, genomes are often rep-
resented as sequences of conserved segments (almost identical subsequences that
are found in an almost identical state in several species and not cut by rearrange-
ments). We will often refer to such conserved segments as genes, since genes play
a vital role in storing critical �instructions� regarding the cell's lifecycle, and thus
are rarely the place for a breakpoint to occur and destroy them5. Two genes are
called homologous if they derive from a common ancestor and are distinguished by
a speciation (i.e., found in two di�erent species) or a duplication (i.e., found within

5 Mechanisms of breakpoint origination remain a mystery, but the idea of genes playing the
role of �solid� regions can be explained by the fact that their functionality, if lost, may result
in the death of the cell, and thus a cell whose genomes have such �broken� genes would most
likely not procreate.
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the same genome) event. Unlike point mutation events, large-scale rearrangement
events are very rare.

The emergence of many newly assembled genomes allows us to address vari-
ous questions related to evolution. For example, comparative genomics is a �eld
of biological research in which the genome sequences of di�erent species are com-
pared to understand how organisms are related to each other at the genetic level.
The detecting of point mutation events is the goal of sequence alignment studies.
Comparison of segments of genomes is mostly done by aligning �homologous sites�
from di�erent species, which is known as Multiple Sequence Alignment (MSA).
Sequence alignments and the information that can be gained by comparing two
genomes together is largely dependent on the evolutionary history and distance
between them, which can be represented by phylogenetic trees. In this section, we
will discuss the MSA phenomenon, various key components of phylogenomic anal-
yses, genome rearrangements and how research in computational biology helped
developing e�cient tools for estimating multiple sequence alignments, phylogenetic
trees, genomic rearrangements, etc.

3.2.1 Multiple Sequence Alignment

Gene sequences evolve under processes that include events such as substitutions,
insertions and deletions (jointly called �indels�) that can change the length of the
sequences, and must be accounted for comparative genomics. Indels have the ef-
fect that they blur what parts of sequences from various organisms are related to
each other. Two characters in a sequence are called homologous if they are both
derived from a common character in an ancestor, and this relationship is called
homology. A Multiple Sequence Alignment (MSA) of a set of sequences is de�ned
by the evolutionary history relating the sequences. MSA lines up individual nu-
cleotides or amino acids from biomolecular sequences collected from organisms
into a matrix structure such that every column in the true alignment indicates
shared ancestry (homologies). That means, for a multiple sequence alignment of a
set S of sequences, the rows are the sequences in S and the characters within each
column are homologous. For evolutionary reconstruction, this refers to positional
homology meaning that all the characters (nucleotides) in the same column have
evolved from a common ancestor. However, for protein sequences, MSA can be
de�ned as structural homology where the entries (residues) within each column
produce identical structural features in protein folding. Figure 3 shows an exam-
ple of two sequences evolved with substitutions, insertions and deletions and the
corresponding multiple sequence alignment.

Multiple sequence alignment is one of the most useful tools in computational
biology having immense applications in phylogenetic analyses, analyzing various
attributes of protein (e.g., protein structure, function, folding, binding sites), pro-
tein family identi�cation, orthology identi�cation, etc. A number of MSA tools
have been developed over the past few decades using the biological insights of
sequence evolution and various aspects of computer science, mathematics and
statistics. Computational techniques that have been applied to this area include
dynamic programming, divide-and-conquer, probabilistic approaches (maximum
likelihood, Markov chain Monte Carlo (MCMC), Bayesian statistics, etc.), and
various discrete optimization search techniques. Application of these techniques
have resulted in many e�cient tools for computing multiple sequence alignments.
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Fig. 3 Character evolution and multiple sequence alignment. (a) Two observed se-
quences, (b) Character evolution with substitution and indels which can change the sequence
length and blur the homology, and (c) Multiple sequence alignment of the two sequences cap-
turing the underlying character evolution where each site consists of homologous characters.

To name a few, PASTA [247], SATé [210], T-Co�ee [269], MAFFT [176], Clustal
W [351], Clustal Ω [318], MUSCLE [97], PRANK [220] Kalign [197], RetAlign [339]
are being widely used.

3.2.2 Phylogenomics

6 A phylogeny is a representation of the evolutionary relationships of a set of enti-
ties, e.g., species, genes, languages, etc. Phylogenetic entities are commonly known
as taxa. The simplest and the most useful representation of such evolutionary his-
tory is a �tree�, which we call phylogenetic tree. A tree T is a connected acyclic
graph with a set of vertices V and a set of edges E. A leaf in a phylogenetic tree
represents a taxon that typically exists in the present day. The internal nodes repre-
sent the hypothetical ancestral taxa from which the descendant taxa evolved. The
internal nodes typically represent extinct species that existed in the past, but do
not exist anymore. An edge e = (u, v) ∈ E represents an evolutionary relationship
between the two taxa at the vertices u and v. The length of the edges (branches)
in an evolutionary tree is known as branch length. Branch length is a non-negative
real number that represent various quantities measured on a branch. Most often,
a branch length represent the amount of evolutionary change or the amount of
time between two nodes. When trees are not provided with branch lengths, we
generally refer to them as topologies. Figure 4 shows an example of a phylogenetic
tree that illustrates the evolutionary history of humans, chimpanzees, gorillas and
orangutans. It shows that humans are more closely related to chimpanzees than
they are to gorillas and orangutans.

Phylogenetic trees provide insights into basic biology, including how life evolved,
the mechanisms of evolution and how it modi�es function and structure, orthology
detection, medical diagnosis, drug design, criminal investigation, etc. In fact, there
is a famous saying by Dobzhansky that �Nothing in biology makes sense except in
the light of evolution� [90]. Phylogenetic analysis is mostly used for a comparative
study [5,30], where a particular question is addressed by how certain biological

6 Most of the �gures and some of the materials presented in this section are taken from [24].
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Fig. 4 Phylogenetic tree. A phylogenetic tree relating four species: humans, chimpanzees,
gorillas and orangutans.

characters have evolved in di�erent lineages of a phylogeny [209]. Phylogenetic
analysis is also commonly used to test bio-geographic hypothesis [75,209], which
is the study of the distribution of species, extant and extinct.

Phylogenetic analysis is useful in drug design. Phylogenies can be used to rep-
resent the evolution of diseases to identify the currently dominant strains so that
appropriate drugs and vaccines can be designed for the currently dominant strains.
For example, scientists try to keep track of the evolution of in�uenza types so that
e�ective �u vaccines can be designed for the types that are most likely to domi-
nate in a particular �u season [49]. Phylogenetic analyses have been featured in
criminal investigations to assess DNA evidence presented in court cases. Most fa-
mously, phylogeny was used in a case where a doctor in Louisiana was accused of
having deliberately infected his girlfriend with HIV [241,359,1,78]. The prosecu-
tion tried to trace the origin of the victim's HIV infection. However, since HIV
evolves rapidly, each HIV-infected individual may have viruses distinct from oth-
ers. But they could be genetically similar enough to determine the ancestry and
therefore virus transmission history. The phylogenetic evidence featured promi-
nently in the trial and the doctor was ultimately convicted of attempted second
degree murder, and is now serving a 50-year prison sentence for the crime [359,
78].

Evidence from morphological, and gene sequence data suggests that all organ-
isms on earth are genetically related, and the relationships of living things can
be represented by a vast evolutionary tree � the �Tree of Life�. The Tree of Life
is one of the most ambitious goals and grand challenges of modern science [140].
Central to assembling this tree of life is the ability to e�ciently analyze the vast
amount of genomic data available these days due to the tremendous advancement
in sequencing techniques, and computer hardware and software.

In phylogenomic analyses, data from many genes sampled throughout the whole
genome are used for reconstructing the challenging parts of the tree of life. How-
ever, combining individual gene histories to infer a coherent species tree is a very
challenging task [224]. We now discuss the key components of phylogenomic anal-
yses: gene trees and species trees, how species tree construction is complicated
due to the �gene tree-species tree discordance�, and the standard computational
approaches that are being used for estimating species trees from multiple genes,
etc.

Gene Tree and Species Tree Most often, the goal of a phylogenetic reconstruction
is to infer an evolutionary tree depicting the history of speciation events that lead
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to a currently extant set of taxa. A species tree can be de�ned as the pattern of
branching of species lineages via the process of speciation. A gene tree represents
the evolution of a particular �gene� within a group of species. When species are split
by speciation, the gene copies within species are also split into separate lineages
of descent. Thus, gene trees are contained within species trees [224]. Interestingly,
due to various biological processes, di�erent genes (i.e., di�erent parts of the whole
genome) may have discordant evolutionary histories. Figure 5 shows an example
of discordance between a species tree and a gene tree. Here, species C and species
B are �sister� species in the species history, whereas C is closer to D than B in
the gene history. This is called the gene tree incongruence/discordance, and can
arise from incomplete lineage sorting, gene duplication and loss, horizontal gene
transfer, hybridization, etc. [224]. This disparity among the gene trees makes the
species tree construction complicated. We now brie�y describe various biological
reasons for gene tree discordance.

Fig. 5 Gene tree-species tree incongruence. A species tree (given in blue) and a gene
tree (given in red) on the same set {A,B,C,D} of taxa with di�erent topologies.

Gene Duplication and Loss Gene duplication is the process of generating multiple
gene lineages in coexisting in a species lineage [276]. A gene duplication event
causes a second �locus�, and these duplicated loci evolve independent of each other
� resulting in incongruence between gene tree and the containing species tree [129].
Moreover, some of the gene lineages could go extinct if it decayed into a �pseudo-
gene�, or if it evolved a new function and diverged [224]. This phenomenon is
knows as gene loss which may result in gene tree discordance. Figure 6 shows how
gene duplication and loss can cause gene tree discordance. Alternatively, this �gure
shows how to explain the discordance between a gene tree and a species tree using
gene duplication and loss events. Such embedding of a gene tree inside a species
tree is called �reconciliation�. Therefore, estimating species from a collection of
gene trees when gene trees are discordant due to gene duplication and loss requires
appropriate algorithms that take gene duplication and loss into consideration [224,
56,25,42,27].

Incomplete Lineage Sorting Incomplete Lineage Sorting (ILS), also known as deep
coalescence, is best understood under the coalescent model [87,88,156,264,265,
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Fig. 6 Reconciliation under gene duplication and loss model. We show a reconciliation
of the discordant gene tree-species tree pair shown in Fig. 5 using gene duplication and loss.
We embed the reconciled tree inside the species boundaries. Duplicated gene copes (dashed
and solid red lines) evolve independently and can go extinct. This reconciliation requires one
duplication and three gene losses.

305,340,341]. The coalescent model describes the evolutionary process as if it oper-
ates backwards in time, and connects gene lineages to a common ancestor through
a process of �coalescence� of lineage pairs. This model treats a species as a popu-
lation of individuals, having a pair of alleles for each gene. The coalescent process
traces the present day variants of a gene (known as alleles) back in time across
successive generations by following the ancestral alleles in the previous generation
from which this given alleles evolved. Eventually, we reach a point where two al-
leles coalesce (i.e., they �nd a common ancestor). The Multi-Species Coalescent
(MSC) model is the extension of this general coalescent framework where multiple
randomly mating populations corresponding to multiple species are present. Thus,
multi-species coalescent represents a gene tree inside a species tree.

Incomplete lineage sorting or deep coalescence refers to the case in which two
lineages fail to coalesce at their speciation point. Under the coalescent model, deep
coalescence can be a source of discordance, because the common ancestry of gene
copies at a single locus can extend deeper than speciation events. Figure 7 shows an
example of discordance due to ILS. Therefore, in the presence of gene tree-species
tree discordance due to incomplete lineage sorting, estimating species trees from a
set of gene trees should take the reason of discordance into account [224,348,381,
26].

Horizontal Gene Transfer In many organisms (bacteria for example), a signi�cant
level of genetic exchange occurs between lineages, and lineages can combine to
produce new independent lineages. Horizontal Gene Transfer (HGT), also known
as lateral gene transfer, is the process that causes the genes to be transferred across
species. These exchanges and combinations result in discordance between gene
trees and species trees, and the accurate representation of evolutionary history
requires a phylogenetic network instead of a tree [224,260,229]. Figure 8 shows
how HGT transforms a tree into a network, which results in gene tree-species tree
discordance.

With the abundance of molecular data available, species tree reconstruction
from genes sampled from throughout the whole genome has drawn signi�cant at-
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Fig. 7 Reconciliation under incomplete lineage sorting. We show a reconciliation of
the discordant gene tree-species tree pair shown in Fig. 5 using incomplete lineage sorting. We
embed the reconciled tree inside the species boundaries. Going back in time, the gene copies
within species B and C �rst meet at their corresponding speciation point (i.e, the most recent
common ancestor of species B and C), but fail to coalesce at the speciation point. Both of
these copies go further back in time, and hence we have two gene lineages (dashed and solid
black lines) on deeper ancestral branch. Therefore, we have one extra lineage on the ancestral
branch. The gene from C �rst coalesces with the gene from species D, and subsequently with
the gene from B.

Fig. 8 Reconciliation under horizontal gene transfer. We show a reconciliation of the
discordant gene tree-species tree pair shown in Fig. 5 using horizontal gene transfer. Here, the
gene lineage from species D moves horizontally across species boundaries and enters into the
species boundary of C. This �foreign� gene lineage is maintained and spread into the receiving
species population. If the receiving lineage (C) goes extinct or is not sampled, then there will
be discordance between the species tree and the gene tree.

tention from systematists. However, species tree reconstruction from a set of gene
trees, in the presence of di�erent biological processes causing gene tree discordance,
is a challenging task. Central to addressing this challenge is to develop mathemat-
ical models to explain (or reconcile) gene tree-species tree incongruence assuming
speci�c reasons for discordance (as shown in Figures. 6, 7, and 8). This concept of
reconciling gene trees inside a species tree dates from Goodman et al.'s [129] at-
tempt to �nd the most parsimonious reconciliation of a gene tree within a species
tree under duplication and loss events. Later on, this concept of reconciliation
was explored quite extensively [137,249,273,274,275,133,386]. Two of the most
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popular approaches for estimating species trees from a collection of gene trees are
concatenation (also known as �combined analysis�) and summary methods.

� Combined Analysis: Concatenation or combined analysis is the most basic
and simple pipeline for phylogenomic analysis where alignments are estimated
for each gene and concatenated into a supermatrix, which is then used to esti-
mate the species tree. Concatenation does not consider gene tree discordance
as it combines all the gene alignments into a supermatrix. Implicit in this anal-
yses is the assumption that all the genes have the same evolutionary history.
Therefore, this approach can return incorrect trees with high con�dence in the
presence of gene tree discordance [86,99,145,196,199,214].

� Summary Methods: Summary methods refer to a broad class of phyloge-
nomic methods that construct a species tree by summarizing a collection of
gene trees. Gene tree parsimony methods such as estimating species trees by
Minimizing Deep Coalescence (MDC) and Minimizing Gene Duplication and
Loss (MGD/MGDL) are examples of summary methods [348,25,27]. Unlike
concatenation, summary methods are not necessarily agnostic about the rea-
son of discordance and can be statistically consistent. Therefore, summary
methods are becoming more popular and gaining much attention from system-
atists, and therefore many summary methods have been developed over the
last decade [145,12,214,248,211,56,348,25,27,266,160]. Some of them have
the nice theoretical guarantee that they are proven to reconstruct the true
species tree with arbitrarily high probability, given a su�ciently large number
of true gene trees [196,251,215,189,213,214,248,160]. Unfortunately, however,
we do not know the true gene histories and the number of genes is limited.
Thus, techniques that have nice statistical guarantee might perform poorly on
biological data sets.

Gene Tree 
Reconciliation

Tree Construction

L1 L2 L3 L4

Combined 
Analysis

Summary 
Method

Concatenated  
Sequence

Gene Trees
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Fig. 9 Two approaches for constructing species trees from gene trees. Here we
have four genes (L1, L2, L3, L4) across four species (a, b, c, d). Combined analysis combines all
the gene sequence alignments and analyzes the supergene matrix, while summary methods
reconcile individual gene trees.



36 Zaineb Chelly Dagdia et al.

Figure 9 demonstrates these two approaches of species tree estimation. There is
another class of techniques (known as �co-estimation� techniques) that takes gene
sequence alignments as input and co-estimates both the gene trees and species
trees [145,42]. Co-estimation techniques are usually highly accurate but not scal-
able to large numbers of genes and species [26]. Thus, computer science and math-
ematical modeling have a great impact on the advancement of phylogenomics
and more accurate and scalable techniques need to be developed to achieve the
ambitious goal of Tree of Life which will undoubtedly require the integration of
advanced computational techniques with biological insights.

3.2.3 Genome Rearrangements

In 1936, Dorzhansky and Sturtevant proposed [336,91] that evolutionary remote-
ness between di�erent species can be measured by the level of disorder between the
organization of genes. They also suggested that the number of genome rearrange-
ments explaining such organization disorder may represent a rough approximation
of an evolutionary distance between organisms. Dorzhansky and Sturtevant stud-
ied multiple groups of �ies. They proposed a scenario of inversions (i.e., a sequence
of inversions transforming one genome into another) to explain chromosome dif-
ference, as well as the possible large-scale structure of the ancestral genomes for
groups �ies. In many subsequent studies, molecular biologists used techniques like
in-situ hybridisation and chromosome banding to determine possible genome re-
arrangements in the evolutionary history of closely related species [290]. As we
entered the genome sequence era, the importance of rearrangements in evolution
was shown by examining the di�erence in the gene order of the mitochondrial
genomes of cabbage and turnip, which have very similar nucleotide sequences of
genes but dramatically diverge in the gene order [277].

Since genome rearrangements are relatively rare events, in 1941 Sturtevant and
Novitski [337] formulated the problem of minimizing the number of inversions that
may explain the di�erence between gene orders of two species. Typically, the mea-
surement of the number of genome rearrangements is based on the maximum par-
simony assumption, where the evolutionary distance is estimated/approximated
as the minimum number of rearrangements between genomes.

In the early 1980's, mathematicians and computer scientists began to formal-
ize the biological problem of �nding evolutionary distance using mathematical
notation. Watterson et al. [369] proposed to represent the relative gene orders in
di�erent genomes as permutations, and thus the original problem was translated
into the problem of transforming one permutation into another with a minimum
number of inversions. However, the proposed formulation ignores the fact that
DNA molecule has two-strands, and some rearrangements may change the strand
that a gene belongs to. Therefore, taking into account this fact, each gene may
be assigned a �+� or a �−� sign to indicate the strand it resides on. That leads
to the model, where relative gene order is represented as a signed permutation.
Hannenhalli and Pevzner [143] showed that the problem of �nding the minimal
number of inversions for signed permutations has a polynomial-time algorithm in
contrast to the unsigned variant, which is NP-hard. In subsequent studies, the
initial algorithm was extended to translocations and resulted in the theory that is
known in our days as the Hannenhalli-Pevzner theory [143].
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In this section, we will overview the number of genome rearrangements models
that are widely used in our days. Moreover, we will describe how these models can
be used to measure the evolutionary distance between species. We will discuss the
application of genome rearrangement models to the reconstruction of ancestral
gene organization based on genomes of extant species. It should be noted that
the application of genome rearrangement models is not restricted only on the
ancestral genome reconstruction. These models have been used in many other
�elds of computational biology, such as sca�olding [2], reference guided genome
assembly [183], phylogenomics [279], and cancer genomics [384]. Comprehensive
reviews of genome rearrangement models and its applications can be found in [113,
142,383,15,144,311].

Genome Rearrangement Models In the genome rearrangement studies, a genome is
often viewed as a set of linear or circular gene sequences representing chromosomes.
Depending on the assumptions that are made on the genomes and the set of genome
rearrangements that are considered, di�erent genome rearrangements models are
used. We will overview the simplest possible models. We assume that (i) the order
of genes in each genome is known; (ii) all genomes share the same set of genes;
(iii) all genomes contain a single copy of each gene. Since many of the results
are based on graph structures, we �rst discuss the graphical representation in this
context.

Under the assumptions made, a genome can be viewed as a graph, called
genome graph, that can be constructed as follows. Each circular chromosome con-
sisting of n genes is represented as a graph cycle with n directed edges encoding
genes and their strands, which alternate with n undirected edges connecting the
extremities of adjacent genes [169,66] (see Figure 10a). Each gene x is represented
as a directed edge (xt, xh), where xt and gh refer to the endpoints of the genes
representing its tail and head, respectively. Similarly, each linear chromosome con-
sisting of n genes is represented as a path with n directed edges alternating with
(n + 1) undirected edges (see Figure 10b). We label each directed edge with the
corresponding gene x, and further label its tail and head endpoints with xt and xh,
respectively. A collection of such cycles and paths representing the chromosomes
forms the genome graph (see Figure 10a,b). The endpoints of linear chromosomes
in a genome (i.e., the endpoints of paths in the corresponding genome graph) are
called telomeres. We call an edge irregular if one of its endpoints is a telomer.

A major tool for the analysis of genome rearrangements between two genomes is
the breakpoint graph [18]. For two genomes, the breakpoint graph can be constructed
by gluing the identically labeled directed edges in the corresponding genome graphs
(see Figure 10c,d). The breakpoint graph can be also easily de�ned for three or
more genomes [16]. We will consider three most commonly used rearrangement
models:

1. Single-Cut-or-Join (SCJ) model [110]. The SCJ model includes two types of
operations: a single �cut� in a genome, and �gluing� two telomeres in a genome.
The SCJ operations mimic reversals, translocations, �ssions, fusions, and trans-
position since each rearrangement can be represented by compositions of cuts
and joins.
A SCJ operation in genome P corresponds in the genome graph to the replace-
ment either a single undirected edge with two irregular edges or two irregular
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Fig. 10 a) Genome graph G(P ) for unichromosomal circular genome P = {+d+ a+ c+ b},
where undirected P -edges are colored red. b) Genome graph G(Q) for unichromosomal linear
genome Q = (+d+c+a+b), where undirected Q-edges are colored black. c) The superposition
of genome graphs G(P ) and G(Q). d) The breakpoint graph G(P,Q) (two layouts) is obtained
from the superposition of G(P ) and G(Q) with removal of directed edges. The graph G(P,Q)
is formed by a black-red path and cycle.

edges with a single undirected edge (see Figure 11a). The evolutionary distance
between genomes P and Q on the same n genes under parsimony assumption
and Double-Cut-and-Join (DCJ) model (or simply DCJ distance� discussed
below) equals dSCJ(P,Q) = |E(P )4E(Q)|, where 4 denotes the symmetric
di�erence and E(P ), E(A) are the sets of undirected edges in the breakpoint
graphs of genomes P and Q, respectively. While the SCJ model is a sim-
plistic approximation of genome rearrangement evolution, this model has the
advantage to allow for an e�cient solution of many core problems of genome
rearrangement analysis [109].

2. Double-Cut-and-Join (DCJ) model [378,31] (also known as 2-break model [9]).
The most common rearrangements are reversals, translocations, �ssions, and
fusions. All these rearrangements can be conveniently modeled by DCJ op-
erations, which make up to two �cuts� in a genome and �glue� the resulting
genomic fragments in a new order. The transpositions are included indirectly
via two consecutive DCJ operations: the excision of a circular intermediate
chromosome and the reinsertion at a di�erent position.
A DCJ operation in genome P corresponds in the genome graph to the re-
placement of a pair of undirected edges with a di�erent pair of undirected
edges (see Figure 11b). The evolutionary distance between genomes P and
Q on the same n genes under parsimony assumption and DCJ model equals
dDCJ(P,Q) = n − c(P,Q) − p(P,Q)

2 , where c(P,Q) and p(P,Q) are the num-
ber of cycles and even paths (i.e., paths with even number of edges) in the
corresponding breakpoint graph for genomes P and Q [378,31]. By various ex-
periments, it was shown that the DCJ model represents a realistic evolutionary
model. However, the majority core problems of genome rearrangement analysis
cannot be solved e�ciently (i.e., these problems are NP-hard) [346].

3. k-break model [9]. The most common rearrangements can be modeled by mak-
ing two �cuts� in a genome and �gluing� the resulting fragments in a new
order, i.e., by DCJ operations. However, the rearrangement operations that
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create three breakpoints, e.g., transpositions, can be modeled only indirectly
when at most two cuts are allowed. So, one can imagine a hypothetical k-break
rearrangement that makes k �cuts� in a genome and further �glue� the resulting
genomic pieces in a new order [8,9] (Fig. 11c). While k-break rearrangements
for k > 3 have not been observed in evolution, they are used in cancer ge-
nomics to model chromothripsis, a catastrophic event of multiple breakages
happening simultaneously in a genome [334,372]. It is known that the evolu-
tionary distance under parsimony assumption and k-break model (or k-break
distance) between two genomes can be computed in terms of cycle lengths in
the breakpoint graph of these genomes [8]. Namely, while the 2-break distance
depends only on the number of cycles in this graph, the k-break distance in
general depends on the distribution of the cycle lengths. It should be noted
that among the aforementioned rearrangements models, the k-break model is
the most poorly studied model.
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Fig. 11 a) A SCJ in genome P replaces a single red edge in the breakpoint G(P,Q) with two
irregular red edges. b) A DCJ in genome Q replaces a pair of black edges in the breakpoint
G(P,Q) with another pair of black edges forming matching on the same 4 vertices. c) A 3-
break in genome Q replaces a triple of black edges in the breakpoint G(P,Q) with another
triple of black edges forming matching on the same 6 vertices.

While the modern rearrangement models have allowed us to achieve remark-
able results, there are a lot of open questions in genome rearrangement analysis.
The main problem of all the existing models is that it is impossible to recon-
struct the �true� scenario of genome (i.e., a sequence of genome rearrangements
that transform one genome into the other) happening in the evolution of given
genomes [44]. It is happening because for a given evolutionary distance under all
models, there exist several equally likely genome rearrangements scenarios. Re-
cently, several initial results have been proposed, which are attempted to weigh
di�erent rearrangements depending on the location in the genomes [34,338]. An-
other open question is that in reality, the parsimony assumption may not always
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hold, emphasizing the need for estimation of evolutionary distance that does not
rely on such assumption. The distance that accounts for the actual (rather than
minimal) number of rearrangements between two genomes is often referred to as
the true evolutionary distance [206,10,34]. Finding true evolutionary distance un-
der di�erent rearrangement models is a challenging problem. Finally, developing
rearrangement models that include di�erent types of events signi�cantly improves
the accuracy of genome rearrangement analysis.

Reconstruction of Ancestral Genomes With the increased availability of assembled
genomes, the development of computational methods for reconstructing ancestral
genomes becomes increasingly relevant. There have been tremendous methodolog-
ical developments over the last 10 � 15 years in this direction. The state-of-the-art
methods in our days are able to propose the ancestral genome organization in
mammals [16,223,7,59], insects [263], fungi [57,111], plants [309], bacteria [366,
280], amniotes [182,259], vertebrates [182,259], chordates [296], or dinosaurs [272].

The main computational problem of great interest in the reconstructing ances-
tral genomes is the Small Parsimony Problem (SPP), which asks to reconstruct
ancestral genomes at the internal nodes of a given phylogenetic tree from the extant
genomes at the leaves of that tree. There are two main computational approaches
for the SPP, namely rearrangement-based [16,7,41,388,377,389] and homology-
based [59,223,167,222,153,335,121,284,117]. The rearrangement-based methods
for a given rearrangement model reconstruct ancestral genomes from the given
extant genomes by minimizing the total rearrangement distance between genomes
along the branches of the phylogenetic tree. On the other hand, the homology-
based methods do not assume any rearrangement model. Instead of minimization
the total rearrangement distance along the branches, the homology-based meth-
ods reconstruct ancestral genomes from the given extant genomes, by minimizing
the total amount of homoplasy phenomenon observed in the phylogenetic tree.
Homoplasy is a phenomenon by which two genomes in di�erent lineages acquire
independently a same feature that is not shared and derived from a common an-
cestor.

Both types of methods have pros and cons. For example, the results of
rearrangement-based methods are complete genomes. However, the results of
homology-based methods are contiguous ancestral features that contain only re-
liable features, called Contiguous Ancestral Regions (CARs) [223]. While the
rearrangement-based methods rely on the current state-of-the-art rearrangement
models, the homology-based methods can produce results even for genomes under-
going genome rearrangements that are not included in the state-of-the-art rear-
rangement models [111]. Furthermore, in various studies [108], it was shown that
homology-based methods are able to reconstruct reliable CARs even if parsimony
assumption on the evolution between genomes does not hold.

Despite the recent advances in solving SPP, this problem still poses many chal-
lenges. For example, while there exist genome rearrangement models that include
indels and various duplication events, there are no rearrangement-based meth-
ods that work with duplication events. On the other hand, the accuracy of the
homology-based methods are still worse than the rearrangement-based methods
on genomes for which parsimony assumption holds [111,108]. Recently, the promis-
ing direction of developing tools which combine the advantages of the homology-
and rearrangement-based methods are emerging [107,108,17].
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3.3 Genome-Wide Association Studies (GWAS)

Although genomes of individuals of a species are quite similar, there are variations
in the sequence of DNA across individuals. These variations are broadly of two
types � sequence variations and structural variations. Sequence variations include
substitutions (mutation at a single base from one base into another), and insertion
or deletion of a few bases (jointly known as indels). In some cases, both variants
or alleles resulting from a mutation persist in populations. These are known as
Single Nucleotide Polymorphisms (SNPs). On the other hand, structural variations
are long-range variations in chromosomes including insertions, deletions, Copy
Number Variations (CNVs), inversions and translocations.

Some of these variations or genotypes may result in changes in an idividual's
traits or phenotypes and can cause diseases through alteration of the structure of
the proteins encoded, change in regulation of expression, or other mechanisms. As-
sociation mapping refers to associating regions or variations in genome to various
phenotypes. Although association does not necessarily imply causality, the asso-
ciated regions may then be investigated for causal variants. Association mapping
is typically done in the form of Genome Wide Association Study (GWAS), which
considers all the variants in the whole genome to see if any variant is associated to
a particular trait or phenotype. GWAS is performed in a case-control setup. For
a particular phenotype, two groups of individuals are selected � individuals who
have the trait or the disease of interest (cases) and who do not (controls). From the
SNP array constructed from the individuals being considered, each SNP is tested
for association with the phenotype by computing a P -value using a statistical test.
If certain genetic variations are found to be signi�cantly more frequent in people
with the trait (disease) compared to people without disease, the variations are said
to be �associated� with the disease.

The impact of GWAS in medical science could potentially be substantial. With
the success of the Human Genome Project [72], 1000 Genomes Project [67,68,
69], International HapMap Project [70] and other community e�ort to collect
phenotype-genotype data [65,363], researchers are now able to �nd various genetic
variations associated with a particular disease. Subsequently, numerous important
GWA studies have been performed to date [46]. These will help the researchers
develop better customized strategies to treat and prevent the disease, and will
pave the way for modern research in precision medicine.

Performing GWAS in a correct manner is not easy and requires speci�c knowl-
edge of genetics, statistics, and bioinformatics. We now brie�y discuss a few of the
key concepts related to a genome wide association studies.

P−value The SNPs are tested for association with the phenotype by computing a
P -value using a statistical test. P -value is the probability of observing an outcome
which is �at least as extreme� as the one being observed if the null hypothesis
is true. The null hypothesis in this context is that the SNP is not associated
with the phenotype, and the the alternate hypothesis is that it is associated with
the phenotype. Therefore, small P -value is taken as an evidence that the null
hypothesis may not be true. If P -value is very small, then it would be very unlikely
to observe the data under the null hypothesis. Subsequently, either null hypothesis
is not true or an unlikely event has been encountered.
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For genetic association analyses of complex traits, determining the correct P -
value threshold for statistical signi�cance is critical to control the number of false-
positive associations [105]. Since, in a typical GWAS, P -values of millions of SNPs
are computed, the P -value threshold for signi�cance must be corrected for multi-
ple testing and SNPs with P -values less than 5 × 10−8 are commonly considered
signifcant for humans [105,283,71]. However, this commonly used P -value thresh-
old needs to be updated to account for the lower allele frequency spectrum used
in many recent array-based GWA studies [374,283,105]. Fadista et al. [105] con-
�rmed that the 5× 10−8 P -value threshold to be valid for common (Minor Allele
Frequency (MAF) > 5%) genetic variation in the European population. However,
for lower frequency variants, the genome-wide P -value threshold needs to be more
stringent for studies with European ancestry.

Minor Allele Frequency (MAF) MAF is the frequency of the least often occurring
allele at a speci�c location. SNPs with a low MAF are rare, and it is quite chal-
lenging to detect associations with SNPs with very low MAF and therefore most
studies exclude SNPs with relatively low MAF [233]. The HapMap project [71]
considered the SNPs with a minor allele frequency of ≥ 0.05.

Population strati�cation Population strati�cation refer to the presence of multiple
subpopulations (e.g., individuals with di�erent ethnic background) in a study. Such
allele frequency di�erences between cases and controls, due to systematic ancestry
di�erences, is an important source of systematic bias in GWAS. Since there can be
di�erence in allele frequencies across populations, population strati�cation can lead
to false positive associations and/or mask true associations [194,217,116,230,146].
An interesting example is the �chopstick gene�, where a SNP, due to population
strati�cation, accounted for nearly half of the variance in the capacity to eat
with chopsticks [141]. Therefore, correcting for population structure and other
confounding factors such as age and sex is often needed for P -value computation.
Principal component analysis (PCA) based approach [294,281] is commonly used
to identify and correct for population strati�cation. PCA based approach uses
genome-wide genotype data to estimate principal components which can be used
as covariates in the association analyses. EIGENSTRAT [294] is a widely used
PCA based approach to correct for population strati�cation.

Linkage disequilibrium (LD) Linkage disequilibrium refers to the nonrandom asso-
ciation between alleles at di�erent loci in a given population. Individuals who carry
a particular SNP allele at one site often predictably carry speci�c alleles at other
nearby variant sites. This correlation is known as linkage disequilibrium, which
exists because of the shared ancestry of contemporary chromosomes [71,327]. LD
can be considered to be linkage between markers on a population scale [50]. The
concept of linkage disequilibrium is important in GWAS as it allows identifying
genetic markers that tag the actual causal variants. Therefore, systematic studies
of common genetic variants are facilitated by the concept of LD [71,327]. �Clump-
ing� is a procedure used in GWAS to identify and select the most signi�cant SNPs
in each LD block for further analyses [233].
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Manhattan plot Manhattan plot is a popular approach to visualize the resulting
P -values across the genome, where negative logarithm of P -values are plotted
against genomic co-ordinates of SNPs. Manhattan plot is one type of scatter plot
where each �dot� corresponds to a SNP. Since the strongest associations have the
smallest P -values, their negative logarithms will be relatively higher.

PLINK [295], SUGEN [205], SNPtest [73], GWASTools [125], EMMAX [171],
and GEMMA [391] are a few most commonly used tools for performing GWA
studies. METAL [375], GWAMA [227] and FUMA [368] are widely used for meta-
analysis of GWAS results and summary statistics. We do not pursue this further
here, but see [50,148,365,235] for more details on various components of GWAS
and di�erent challenges in performing successful GWAS.

3.4 Conclusion

On an ending note, from these descriptions of various important �elds in com-
putational biology, we can comprehend how mathematical modeling, algorithms,
simulation and statistical analyses have helped the biologists translate biological
processes into computational models. E�cient computational techniques have be-
come an integral part for solving various problems in biology, especially when we
need to handle large amount of biomolecular data. Thus, we should propel our
e�ort in utilizing the power of computer science to better understand the nature.

4 Algorithms in Biology: Challenges and Discussion

The mutual relationship between biological computation and computational biol-
ogy goes a long way back. Various computational techniques have been inspired
by the nature and these nature-inspired algorithms have been successfully used to
solve di�erent biological problems. Computational biology has greatly harnessed
various nature-inspired algorithms. Notably, various evolutionary algorithms (e.g.,
genetic algorithms) and simulated annealing have been used for multiple sequence
alignment and phylogenetic tree estimation [268,270,262,331,186,393,202], arti-
�cial neural networks and deep learning has been widely used in predicting var-
ious protein attributes (e.g., secondary structures of proteins) [106,330,363,166,
387,165,364,355]. In particular, deep learning is being extensively used in vari-
ous domains in computational biology. For example, DeepVariant [291] (a deep
learning-based variant caller), and DeepFold [216] (a deep convolutional neural
network model to extract structural motif features of a protein structure) are two
notable deep learning based methods which demonstrate the power and e�cacy
of deep neural networks in solving biological questions. The wide-ranging impact
and application of deep learning methods in various �elds of computational biology
underscore the importance of separate comprehensive reviews. We do not pursue
this further here, but see [13,370,122,278,14,61,354]. Thus, methods like arti�cial
neural networks have been inspired by biological neural networks and subsequently
they are being successfully used to solve various biological questions. Nevertheless,
up to now, the application of computational methods to study, explore and deeply
understand biological processes, and the impact of biological systems on the devel-
opment and improvement of computational techniques remained mostly separate.
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Guaranteeing a strong bond between these two research directions involves consid-
ering biological processes as bio-inspired algorithms, aiming at solving challenging
real-world problems under a range of constraints and conditions. The fact of con-
sidering these algorithms as information processing systems, allows a much better
and a deeper understanding of their biological characteristics and features; while
the gained knowledge empowers the design and the enhancement of computational
systems.

Seeking the forti�cation of this convergence between biological computation
and computational biology, new biological challenges have emerged requiring the
contribution of biological computation techniques. Such need has been also noticed
in the biological computation direction where some methods showed some limita-
tions in solving real-world problems, and hence a call for a profounder connection
with computational biology seems crucial.

4.1 Challenge 1: The explosive increase of biological data

Nowadays, with the explosive increase of biological data, biologists are faced with
the challenges derived from gathering and processing enormous data. An excessive
data growth is witnessed in DNA sequencing, for instance, in which thousands of
genomes need to be explored and analyzed in concert. Similarly, cellular imaging
and the organisms' phenotypes require to be systematically assessed in a high-
throughput format. The biological data are not only characterized by their large
volume and their velocity but also by their variety and veracity aspects, making
the task for pure biologists harder, challenging and more complicated. Indeed, the
biological data are commonly characterized by their imperfection, their imprecision
(e.g., missing/vague values), their uncertainty (e.g., probable, possible values), and
their inconsistency (e.g., con�icting or incoherent data values). Biologists need to
carefully deal with this veracity aspect to avoid any possibly faulty analyses of
the conducted experiments. Dealing with this aspect remains among the major
worries for biologists, as they should evade any bias in the interpretations of their
results.

4.1.1 The need to re-design biological computation techniques using distributed
parallel infrastructures

It is based on this �rst set of challenges, which are related to the urgent need
for dealing with big biological data, that biological computation comes into ac-
tion. This need merited serious attention from computer scientists, statisticians,
and mathematicians, and have prompted several achievements in bio-inspired in-
telligent systems from large-scale data curation, i.e., content creation, selection,
classi�cation, transformation, validation, and preservation to data mining, data
visualization, and optimization. Several of the biological computation techniques,
discussed in Section 2, that originally deal with a manageable amount of data,
found their limits and could not work e�ciently and satisfactorily when the amount
of biological data exceeded the capabilities of a given system to process the data
in terms of time and/or memory consumption. Therefore, it became necessary to
re-design the biological computation techniques to excavate big data to enable en-
hanced decision making, insight discovery and process optimization. Speci�cally,
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these developed bio-inspired techniques and prototypes which are tested on proof-
of-concept biological examples must scale smoothly to real-life case studies. The
context of big data has also demanded serious e�orts in worldwide infrastructure
to support this revolution, where a new generation of robust fault-tolerant systems
based on parallel and distributed computer architectures have been established.
These parallel frameworks allow distributed processing of large data sets across
clusters of computers using simple programming models. They are designed to scale
up from single server to thousands of machines, each o�ering local computation
and storage. In this sense, the biological computation techniques were re-modelled
and developed in a distributed and parallel way [5] using a set of distributed par-
allel infrastructures such as Apache Hadoop7, Apache Storm8, Apache Samza9,
Apache Spark10 and Apache Flink11. The distributed bio-inspired techniques via
the integration of sophisticated modeling capabilities and high performance com-
puting can help biologists in coherently studying complex biological systems and
behaviors, and extracting and analyzing detailed biological principles that under-
lie the huge amount of data acquired. With these facilities, new opportunities
for discovering new biological values from massive data sets can be sought, help-
ing to gain an in-depth understanding of the hidden values, and also to incur new
challenges. This clearly shows the mutual relationship between biological computa-
tion and computational biology and the convergence between these two directions.
Computational biology, as shown in Section 3, has much to o�er as inspiration to
derive powerful biological computation techniques. These bio-inspired techniques
can also promote the computational biology research by producing large amount
of knowledge from biological data analyses and even through data visualization.

4.1.2 The need to re-build more powerful software biology tools to deal with real
biological problems

Still, it is important to mention that biological computation comes with a major
challenge in addressing real biological problems, i.e., real-life biological cases. In
this concern, a set of software tools have been released speci�cally designed for
extracting the signi�cant information from biological data, and to carry out func-
tional, structural or interactional analysis. These tools are dedicated to perform
several tasks such as gene identi�cation and function prediction, structure predic-
tion and modeling, molecular interaction prediction, biological network prediction
and modeling, cell level modeling and simulation, mechanical stress to cell signal-
ing modeling, and modeling of ecosystems. These can be classi�ed as homology and
similarity tools, protein functional analysis tools, sequence analysis tools and mis-
cellaneous tools. Among the popular and most used open-source software tools,
we mention BLAST12 a sequence-comparison program, BEAST [95]13 a cross-
platform program for Bayesian analysis of molecular sequences, MEGA [192,344]14

7 http://hadoop.apache.org/
8 http://storm.apache.org/
9 http://samza.apache.org/

10 https://spark.apache.org/
11 https://flink.apache.org/
12 https://blast.ncbi.nlm.nih.gov/Blast.cgi
13 https://beast.community/
14 https://www.megasoftware.net/
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a tool for estimating evolutionary distances, reconstructing phylogenetic trees and
computing basic statistical quantities from molecular data, RAxML [333,332]15

and MrBayes [157] � two widely used tools for likelihood-based and Bayesian
inference of phylogenetic trees, AMPHORA16 an automated phylogenomic infer-
ence application for large-scale protein phylogenetic analysis, Ascalaph Designer17

a software for general purpose molecular modelling for molecular design and simu-
lations, DNASTAR Lasergene Molecular Biology Suite18 a software to align DNA,
RNA, protein, or DNA+ protein sequences via pairwise and multiple sequence
alignment algorithms, DECIPHER19 a software toolset that can be used to deci-
pher and manage biological sequences e�ciently, MEME20 a tool for discovering
motifs in a group of related DNA or protein sequences, and many more. These
computational techniques have substantially sped up the revolution of computa-
tional biology, expanded the scope of biological research by having a remarkable
impact on the scienti�c community, and truly fostered innovation. However, when
it comes to big biological data sets, few of these software biology tools are capable
of dealing with such large amount of data, as when increasing the amount of data
the processing task of these tools becomes prohibitively slow. This is explained by
the fact that these classical software tools can neither deal with the data in an
interoperable mode nor conduct analyses in an integrative way. In computational
biology, it is hard to make sense of lots of data if these are dealt with separately
or in their own. The data should be linked to other sources of information (e.g.,
other data sets) that all together can be handled by the same software once at a
time. These limit the use of these standard tools and urge the call for the parallel
infrastructures. The discussed distributed frameworks o�er plenty of features that
solve the problems of the current standard biological software tools. Apart from
being lightning-fast cluster computing technologies speci�cally designed to handle
big data, they o�er an interoperable working environment allowing an integra-
tive analyses of data, and a robust and reusable software infrastructure on which
software biology can be built.

4.1.3 Highlights

At this point, we notice that there are some gaps between the work and advances
in enhancing the development of distributed biological computation techniques,
the available parallel frameworks in the business market and the set of the used
biological software tools. Up to now, biological computation techniques have been
developed to solve a variety of problems, but when it comes to solve speci�c prob-
lems in computational biology, these techniques are mainly designed as sequential
methods, handling manageable data sizes, or as distributed methods, handling big
biological data while making use of the emerging new parallel infrastructures. On
the other hand, only a limited number of bioinformatics software (that we also call
�software biology tools") are making use of the parallel frameworks, while properly

15 https://cme.h-its.org/exelixis/software.html/
16 http://wolbachia.biology.virginia.edu/WuLab/Software.html
17 http://www.biomolecular-modeling.com/Ascalaph/
18 http://www.dnastar.com/
19 http://www2.decipher.codes/
20 http://meme-suite.org/
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involving biological computation techniques in their mechanisms. This gives rise
to a new challenge in biological computation that requires further attention from
computer scientists, statisticians, and mathematicians. The sought biological soft-
ware tools, that we can call �a second generation of biological software tools�, need
to be reusable and portable. They should take into consideration all of the dis-
cussed aspects ranging from �exibility, scalability, interoperability, and should fade
into the working background so that the user can mainly focus on more interesting
tasks such as data analysis and interpretation.

4.2 Challenge 2: The larger dimension and complexity of scienti�c questions

Another main challenge faced by biologists and to be addressed by the compu-
tational community, i.e., computer scientists, mathematicians, statisticians, is the
need to address the increasingly larger dimension and complexity of their scienti�c
questions. Indeed, with the aim to develop a large ecosystem involving several bi-
ological components, it will easily become impractical in computational biology to
have the whole system, intended to be designed, available for testing, and hence
biologists need to �nd alternatives for studying and validating their systems be-
havior. As another aspect of the already mentioned convergence between the two
research directions (i.e., biological computation and computational biology), quan-
titative computing in biological computation comes into play to foster the move
toward a simulation-based science that is needed to address these new challenges.

Simulation systems in biology are built to help biologists study the dynamic
behavior of biological objects in response to an environmental setting that cannot
be easily or safely accessed in real life. Simulations are particularly bene�cial
in assisting biologists to measure and predict how the functioning of an entire
biological system may be a�ected by mutating some of the system's components.
More precisely, simulations of biological systems, via the quantitative computing in
biological computation, have a great forecasting power as they allow biologists to
forecast scenarios that have never happened before and to run new setups outside
of the known biological historical bounds.

These simulation systems provide biologists with highly �exible practices for
addressing and answering extremely relevant research questions such as �How does
order emerge from disorder?�. The answers to this scienti�c question, for instance,
can o�er biologists some new ways of organizing robust and self-adapting natural
and technological networks. Indeed, practical feedbacks are provided to biologists
when designing their biological systems allowing them to determine the correct-
ness and e�ectiveness of their proposed design before the system is actually con-
structed. Subsequently, biologists may explore the merits of some other possible
designs while avoiding the need to physically build their systems. Furthermore, by
exploring the properties of speci�c design decisions during the design/simulation
phase rather than in the construction phase, the overall cost of constructing the
system reduces considerably. Consequently, in comparison to the cost of exper-
imenting in the real world, the use of simulations of biological systems requires
very little time and resources.

Another bene�t that the biological computation community o�ers to biologists
via the simulators is the ability to study the biological problem at di�erent levels
of abstraction. If biologists interact with the system at a higher level of abstraction
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then they can better understand the interactions and behaviors of all the high level
biological system's components. This interaction is clearly displayed via the use of
computer graphics and animations, modules of the simulation systems, to dynami-
cally show the behavior and relationship of all the simulated system's components,
thereby a meaningful understanding of the system's nature can be provided. From
a high level of abstraction, biologists will be better prepared to counteract the
complexity of their overall system. This complexity may overwhelm biologists if
they have approached the system from a lower level. By using the simulation sys-
tems biology, biologists can better understand the operation of the higher level
components, and therefore can simply deal with the lower level components.

To enable a team to test and answer more scienti�c questions in a great value-
add, to deal with the growth of complex ideas in research projects, and with
the desire to keep testing a broad range of hypotheses and more scenarios, it is
only recently that a set of powerful simulation systems in biology has emerged.
Among these, we mention Kappa21 [43] an integrated suite of analysis and vi-
sualization techniques for building and interactively exploring rule-based models,
BioNetGen22 a software for generating mathematical/computational models that
account comprehensively and precisely for the full spectrum of molecular species
implied by user-speci�ed activities, potential modi�cations and interactions of the
domains of signaling molecules, BioSPICE Dashboard23 intended to assist biolog-
ical researchers in the modeling and simulation of spatio-temporal processes in
living cells, INSILICO discovery24 an advanced computational tool for network
oriented �in silico� analysis and design of cellular properties, and many more. Al-
though the biological computation community was making many e�orts in devel-
oping a wide range of simulation systems for biology, the use of these software tools
remained somehow restricted, and called for further improvements. More precisely,
like with most tools, the main problem is linked to the computationally intensive
processing which is required by simulators. This computationally intensive pro-
cessing which is required by simulators can be either tied to the large amount of
the biological data being simulated or due to the complex interactions that occur
between the system's entities. Consequently, a considerable delay may occur to get
the results of the simulation readily available after launching the simulation � an
event that may happen instantly in the real world may actually take hours to mimic
in a simulated environment. Accordingly, the biological computation community
is encouraged to improve these biological systems that are restricted by limited
hardware platforms by making use of more powerful distributed infrastructures as
these are available in these days.

Now from a technical perspective which gives rise to another challenge, simu-
lation software tools use a set of mathematical descriptions (or a model) of a real
system in the form of a computer program to describe the functional relationships
between the systems' components. In this concern, and to ease the task for biol-
ogists to better use simulators, it will be a great addendum if the computational
community work on hiding as many formal details as possible from biologists, and
o�er a wider palette of software visualization; an improvement that can play a

21 https://kappalanguage.org/
22 https://cellsignaling.lanl.gov/bionetgen/
23 http://www.biospice.org/
24 http://www.insilico-biotechnology.com/discovery_en.html
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critical role. More speci�cally, such simulation software should be user-friendly
and have good Graphical User Interfaces. Actually, the visual metaphors of algo-
rithm animations can help biologists understand how systems evolve, even while
they remain bound to their standard �picture� representations. Adding to this, a
formalized set of descriptors (i.e., software manuals) and best practices of these
software tools, which is not systematically and always readily available (but there
is an e�ort in this direction noticed recently), is required to further help biologists
with their work and to contribute in their achievements.

Based on these challenges in designing and developing simulators for biologi-
cal problems, a fundamental question is whether these virtual mountains of pro-
teomics, expressions, sequences, images, and other biological data can be converted
into biological knowledge in such way that it is trusted to biologists. Today, some
biologists are still skeptical of simulation. We believe that this skepticism will
subside when more success stories and validated forecasts will be witnessed and
highlighted in biology.

4.3 Challenge 3: The paradigm-shifting of the research process

From another perspective, while excessive biological data growth poses a lot of
hard challenges for the mathematical, statistical, and computer science communi-
ties, it is crucial to recall the importance of mathematically modeling the biological
systems and problems. In fact, the usefulness of the mathematical models for the
biological systems and problems is dictated by the rapid evolution of the technolo-
gies for gathering biological data. The consequence of such technological evolution
is that the quality and properties of biological data obtained by di�erent methods
are also changing. The new type of data, also, requires the development of novel
computational, statistical, and mathematical approaches. This technological race
pushes the invention of methods to solve biological problems without properly
formulating the mathematical model of a problem. Sometimes, researchers do not
dig into real-case data, and so �quick-and-dirty� methods are used. Such meth-
ods are usually not solving a well-formulated mathematical problem and make
it hard to use known mathematical, statistical, or computer science techniques.
Nevertheless, these methods can perform well on real-case data. As a result, a
well-formulated mathematical model of a speci�c biological problem is usually
given for challenging cases where a �quick-and-dirty� method does not work. It
is true that such a scienti�c process allows obtaining results, but it seems neces-
sary that the computational biology and the biological computation communities
need to change this practice towards the research process. In this new practice,
the rigorous mathematical modelling of any biological problem should come before
focusing on solutions or methods. Such a paradigm-shifting of the research process
will help both communities in several ways.

Firstly, the suggested practice would help to enhance the collaboration between
computational biology and biological computation. For example, if a computa-
tional biologist formulates the correct computational and mathematical problem,
it would be much easier for a researcher in biological computation to understand
which method should be used for solving this problem. Moreover, if a problem is
formulated mathematically, the next generation of researchers from both commu-
nities can pay more attention towards the development of the e�ective methods
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to solve various problems without calling for a speci�c expertise in the deep un-
derstanding of the biological aspect behind it. Such a mathematical formalization
will also help both communities complement their background in biology if it is
little. In addition, it will make the communication between these two communities
fast and e�cient. Computational biology and biological computation have com-
mon roots in computer science. Therefore, discussing existing research problems
would be faster without recalling and explaining biological terms since mathe-
matical formulations are much easier for computer scientists, mathematicians and
statisticians.

Secondly, both of the computational biology and biological computation com-
munities should bear in mind that working together will endorse the e�ectiveness
and the universality of the developed methods; speci�cally when it comes to real-
world applications. For instance, if one community develops a method that solves
the mathematical formalization of a biological problem, then it will be feasible for
the other community to verify the correctness of the obtained solution. This, in its
turn, supports task partitioning in the collaborative projects because researchers
(for example, from computational biology community) who pose the mathematical
version of the problem can easily verify the correctness of the solution proposed
by researches from the second community.

Thirdly, new approaches would favor capturing the common aspects of various
seemingly unrelated biological problems and systems. Having such models for var-
ious biological problems would allow abstraction from imperfection, imprecision,
uncertainty, and inconsistency of real-case data for each biological problem and
focus on discovering the common phenomena among these problems. Mathemati-
cians and computer scientists speci�cally could help in such discoveries. This is
because of the nature of their research which permits a deeper and a detailed anal-
ysis of the problem to solve; with this capability to approach the problem from
di�erent angles using appropriate tools and techniques.

Despite the clear bene�ts of the described paradigm-shifting, in some cases, it is
not so easy or straightforward to perform it. There are many remaining challenges
in moving towards mathematical modeling of some biological problems that both
communities are encouraged to address in the foreseeable future. These issues
are raised because computational biology and biological computation are highly
interdisciplinary �elds and many researchers from di�erent scienti�c cultures are
usually involved in the same research process. In the rest of this section, we will
discuss the most signi�cant challenges in our opinion that make it di�cult to
achieve the desired goals.

One of the frequent issues occurring when a researcher tries to develop a math-
ematical version of a biological system or problem is that his/her model�even if
it is considered as the most well-established solution�cannot �perfectly" describe
the real-life biological cases. This situation pushes biologists to ask mathemati-
cal, statistician, and computer science communities to develop more sophisticated
models that would allow a complete modeling of the complex biological processes.
Unfortunately, this is often almost impractical due to time requirements and/or
complexity of the biological systems. However, this challenge can be dealt with
when opting for a signi�cant simpli�cation strategy of the biological systems in
mathematical modeling which usually allows capturing the key aspects of the inter-
esting biological problem. Therefore, the computational biology community needs
to work on leveraging the power and usefulness of simpli�cation in biological stud-
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ies (mostly in mathematical modeling of biological systems) without ignoring the
key aspects of the biological systems. Simpli�cation is not only a powerful and
useful technique, but simpli�cations are unavoidable in many biological studies.

From the perspective of mathematicians, statisticians, or computer scientists,
it would be very hard to understand all the details behind the biological problem
to be solved. Even if a biologist wants to describe every single detail about the
biological phenomenon, there are details at the chemical and/or physical level that
even a biology researcher might not fully grasp. Fundamentally, when a biological
process is described in words (even in full details), the words are, by de�nition,
a simpli�cation of reality. Thus, even if mathematical models cannot describe
completely the real-life biological systems and problems, such models can still
signi�cantly contribute to discover various mechanisms in the biological systems.

The complexity of biological systems and the race in technology also require
the reorganization of the existing standard research work�ow and the process of
disseminating the result as publications. For example, the rapid pace of the tech-
nological race requires to quickly publish papers on new discoveries. However, the
publishing cycle still can take a signi�cant amount of time. Recently, researchers
addressed this issue and launched in 2013 an open access preprint repository for bi-
ological science, called bioRxiv25. bioRxiv is an analog of the well-known preprint
repository arXiv26 that consists of scienti�c papers in the �elds of mathematics,
physics, astronomy, electrical engineering, computer science, quantitative biology,
statistics, and quantitative �nance. This initiative is a positive sign showing how
mathematicians, statisticians, and computer scientists may in�uence the other dis-
cipline; helping the latter to solve some issues and improve its research work�ow.

While open access preprint repositories are developed for dealing with the
technological race, the problem with the description of complex biological systems
remains somehow unaddressed. There are dozens, sometimes hundreds of publica-
tions dedicated to one biological phenomena. So, understanding the state-of-the-
art information about some biological process in full details for a non-expert (for
example, computer scientists) becomes an almost inaccessible problem. Therefore,
communities who are involved in biological studies are encouraged to develop a
web-based platform to represent the current knowledge about biological phenom-
ena in a concise, complete, and explicit manner using the uniform view. Similarly
as arXiv inspired the creation of bioRxiv, mathematical web-sites such as a wiki
for research-level notes in mathematics, physics, and philosophy, called nLab27,
and the On-Line Encyclopedia of Integer Sequences (OEIS28), may be used as an
inspiration for such platforms. Such platforms would allow the biological compu-
tation community to more easily �nd information about biological systems and
to use it for developing more sophisticated bio-inspired algorithms. On the other
hand, computational biologists may use this system as a source of open problems
for �lling gaps in the biological system understanding.

Another example of demands in changing research work�ow is that the results
of the computational biology research are, often, not only the research paper but
also some software dedicated to the speci�c problem. A software program has a dif-

25 https://www.biorxiv.org/
26 https://arxiv.org
27 https://ncatlab.org/nlab/show/HomePage
28 https://oeis.org/
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ferent nature in comparison to a paper. It usually takes time that a research paper
gets published after a reviewing process where authors get feedback to improve the
quality of their research. Today, most of the authors are in line with the practice
of sharing their source code and hence their research work is not restricted to the
feedback of the reviewers; they are bene�ting from a large feedback given by inter-
ested parties who used the code. This practice which aims at making the solution
source code publicly available to all interested committees, is referred to as �open
source� software. To endorse the adoption of such practice, there are several ver-
sion control software such as Git29, Fossil30, Veracity31, Mercurial32, Monotone33

and many more. These version control software also allow to help reporting bugs
and errors. It is to o�er the possibility to report some code bugs to technicians,
to PhD students, to Postdocs and to academics that they can correct whenever
appropriate and release their new versions that better meet the second commu-
nity's needs and requirements. In this concern, it would be interesting to point out
that implementing scienti�c software should become more rewarded in academia,
so that also more researchers do coding, not only computer programmers.

However, it is important to mention that recently, several conferences and
journals explicitly require the source code as well as all the needed materials to
be publicly available upon the publication of the research; which pushes forward
the open access and open source movements. For example, within the computa-
tional biology community, a considerable e�ort is being put into projects such
as BioPerl 34, BioPython35, etc., and dedicated groups and conferences such as
BOSC36/Open Bioinformatics Foundation37.

Yet, making software open source highly adopted by both communities, it is
not enough. Researchers are encouraged to opt and endorse practices that support
already developed software. In addition, scientists are encouraged to make software
programs easily installable for non-professionals. Computational biology commu-
nity recently addressed this issue by creating a package manager specializing in
computational biology software, called BioConda38, and a work�ow management
system, called Snakemake39. Still with the same idea aiming at providing and en-
dorsing shared practices, the synthetic biology community proposed the Synthetic
Biology Open Language (SBOL) [118] � that provides a community standard for
communicating designs in synthetic biology � and the systems biology markup
language (SBML) [155,154] � used for representation and exchange of biochemical
network models.

Of course, the process of mathematical modeling requires a team that can un-
derstand both biology and either mathematics, computer science, or statistics. A
breadth of mathematics, computer science, or statistics knowledge is needed to

29 https://git-scm.com/
30 https://fossil-scm.org/
31 http://veracity-scm.com/
32 https://www.mercurial-scm.org/
33 https://www.monotone.ca/
34 https://bioperl.org/
35 https://biopython.org/
36 https://www.open-bio.org/wiki/BOSC
37 https://www.open-bio.org/
38 https://bioconda.github.io/
39 https://snakemake.readthedocs.io
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guide them to a formulation that is mathematically rigor, while an understand-
ing of the biology is needed to guide the team to a formulation that performs
well in experimental evaluations. However, creating such teams is by itself an-
other challenging goal due to di�erences in the scienti�c cultures of these various
disciplines. In order to solve this challenging goal, communities from di�erent
disciplines are encouraged to move in the direction of each other. For example,
biologists need to recognize the usefulness of mathematical rigidity of problem
formulation with which statistician, mathematician, and computer science people
usually work. Moreover, biologists need to gain their knowledge of statistics and
mathematics and to acquire some skills in programming.

On the other hand, it will be a great addendum if mathematicians, statisti-
cians, and computer scientists learn �deeper� biology; rather than the basic con-
cepts. They need to be aware of the possible complexities that may arise during
data generation processes. In addition, it will be very promising, if mathematical,
statistical, and computer science communities continue improving skills on how
to work in big collaborative projects containing hundred of researchers. Based on
this, a stronger collaboration is required between these communities. The lack of
such collaborative aspect as well as the lack of a strong and su�cient or con-
structive communication between the two communities in the past can be clearly
viewed via this gap between the biological computation, computational biology,
and mathematical biology disciplines. While our paper addresses only the goal of
seeking reasons for the gap between biological computation and computational bi-
ology, the existence of the gap between computational biology and mathematical
biology remains rather mysterious and requires additional discussion in the future
between these two communities.

5 Conclusions

In this paper, we presented a review on biological computation and various im-
portant sectors of computational biology, discussed the interface between these
two research areas and �nally we identi�ed a set of challenges for better syn-
ergies between biology and computation. We aimed at presenting how various
computational techniques have been inspired from the nature, and, on the other
hand, how computational techniques and mathematical modeling have been used
to solve various biological questions. We presented a reasonably comprehensive re-
view on biological computation, showing the tremendous impact and contribution
this nature has on developing computational techniques. On the other hand, since
computational biology is a huge interdisciplinary �eld covering numerous topics
and areas in the interface of biology and computation, our goal was to highlight
only a few of them with an emphasis on describing the application and impact
of mathematics, algorithms and statistical modeling. Note that we did not aim
for providing any suggestions or guidance for the researchers in choosing various
techniques to solve di�erent problems.

Research in biological systems and computational methods are converging and
signi�cantly contributing towards the advancement of science and technology. We
believe that there is still a lot of room for improvement in the integration of
computational techniques and life sciences. Although many algorithms have been
developed using the concept from biological systems (as outlined in Section 2),
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they are not necessarily being improved by incorporating more detailed knowl-
edge of biological systems. For example, neural networks and genetic algorithms
are undoubtedly two of the most important computational techniques based on
biological processes. However, they only capture the high level understanding of
the human brain and DNA sequence evolution, respectively. Taking a closer look
at these, it would be really interesting to see how more detailed knowledge about
the human brain and DNA sequence evolution can be incorporated to make further
improvements. As our knowledge on various biological systems are getting better
day by day, we should continue improving the bio-inspired techniques as we know
more and more about the corresponding biological systems.

Similarly, the �eld of computational biology may be bene�ted by using biolog-
ical insights. Currently various standard algorithmic techniques are being used to
handle a wide range of biological problems. However, we have not seen much no-
table improvements of the existing algorithmic techniques and data structures by
incorporating biological insights. We believe that it is possible and would be very
interesting to develop novel data structures, programming languages, database
systems, operating systems, fast and scalable algorithms for big data, etc. by look-
ing into nature. For instance, looking into how and in what format human brains
store and analyze data, can help in the design of such systems. In such a way, al-
gorithmic systems biology can contribute to the advancement of computer science
in a broad way.

Research in biological computation and computational biology is highly inter-
disciplinary which requires close collaboration between biologists and computer
scientists. While experts from these two �elds have been working together and
making great strides towards the advancement of science and technology, we be-
lieve more involved collaboration is required. This sort of collaborative e�orts will
introduce a nice balance between the �wet� lab and �dry� lab research which will
ultimately result in an improved understanding of biological processes as well as
fast and accurate computational techniques. Therefore, along with others [114,
22,271,293,261,307], we are advocating for the need of developing advanced and
appropriate computational tools to better understand and model life sciences, as
well as the need for a deeper integration of computer science in biology.
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