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Abstract:  Apoptosis is associated with numerous phenotypical characteristics, and is thus studied 11 

with many tools. In this study, we compared two broadly used apoptotic assays: TUNEL and stain- 12 

ing with an antibody targeting the activated form of an effector caspase. To compare them, we de- 13 

veloped a protocol based on commonly used tools such as filters, z-projection and thresholding. 14 

Even though it is commonly used in image-processing protocols, thresholding remains a recurring 15 

problem. Here we analyzed the impact of processing parameters and readout choice on the accuracy 16 

of apoptotic signal quantification. Our results show that TUNEL is quite robust, even if image pro- 17 

cessing parameters can allow or not to detect subtle differences of the apoptotic rate. On the con- 18 

trary, images from anti-cleaved caspase staining are more sensitive to handle and proved to neces- 19 

sitate to be processed more carefully. We then developed an open source Fiji macro automatizing 20 

most steps of the image processing and quantification protocol. It is noteworthy that the field of 21 

application of this macro is wider than apoptosis as it can perfectly be used to treat and quantify 22 

other kind of images.  23 

Keywords: Apoptosis; TUNEL; Caspase; image processing; thresholding; signal quantification; 24 

Drosophila 25 

 26 

1. Introduction 27 

Apoptosis is a programmed cell death characterized by caspases activation, subse- 28 

quent degradation of cell components, including DNA fragmentation, and final phagocy- 29 

tosis of so called "apoptotic bodies" by surrounding cells or macrophages [1]. Importantly, 30 

apoptosis is not only critical for correct development of metazoan organisms, but also for 31 

their survival. Indeed, apoptosis failure is observed in many diseases including cancers. 32 

Therefore, it is widely studied and new actors are regularly identified. Apoptosis detec- 33 

tion can be performed by multiple methods based on various features of apoptotic steps 34 

or regulators. Imaging of apoptosis in whole tissues can rely on a more limited number of 35 

methods. The first developed and best known of them is TUNEL (Terminal deoxynucle- 36 

otidyl transferase dUTP Nick End Labeling) which is based on labeling of DNA 3’ ends 37 

whose number increases during the DNA fragmentation step of apoptosis. However, 38 

TUNEL is costly, time consuming and also detects necrotic cells [2]. Alternatively, use of 39 

antibodies raised against cleaved ─ and thus activated ─ executioner caspases has proved 40 

to be more specific and convenient since immunodetection protocols are less time con- 41 

suming as they include fewer steps than TUNEL. In mammals, the cleaved form of exe- 42 

cutioner caspase 3 is targeted [2]. In Drosophila melanogaster, the antibody used was raised 43 

against the executioner caspase Dcp-1 cleaved at Asp 216. This antibody was recently 44 

Citation: Lastname, F.; Lastname, F.; 

Lastname, F. Title. Biomolecules 2021, 

11, x. https://doi.org/10.3390/xxxxx 

Academic Editor: Firstname Last-

name 

Received: date 

Accepted: date 

Published: date 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2021 by the authors. 

Submitted for possible open access 

publication under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 



Biomolecules 2021, 11, x FOR PEER REVIEW 2 of 22 
 

 

shown to actually detect the cleaved forms of both Dcp-1 and DrICE executioner caspases 45 

[3].  46 

In this study, we wanted to compare TUNEL and cleaved caspase stainings the more 47 

objectively possible. To this end, we co-stained apoptotic wing imaginal discs (the larval 48 

tissue giving the adult wing) with TUNEL and anti-cleaved Dcp-1 antibody and ad- 49 

dressed their sensitivity and requirements in terms of image processing. 50 

As a single image can give a great diversity of information, the first step of image 51 

analysis consists in choosing a readout (i.e. which data is worth collecting). For example, 52 

protein quantity can be assessed by measuring staining intensity and tumor or bacterial 53 

colony growth can be followed by measuring stained area. In the case of apoptosis, the 54 

most commonly found readouts are the “number of apoptotic cells” or an "apoptotic in- 55 

dex" that has various definitions according to the lab [4–7].  56 

When the chosen readout is the "number of apoptotic cells", many studies use a man- 57 

ual counting, implying that an experimenter defines interesting spots and count them. 58 

Manual counting is reliable because the expert eyes of experimenters are able to distin- 59 

guish the signal of interest from background noise better than any machine. This counting 60 

can be assisted by the “Cell Counter” plugin of ImageJ that records every experimenter’s 61 

clicks. Even with this assistance, this approach remains time consuming and might in- 62 

volve estimation bias that can eventually raise ethical questions. This is why, whenever it 63 

is possible and whatever the readout, it is better to rely on automatized -or semi automa- 64 

tized- computer-based methods. However, machines do not have eyes trained to recog- 65 

nize specific signal from background. This discrimination is allowed by the image pro- 66 

cessing steps done prior to quantification in order to decrease background noise and am- 67 

plify the signal of interest. This proper discrimination of foreground from background is 68 

called segmentation and defines the boundaries of the objects of interest. Thus, segmen- 69 

tation quality directly affects quantification accuracy. 70 

Other software than ImageJ such as Imaris or Matlab display default functions for 71 

signal quantification [8,9] which usually comprise image processing to yield a rapid result. 72 

However, these programs are not open source and the methodology used to obtain the 73 

values is often hard to access, which means that users have only a limited control on their 74 

implementation. Moreover, they usually are computationally demanding and thus re- 75 

quire powerful device to run. For all those reasons, many researchers prefer working on 76 

ImageJ / Fiji with which one can develop its own protocol for image processing and quan- 77 

tification.  78 

Once the readout has been chosen, image quality has to be increased by getting rid 79 

of background noise and artefacts in order to improve segmentation. Images typically dis- 80 

play three major kinds of defects: 1. general background noise; 2. isolated pixels with an 81 

aberrantly high intensity; 3. groups of pixels with aberrantly high intensities. Many func- 82 

tions are available to improve image quality on ImageJ but they often involve experi- 83 

menter's appreciation. Unfortunately, the more the experimenter is involved, the harder 84 

it is to ensure that all the images have undergone the same process. However, most of the 85 

time, it is impossible to totally obliterate experimenter involvement.  86 

We previously showed in the Drosophila model that overexpressing rbf1, the homolog 87 

of the human tumor suppressor RB1, induces apoptosis. This apoptosis requires the 88 

pro-apoptotic Bcl-2 family member Debcl, and involves caspases activation [10]. It can be 89 

visualized using TUNEL on rbf1 overexpressing wing imaginal discs [11]. In this study, 90 

we co-stained wing imaginal discs overexpressing rbf1 alone (vg > rbf1) or in the context 91 

of a debcl partial inactivation (vg > rbf1, debclE26) with both TUNEL and anti-cleaved Dcp-1. 92 

We used these images to compare several methods of image processing and estimate their 93 

impact on the quantification of apoptosis for both assays. We then developed a semi-au- 94 

tomatic protocol available as a free access Fiji macro called CASQITO (Computer Assisted 95 

Signal Quantification Including Threshold Options). This protocol enables, to process im- 96 

ages of both labelings and quantify the number of apoptotic cells or the stained area. It is 97 
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worth noting that our analysis and protocol can be relevant to quantify other types of 98 

staining outside the field of apoptosis. 99 

2. Materials and Methods 100 

Fly stocks 101 

Flies were raised at 25°C on a standard medium. The UAS-rbf1 and vg-gal4 strains 102 

were generous gifts from Joel Silber (Institut Jacques Monod, Université de Paris, France). 103 

The debclE26/E26 was obtained from the Bloomington Drosophila Stock Center (BL 27342) 104 

and we used a w1118 fly stock as the reference strain.  105 

 106 

Immunostaining and images acquisition 107 

Third-instar larvae were dissected in 1X PBS pH 7.6 in order to remove every possi- 108 

ble tissue except wing imaginal discs, then carcasses were fixed with 3.7 % formaldehyde 109 

in 1X PBS for 20 minutes at room temperature and washed three times for 10 min in 110 

PBST (1X PBS, 0.3 % Triton X-100). Discs still attached to cuticles were then saturated for 111 

1h in PBST-BSA (1X PBS, 0.3 % Triton X-100, 2 % BSA) and dissected again to isolate wing 112 

imaginal discs which were then incubated overnight with 1:100 dilution of anti-cleaved 113 

Dcp-1 (Asp216, Cell Signaling Technology) at 4°C. The following day, after three washes 114 

in PBST, wing discs were incubated for two hours with anti-rabbit secondary antibody 115 

(1:400, Alexa-Fluor-612-conjugated goat anti-rabbit-IgG (H+L) antibody, Molecular 116 

Probes, Thermo Fisher Scientific) in PBST. Following three washes in PBST, TUNEL stain- 117 

ing was performed according to manufacturer instructions (ApopTag Red In situ apopto- 118 

sis detection kit, merck-millipore). Finally, wing discs were mounted in ProLong Dia- 119 

mond (Invitrogen) and images were acquired using a Leica SPE upright confocal micro- 120 

scope (Leica) at 568 nm for TUNEL and 612 nm for anti-cleaved Dcp-1 stainings. Image 121 

analysis was done exclusively on Fiji, the exact same zone selection was studied for both 122 

assays 123 

3. Results 124 

3.1. Choosing a readout according to the biological question 125 

The readout is the data used to translate the intensity of the biological effect in num- 126 

bers. Therefore, the chosen readout should be coherent with the biological question and 127 

the tool used to study it. For instance, intensity can be measured to assess the amount of 128 

a stained component. In the study of apoptosis rate, whatever the assay used, a cell is 129 

apoptotic or not. Thus, quantifying the intensity of the staining, even if it can somehow 130 

make sense, does not seem the best option for accurate quantification of apoptosis. Con- 131 

versely, as long as apoptotic cells can be separated from each other (low apoptosis rate, 132 

widespread pattern or intracellular discrete staining), counting the number of objects 133 

equals counting the number of apoptotic cells, which constitutes a valid readout. In case 134 

this readout cannot be used, another valuable readout is the stained area. This can be used 135 

as a readout per se or can be used as a primary data and further treated to get an apoptotic 136 

index or score. If so, the stained area can be divided per the number of cells (obtained by 137 

plasma membrane or nuclear co staining), the area of interest (surface of a cellular clone 138 

or of the tissue section). These numbers do not indicate the actual number of apoptotic 139 

cells but this number is rarely necessary and those readouts satisfy the need to have a 140 

quantification precise enough to compare different samples. 141 

Here, we used TUNEL and anti-cleaved Dcp 1 to detect apoptosis. These highlight 142 

different features of apoptosis as TUNEL labels fragmented DNA in the nuclei while 143 

anti-cleaved Dcp 1 staining is cytosolic. As rbf1 overexpression is a potent apoptosis in- 144 

ducer in the wing imaginal discs, the probability to have clusters of adjacent apoptotic 145 

cells is rather high. This can eventually become problematic for accurate quantification. 146 
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Indeed, when adjacent cells are apoptotic, TUNEL labeling is expected to remain puncti- 147 

form as nuclei remain spaced by cytoplasms (Figure 1 (a) and (c)). On the contrary, with 148 

anti-cleaved Dcp 1 staining, it is expected that such adjacent apoptotic cells become indis- 149 

tinguishable from each other and thus appear as a single object (Figure 1 (b) and (d)).  150 

 151 

Figure 1. Effect of different type of stainings on the "Count" readout. (a) and (b) scheme showing a 152 

virtual cluster of four apoptotic cells. In (a), green spots represent nuclei stained by TUNEL while 153 

in (b), red patches represent cytosols stained by anti-cleaved Dcp-1. (c) and (d) schemes present 154 

the result of image processing for these signals.  155 

Therefore, for the count of apoptotic cells, these clusters of labeled cells are not ex- 156 

pected to alter the quantification for TUNEL while they may cause an underestimation of 157 

the number of apoptotic cells with anti-cleaved Dcp-1 staining. The extent of this under- 158 

estimation is difficult to anticipate as it depends on many parameters. Still, this underes- 159 

timation surely increases with the apoptotic rate – as the probability to have clusters of 160 

apoptotic cells increases – which could lead to an artificial flattening of the difference of 161 

apoptosis rate that may exist between two conditions. As for the area readout, the size of 162 

the wing imaginal disc cells (and their nucleus) being homogenous, the stained area indi- 163 

rectly reflects the number of apoptotic cells without being impacted by their relative lo- 164 

calization. In the end, counting cells seems, at least at first sight, a more precise, because 165 

more direct, readout of apoptosis than area. However, this readout might be altered by 166 

apoptotic cells clusters. As it is not possible to anticipate how these clusters will affect the 167 

quantification in our experimental set up, we chose to use both count and area readouts. 168 

On Fiji, these two readouts can be obtained using the “Analyze Particles” function, which 169 

only works on binary 2D images. This means that our image processing protocol should 170 

include both z projection and binarization using a threshold, these two treatments being 171 

compatible with our set up. Indeed, our tissue of interest is a monolayer, then z projection 172 

should not affect quantification. Besides, because a cell is apoptotic or not, our readouts 173 
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do not depend on signal intensity and binarization by itself should not affect the quanti- 174 

fication. 175 

3.2 Designing an image processing protocol 176 

Steps of image processing directly depend on the chosen readout. In order to get both 177 

the number of objects and the stained area, our image processing protocol is based on 178 

three major steps: 1. Background noise reduction, 2. Compression of our 3D images into 179 

2D by a z-axis projection, 3. Thresholding. Those steps allow appropriate segmentation 180 

required for relevant quantification by the "Analyze Particles". Importantly, on ImageJ, 181 

there are many ways to minimize background signal, 6 ways of compressing a 3D image 182 

in 2D and 17 ways of determining a threshold, resulting in countless combinations of pos- 183 

sible image processing. In this study, we investigated the weight of these parameters on 184 

signal segmentation to end up with an optimized and unbiased protocol for apoptosis 185 

quantification. 186 

 187 

3. 2. 1. Median Filter and size limitation efficiently reduce artefacts 188 

When quantification is automatized, definition of the signal of interest by segmenta- 189 

tion is even more critical. Indeed, bad segmentation can lead to quantification of unreal 190 

objects and thus gives useless results. To do so, signal of interest boundaries have to be 191 

better defined while background noise have to be decreased. General background noise 192 

can be minimized in many ways depending on the kind of images, the readout wanted 193 

and the defaults faced. In our case, mandatory use of a threshold would blacken every 194 

low intensity pixel responsible of general background noise. However, if binarization of 195 

the image efficiently removes diffuse low intensity background noise, it is not sufficient 196 

to erase artifactual pixels with aberrantly high intensity, i.e. which intensity is higher than 197 

the threshold value. Fortunately, isolated aberrantly high pixels can be dealt with filters. 198 

Filters are matrix operations that re-calculate a pixel intensity value based on itself and its 199 

neighbors. The two mainly used filters are “Mean Filter” and “Median Filter” (Figure 2A). 200 
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 201 

Figure 2. Filters effect on background noise and segmentation. A: The grid in (a) presents intensity 202 

values of a 3x3 pixels image. The grid in (b) presents how a "Mean Filter" with a radius of 1 affects 203 

the central pixel of the original image (left) and the whole image (top right grid). The grid in (c) 204 

presents how a "Median Filter" with a radius of 1 affects the central pixel of the original image 205 

(left) and the whole image (bottom right). In order to make intensity differences more visible, each 206 

boxes background color corresponds to the double of each pixel intensity value in greyscale. B: (a) 207 

TUNEL-labeled wing imaginal disc image after a Max Intensity z-projection. (b) magnification of 208 

(a) after binarization using a manually determined threshold. (c) same as (b) but the image was 209 
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applied a "Median Filter" with a radius of 1 before Max Intensity z-projection. White bars corre- 210 

spond to 10 µm. Arrows with circled numbers 1, 2 and 3 target areas of interest. 211 

 212 

 A “Mean Filter” with a radius of 1 gives a pixel an intensity value that corresponds 213 

to the mean of its value and those of its direct neighbors (Figure 2A (b)). Hence, the value 214 

of an isolated pixel with aberrantly high intensity is attenuated by the intensity value of 215 

its neighbors. However, as extreme values impact mean calculation, every neighboring 216 

pixel is affected by the isolated aberrantly high pixel and their intensity is artificially in- 217 

creased (Figure 2A (b)). By contrast, a “Median Filter” with a radius of 1 gives a pixel an 218 

intensity value corresponding to the median of its value and those of its direct neighbors 219 

(Figure 2A (c)) which is expected to be much closer to local intensity value. Besides, as 220 

extreme values effect on median calculation is low, high intensity isolated pixel impact on 221 

its neighbors is negligible. All in all, the “Mean Filter” tends to spread an aberrantly high 222 

value whereas a “Median Filter” tends to confine it. This effect is illustrated in Figure 2B, 223 

where the “1” arrows of the "No filter" panel shows typical isolated aberrantly high pixels 224 

that are efficiently erased by a "Median Filter" with a radius of 1 (Figure 2B compare (b) 225 

and (c)). Aside from this benefit, the area pointed by the “2” arrow exemplifies the median 226 

filter ability to preserve edges of an object. Indeed, on the illustration, human eyes easily 227 

detect that the “2” arrow targets a marked cell (Figure 2B (a)). However, this object is het- 228 

erogeneous: in a restricted space, it contains few pixels of high intensity and many pixels 229 

of low intensity (i.e. below the chosen threshold). Without any filter, only high intensity 230 

pixels are kept after the thresholding step thereby fragmenting this object in several small 231 

groups of pixels (Figure 2B (b)). Thus, with no further treatment, multiple objects will be 232 

counted in this area, which does not reflect reality. However, as these high intensity pixels 233 

are close to each other, the "Median Filter" with a radius of 1 homogenizes intensity values 234 

within this object. This allows its reconstruction and gives a segmentation consistent with 235 

reality (Figure 2B (c)). Thus, when the "Median Filter" with a radius of 1 is applied, the 236 

"number of objects" decreases only to be closer to what a human eye would count.  237 

Although the “Median Filter” with a radius of 1 efficiently reduces the number of arti- 238 

factual objects by erasing isolated high pixels, the issue of groups of pixels with an inten- 239 

sity higher than the threshold value remains. A way to eliminate most of those artifacts 240 

is to limit our analysis to objects with a size consistent with the smallest biological object 241 

of interest. In our case, this smallest biological object is TUNEL-labeled nucleus, we as- 242 

sessed their size on a few random images and thus set a size limit at 2 µm. Importantly, 243 

this "> 2 µm size limitation" fits our data but should not be taken as a default value and 244 

must be adapted for other kinds of signals or cell types. As the "Analyze Particles" func- 245 

tion records the size of every object, this filtering can be done after quantification. This 246 

function directly proposes to define a size range of object to quantify which we used. In 247 

Figure 2B, the "> 2 µm limitation" eliminates artifactual object pointed by the “3” arrow 248 

as well as individual pixels such as those pointed by the “1” arrows. It thus appears very 249 

powerful to “clean” the image. However, as efficient as the size limitation may be, it can- 250 

not replace "Median filter". Indeed, as already explained, in the absence of a “Me- 251 

dian Filter”, the cell indicated by the “2” arrow in Figure 2B gets fragmented in several 252 

small groups of pixels, each one being smaller than 2 µm (Figure 2B (b)). Thus, without 253 

the "Median Filter", these pixels are eliminated by the "> 2 µm limitation" and the actu- 254 

ally labeled cell indicated by the “2” arrow is not included in the quantification of the 255 

apoptotic signal. Here, reconstruction of the object by the "Median Filter" prevents its 256 

elimination by the "> 2 µm limitation" (Figure 2B (c)). In the end, combination of a "Me- 257 

dian Filter" with a radius of 1 and "> 2 µm limitation" allows a better segmentation and a 258 

more accurate quantification.  259 

 260 

3.2.2. Max Intensity z-projection improves contrast  261 
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Confocal microscopy gives the possibility to capture objects in 3D. However, image 262 

processing often requires transforming volumes into 2D images by compressing the 263 

z-axis. In our case, the “Analyze Particles” function used to quantify the signal of interest 264 

requires images to be in 2D. Flattening a 3D volume can seem counterproductive, as sep- 265 

arate objects on the same z-axis will be reduced to one on the final 2D image. In our case, 266 

this is unlikely to happen since imaginal disc cells are organized in a monolayer with only 267 

limited folding and this is also true for tissue sections as long as they are thin enough.  268 

Projection consists in compressing the signal contained in every pixel of a z-axis in a sin- 269 

gle one. On ImageJ, projection can be done in several ways but two of them are mainly 270 

used. The first one, Average Intensity (AI), averages the intensity of all the pixels of a 271 

z-axis. The second, Max Intensity (MI), only retains the maximal intensity value along 272 

the z-axis. Figure 3 presents examples of these projection methods on a virtual object 273 

without any other treatment (i.e. median filter).  274 

 275 
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 276 

Figure 3. Projection methods. The left panel presents different planes obtained by imaging a vir- 277 

tual object surrounded by a perfect background noise of 0. On the right, the upper panel presents 278 

the coordinates of three pixels: A, B and C, and their respective intensity values along z-axis. Bot- 279 

tom panels show the resulting projection obtained either by an Average Intensity or a Max Inten- 280 

sity projection with respective intensity values obtained for A, B and C pixels. For all representa- 281 

tions, boxes background color corresponds to their pixel intensity in grey scale. 282 
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The z-axis presented in “A” shows only one illuminated pixel on slice #2 and this pixel is 283 

included in the object. The “B” z-axis shows numerous pixels highly illuminated, com- 284 

prised in the object. The “3” z-axis presents an artifactually illuminated pixel on slice #2 285 

that is not comprised in the object. Comparison of the projection methods shows that AI 286 

projection decreases the importance of the artifactual pixel of the “C” z-axis while the MI 287 

projection, increases its weight. However, in the processing protocol, the preceding use 288 

of a “Median Filter” with a radius of 1 eliminates most of those artefacts that are thus 289 

not present anymore at the projection step. Conversely, the AI projection of the “A” 290 

z-axis leads to loss of signal even if it is part of the object. Furthermore, with the AI pro- 291 

jection, the contrast between object and background is little so the range for the appro- 292 

priate threshold value is limited (Figure 3). After a MI projection, contrast is enhanced 293 

and thus threshold determination is easier for the experimenter, which helps limiting the 294 

experimenter bias. This is particularly important for signals with low contrast such as 295 

TUNEL. In our case, these two projection methods do not end up in drastically different 296 

results but, all in all, MI projection presents more benefits than AI projection.  297 

 298 

3.2.3. Use of custom manual thresholds gives the best segmentation for relevant quantifi- 299 

cation 300 

The "Analyze Particles" function used for quantification requires the image to be bi- 301 

nary. The transition from a greyscale image to a black and white image involves the set- 302 

ting of a threshold that defines an intensity value above which a pixel is turned to white 303 

and under which a pixel is turned to black. Ideally, this value should enable to get an 304 

image where white only corresponds to the signal of interest. Thresholding is the last step 305 

of segmentation and finally defines the objects of interest, which is critical for accurate 306 

quantification. Therefore, among the steps of image processing, it is the one that has the 307 

most dramatic effect on quantification accuracy so we dedicated a particular attention to 308 

the threshold determination method. 309 

Threshold can be automatically set by algorithms that analyze specific features of the 310 

image intensity histogram to determine a threshold value using either simple indicators 311 

such as the mean, maximal or minimal intensity values, or more complex formulas. Hence, 312 

algorithms appear as an unbiased method to obtain a specific threshold value per image. 313 

We thus wondered whether any of the 16 thresholding algorithms available on Im- 314 

ageJ / Fiji could be used to determine a threshold capable to properly segment apoptotic 315 

signal on our images. Using some randomly chosen images, we visually checked if these 316 

algorithms could provide a threshold value allowing a relevant segmentation, i.e. con- 317 

sistent with apoptotic signal. Most algorithms did not pass the visual inspection step as 318 

they yielded unrealistic segmentation either by ignoring a great portion of the signal or 319 

by including artifactual signal. However, two of them, Otsu and Moments, seemed capa- 320 

ble to discriminate actual apoptotic staining from background. We then performed a more 321 

detailed analysis of the threshold values obtained with these algorithms by comparing 322 

them to the ones obtained by experimenters. To this end, for the 28 images of the vg > rbf1 323 

genotype, three experimenters determined the threshold to use for each staining (TUNEL 324 

or anti-cleaved Dcp-1) by eye and in triplicate (see Supplementary Figure S1). Thresholds 325 

for these images were also determined using the 16 algorithms. As expected, algorithms 326 

inducing obvious unrealistic segmentation of the apoptotic signal yielded threshold val- 327 

ues very far from the range of the ones determined by experimenters (Figure 4 (a) and (b), 328 

compare IsoDota and Intermode with Exp, and data not shown). On the contrary, Mo- 329 

ments, Otsu and experimenters threshold values are in the same range (Figure 4 (a) and 330 

(b)).  331 

 332 

  333 
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 334 

 335 

Figure 4. Comparison of thresholding methods. Upper panel presents overall distribution of 336 

threshold values per image obtained with various thresholding methods for images of vg > rbf1 337 

genotype. (a) and (b) Exp distribution (in yellow) corresponds to the whole of the threshold values 338 

determined by three experimenters in triplicate (raw data are presented in Supplementary Fig- 339 

ure S1). Intermode (in light blue) and IsoData (in green) are examples of algorithms yielding inad- 340 

equate values, very far from experimenters' distribution. Otsu (in brown) and Moments (in blue) 341 

are algorithms that seemed usable. (c) and (d) show the threshold values for each image obtained 342 
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by Otsu (in brown), Moments (in blue) and experimenters (Exp, in black) in a pairwise organiza- 343 

tion. Yellow bars correspond to the range of the threshold values determined by the experimenters 344 

for each image. Bottom panel illustrates the result of the binarization using the threshold values 345 

determined by experimenters (e) and (g), Otsu (f) and Moments (h). Black arrows of the middle 346 

panels target the image used for illustrations presented on the bottom panel. Importantly, these 347 

images were chosen as they are representative of the deviation between the algorithm and the 348 

experimenters average value (chosen images have a deviation equal to the median of the devia- 349 

tions).  350 

 351 

From this global analysis, it could seem that algorithms can be as good as human eye 352 

for threshold determination (compare for instance Otsu and Exp in Figure 4 (b)). How- 353 

ever, visually, Otsu capability to determine a relevant threshold seemed irregular. We 354 

thus further digged into these data and compared the threshold values obtained not glob- 355 

ally but for each image. As shown in Figure 4 (c) and (d), the values obtained with Otsu, 356 

if they tend to be roughly the same on average than the ones obtained by experimenters, 357 

are actually most of the time out of the range of experimenters values. This is particularly 358 

striking for images obtained from TUNEL (Figure 4 (c)) as Otsu’s determined values are 359 

far higher or lower that the ones obtained by any experimenter. This would not be an issue 360 

as long as the threshold values obtained still allow a realistic segmentation of apoptotic 361 

signal and subsequent relevant quantification. However, such deviation of the threshold 362 

value results in an inappropriate segmentation (compare Figure 4 (e) and (f)), that neces- 363 

sarily ends in a biased or most likely totally wrong quantification. When it comes to Mo- 364 

ments, it provides threshold values that are usually lower than experimenters’ ones (Fig- 365 

ure 4 (a) and (b)), which means that using this algorithm tends to include some back- 366 

ground noise to the quantification. The question resides then in determining whether this 367 

amount of background noise is important enough to alter quantification. In the case of 368 

TUNEL staining (Figure 4 (c)), values are quite low so it certainly affects quantification 369 

rather importantly. By contrast, when images come from anti-cleaved Dcp-1 staining, the 370 

threshold values given by Moments are much closer to the ones obtained by experiment- 371 

ers, they actually seem very similar to the lowest values determined by experimenters 372 

(Figure 4 (d)). Therefore, one could assume that the variability of threshold values be- 373 

tween Moments and an experimenter is comparable to the one that exists between exper- 374 

imenters. We tested this by comparing the relationship between the two most distant ex- 375 

perimenters’ batch of measurements to the one between Moments and its closest dataset. 376 

As shown in Supplementary Figure S2B, if two experimenters will not determine exactly 377 

the same value for the threshold, their evaluations remain consistent with each other 378 

(p = 10-5 and R2 = 0.53 for the most distant measurements), the difference can be more or 379 

less described as a given experimenter tending to set thresholds always lower than the 380 

other. This is a systematic error that should affect quantification only moderately. On the 381 

contrary, threshold values determined by Moments are not consistent with the values of 382 

experimenters (p = 0.8 for the closest in Supplementary Figure S2B). This indicates that 383 

Moments can set a low threshold value when experimenters would have all chosen a 384 

higher one but it is not always the case, and most of all, the extent of this underestimation 385 

(i.e. the range of the difference between experimenters and Moments threshold values) is 386 

variable. This is more problematic as the extent of background incorporation in the quan- 387 

tification will then vary and might alter quantification relevance. 388 

Contrary to algorithms, manual determination of the threshold values appears quite 389 

robust. Indeed, comparison of manually determined threshold values for individual im- 390 

ages shows a low variability and a good reproducibility both between several determina- 391 

tions of a given experimenter and between experimenters (Supplementary Figure S1). As 392 

all images from an experiment are acquired identically, with the same microscope set- 393 

tings, originate from samples treated with the same solutions, at the same time, theoreti- 394 

cally, the appropriate threshold value is expected to be the same for all of them. Moreover, 395 
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using the same unique threshold value for all images can be considered as more objective 396 

and unbiased. 397 

However, manually determined threshold values display some variability (Figure 4, 398 

Exp). This can justify using a distinct individual threshold for each image as it might ena- 399 

ble a more accurate segmentation and subsequent quantification. In order to assess to 400 

which extent these two thresholding methods can affect quantification and detection of 401 

our biological effect, we tried both (Figure 5A).  402 

In the Manual condition, each image was binarized using its own manually deter- 403 

mined threshold value (determined by experimenter 1, measure 3). From these individual 404 

threshold values, we calculated the median value per genotype and then the median of 405 

these medians. This last value was used as the unique threshold value to binarize all im- 406 

ages in the Total condition (1128 for TUNEL and 777 for anti-cleaved Dcp-1). We decided 407 

to use the median of the medians per genotype rather than the global median (calculated 408 

from the whole of the images independently of their genotype) to avoid giving more 409 

weight to a genotype (that might have a larger headcount for instance).  410 
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 411 

Figure 5. Impact of thresholding on quantification. TUNEL and anti-cleaved Dcp-1 stainings quan- 412 

tifications. Upper panel shows representative images of wing imaginal discs stained by TUNEL 413 

((a) and (b)) or anti-cleaved Dcp-1 ((c) and (d)) for vg > rbf1 ((a) and (c)) and vg > rbf1, debclE26 ((b) 414 

and (d)) genotypes. White bar corresponds to a 50 µm scale. "Count" panel presents quantification 415 

of TUNEL (e) and anti-cleaved Dcp-1 (f) signal based on the counting of the number of objects 416 

according to the different thresholding methods (Manual and Total) for vg > rbf1 (in pink) and 417 

vg > rbf1, debclE26 (in blue). "Area" panel presents quantification of TUNEL (g) and anti-cleaved 418 

Dcp-1 (h) signal based on the number of white pixels (stained area) according to the different 419 
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thresholding methods (Manual, or Total) for vg > rbf1 (in pink) and vg > rbf1, debclE26 (in blue). p- 420 

values displayed above results were obtained using Wilcoxon tests. 421 

 422 

 423 

For TUNEL stained images, both thresholding approaches give a workable quantifi- 424 

cation both for count and area readouts (Figure 5B (e) and (g)). Indeed, a significant de- 425 

crease of apoptosis between the two genotypes is detected in all cases. However, even if 426 

Total or Manual thresholding method enable to detect the biological effect, we noticed 427 

that quantification is still somehow altered when a unique threshold is used (Supplemen- 428 

tary Figure S3). 429 

As for anti-cleaved Dcp-1 stained images, the first observation we can do is that the 430 

count readout was not usable. Indeed, we knew that apoptotic cells clusters might alter 431 

quantification as these clusters might be considered as a single object. Moreover, such 432 

underestimation is enhanced when the apoptosis rate rises, eventually leading to the flat- 433 

tening of the difference between two samples. However, we chose to keep this readout, 434 

as it was not possible to anticipate the extent of this phenomenon in our samples. As 435 

shown in Figure 5 (f), with this readout, the difference in the apoptosis rate between the 436 

two genotypes becomes undetectable. This indicates that the level of apoptosis induced 437 

by rbf1 generates apoptotic cells clusters frequently enough to significantly alter quantifi- 438 

cation, and this, whatever the thresholding method, thus prohibiting the use of the count 439 

readout. By contrast, when anti-cleaved Dcp-1 staining is quantified using the area 440 

readout, the difference between the two thresholding methods (unique versus individual 441 

thresholds) becomes obvious. As shown Figure 5 (h), when a unique threshold value is 442 

used for all images (Total), the difference of apoptosis rate between the two genotypes is 443 

barely detectable (p = 0.033). Moreover, extreme values compatible with an overestima- 444 

tion due to inadequate segmentation are seen (see highest values for vg > rbf1, debclE26 gen- 445 

otype in Figure 5 (h) and also Supplementary Figure S3). On the contrary, the use of indi- 446 

vidual specific threshold values (Manual) enables to readily detect the difference of apop- 447 

tosis rate between the two genotypes (p = 1.5 10-5). 448 

In the end, this analysis shows that, in our case, using an individual threshold per 449 

image is more adequate and turns out to be the safest option for accurate segmentation 450 

and thus, relevant quantification.  451 

3.3. Quantifications of TUNEL or anti-cleaved Dcp-1 stainings do not have the same 452 

requirements 453 

TUNEL and anti-cleaved caspase stainings are widely used to assess the level of 454 

apoptosis in tissues. However, depending on the experimental set-up, the quantification 455 

step may become tricky.  456 

TUNEL appears as a quite robust apoptosis detection technique. Indeed, it allows to 457 

quantify apoptosis and to detect differences in apoptosis rate whatever the thresholding 458 

approach, and with both count and area readouts (Figure 5 (e) and (g)). This was not to- 459 

tally expected since in our images, there was not a strong contrast between the apoptotic 460 

signal and the background (Figure 5 (a) and (b)). However, as previously mentioned, 461 

TUNEL assay is costly, time consuming and lacks specificity as it also detects necrotic 462 

cells. 463 

On the contrary, using antibodies against cleaved caspase(s) is considered as a more 464 

specific and convenient staining of apoptotic cells. By contrast with TUNEL which labels 465 

nuclei, caspase staining covers the whole volume of the cell, raising the issue of adjacent 466 

apoptotic cells when the readout is counting cells. Indeed, counting the number of apop- 467 

totic cells stained with anti-cleaved caspase antibody is perfectly possible as long as apop- 468 

totic cells are sufficiently separated from each other. In our experimental set-up it ap- 469 

peared that the apoptosis rate was too high to prevent the underestimation of the signal 470 

due to fusion in a single object of clustered apoptotic cells. When the stained area was 471 

measured, it revealed that images from anti-cleaved Dcp-1 stainings should be carefully 472 
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processed because determination of the threshold value to use for binarization is particu- 473 

larly important. Indeed, even if the difference of apoptotic rate between the two genotypes 474 

was known and easily seen by eye (Figure 5, compare (c) and (d)), its detection after quan- 475 

tification was not obvious. Actually, the decrease in apoptosis between the two genotypes 476 

is barely detected when a unique threshold value is used for the segmentation of all im- 477 

ages (Figure 5 (h)) whereas using a specific threshold value for each image enables to see 478 

it. Therefore, anti-cleaved Dcp-1 staining quantification is more affected by image pro- 479 

cessing than TUNEL and should be handled more carefully.  480 

 481 

3.4. Macro explanation 482 

Once the image processing protocol was established and validated, we worked on its 483 

automatization. Indeed, doing this processing for every image manually is not only time 484 

consuming but also error-prone since it increases the probability to skip or treat twice an 485 

image or to make mistakes during data collection. We automatized this image processing 486 

protocol by developing an open-source macro on Fiji called CASQITO (Computer As- 487 

sisted Signal Quantification Including Threshold Options, available at 488 

https://github.com/JdNoiron/CASQITO). This macro limits experimenter’s involvement 489 

to threshold determination. As we only work on Leica microscopes, this macro only sup- 490 

ports .lif files and should be adapted for other formats. During processing of the images, 491 

the macro generates several files for every given .lif file, which will be stored in the same 492 

folder as the parental .lif file. We thus recommend recording images from different con- 493 

ditions (genotypes or treatments) in separate .lif projects. The first file generated is a .txt 494 

file that recapitulates data from the Log window, which conserves settings associated to 495 

the treatment of the .lif file. Two .xls files of results are also generated, respectively com- 496 

piling results of threshold determination and quantification. It is worth noting that this 497 

latter provides all possible quantification obtainable with the "Analyze Particles" function 498 

whatever the chosen readout may be. A .png file is also generated to display an histogram 499 

representing the distribution of the obtained threshold values. If a zone selection is re- 500 

quired, another .png file is generated for each image to display experimenter zone selec- 501 

tion. Lastly, the macro is not able to treat multiple regions of interest on the same image, 502 

thus, even if two objects (in our case two wing imaginal discs) are in the same field and 503 

can be captured in the same image, it is very important to capture this field twice.  504 

The macro consists of two parts described in Figure 6: the first part allows determi- 505 

nation of threshold values and the second part allows zone selection and quantification. 506 

https://github.com/JdNoiron/CASQITO
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 507 

Figure 6. Fiji macro workflow. Giving our image processing protocol, the macro is divided in two 508 

major parts. Part 1 (left panel) is dedicated to manual threshold determination while Part 2 (right 509 

panel) is dedicated to zone selection and quantification after application of the previously deter- 510 

mined threshold. In Part 1, images are opened, treated according to parameters set in the window 511 

presented Figure 7 and presented to user for threshold determination. Once every image of a .lif 512 

file has been treated in Part 1, threshold results are recapitulated before starting Part 2. In Part 2, 513 

images are opened again and treated as in Part 1, chosen threshold is applied and the resulting 514 
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image is presented to user for zone selection before quantification. When every relevant images 515 

have been treated, quantification results are superficially analyzed to yield mean, standard devia- 516 

tion, min and max.  517 

Once a .lif file has been chosen, the window presented Figure 7 opens to set a few 518 

parameters.  519 

 520 

Figure 7: Macro Part 1. The macro starts by collecting few parameters. Importantly, the chosen 521 

"Condition name" will end up in the name of the files associated with the .lif file. The default back- 522 

ground noise reduction method is a “Median Filter” with a radius of 1 but user can apply its own 523 

protocol before and / or after Z projection if needed. As a thresholded image is in black and white, 524 

it can hardly be used to define region of interest when a zone selection is needed. Therefore, the 525 

macro offers the possibility to define region of interest (i.e. vestigial domain in our case) on an- 526 

other channel or an unthresholded version of channel of interest. If the whole image has to be ana- 527 

lyzed, a “No selection needed” option is available. Concerning threshold determination, "A. Us- 528 

ing an algorithm" and "B. Manual determination" options will lead to application of an individual 529 

threshold value per image. If use of a unique, representative, threshold value to treat every image 530 

of a .lif file is wanted, user can make its choice after treating every image (option "C"), 50 % of the 531 

images (option "D"), 25 % of the images (option "E") or 10 % of the images (option "F"). If manual 532 

determination has already been done, user can skip Part 1 with option "G". Once chosen, those 533 

parameters are recorded in the Log window which content is ultimately saved in a .txt file. 534 
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 535 

These parameters aim at setting the method used for background noise reduction 536 

and z-projection as well as determining channels of interest. It should be noted that chan- 537 

nels are automatically assigned a number that increments in ascending order of the wave- 538 

length starting from the shortest wavelength used. Once these parameters are set, the 539 

macro opens the first image and checks if it is an actual stack and not a 2D image. In the 540 

latter case, the 2D image is skipped without being analyzed and the macro records it has 541 

ignored this image in the Log window (“Caution series X is not a stack”) and directly 542 

opens next image. When the opened image is a stack, it is processed according to the pa- 543 

rameters previously chosen for background noise reduction and z-projection. In our case, 544 

this means a "Median Filter" with a radius of 1 is applied and z-projection is done by the 545 

Max Intensity method. Result of this z-projection opens twice, giving one image to work 546 

on and a second to check in real time if the changes induced are consistent with reality. 547 

Just before allowing the user to determine a threshold value, a checkpoint asks for confir- 548 

mation to treat this image. Indeed, acquisition might have been done on another channel 549 

than the one of interest thus, huge artifacts on channel of interest might reveal themselves 550 

only at this point. Discarding such image from the analysis is done by clicking the “Do 551 

not take series X into account” option. The macro records this image has been ignored in 552 

the Log window (“Series X has been excluded from threshold determination”) and di- 553 

rectly opens next image. At this step, four windows are open to allow threshold determi- 554 

nation: the two images obtained after z-projection to monitor the effect of the threshold 555 

and two system windows: a “Threshold” window that contains the cursor used to set the 556 

threshold value and a "Threshold Selection" window whose “OK” button clicking is re- 557 

quired once the threshold has been determined. Importantly, if the “OK” button of the 558 

“Threshold Selection” window must be clicked for the macro to continue, buttons of the 559 

“Threshold” window should not be clicked. As soon as the “OK” button of the “Threshold 560 

Selection” window is clicked, the chosen threshold value is recorded in the Log window 561 

and the .xls table and next series is opened. Once all images have been processed, Part 1 562 

is over and a histogram showing the threshold values distribution is displayed. When 563 

ready, user have to click the "OK" button of the "End of Part 1" window to start Part 2. 564 

Importantly, Part 2 does not necessarily have to be done right after Part 1. As presented 565 

in the Part 1 settings choice window (Figure 7), a possible option of the last question is 566 

"G. Part 1 already done". This option will lead directly to Part 2. In this case, user can ei- 567 

ther define a unique threshold value to treat every image of a .lif file or treat each image 568 

with its own threshold value after loading the corresponding Excel table containing 569 

threshold values for this .lif file obtained in Part 1. This option allows users wanting to 570 

apply the same threshold value for all of their conditions to assess the best threshold value 571 

for all their conditions in a first time and perform quantification in a second time.  572 

Part 2 begins with the opening of the window presented Figure 8, which offers the 573 

possibility to use the threshold value previously determined in Part 1 and to apply addi- 574 

tional limitations to quantification such as a size limitation.  575 
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 576 

Figure 8. Macro Part 2. Starting window of Part 2 lightly differs according to the choice of thresh- 577 

old method made in Part 1. The one presented here corresponds to option "B. Manual determina- 578 

tion". If option "A. Using an algorithm" was chosen, the window would start by asking which al- 579 

gorithm should be used. If any of options "C", "D", "E" or "F" were chosen, the window would start 580 

by asking which unique threshold value should be used. The following parameters (how to re- 581 

trieve the results, objects' size, objects' circularity and range of series to analyze) are always pre- 582 

sent. Once chosen, those parameters are recorded in the Log window which content is ultimately 583 

saved in a .txt file. 584 

 585 

Furthermore, depending on the study, the data needed can be more or less detailed. 586 

Here, a global count of the number of objects or total stained area per image was sufficient 587 

to be conclusive. Therefore, only a summarized compilation of data was needed. When 588 

checked, this option generates an .xls file where each line corresponds to a treated image 589 

and its summarized result (i.e. total number of objects or total stained area in the ROI). 590 

However, one might need to compare objects size within an image and thus need more 591 

detailed data where specifications of every object are recorded. When checked, this option 592 

generates an .xls file where each line corresponds to an object (objects of all images are in 593 

the same table). Both options are available on the macro and user can choose one or both 594 
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of them (in which case two .xls files will be generated). Once these settings are done, im- 595 

ages are processed as in Part 1 except that, this time, the chosen threshold is applied. After 596 

thresholding, Part 2 offers the possibility to limit quantification to a region of interest. If 597 

so, the channel needed to draw the selection is opened. Then, when the “OK” button of 598 

the “Zone Selection” window is clicked, the macro goes on with quantification and results 599 

are recorded in an .xls file. If the settings chosen in Part 1 end up associating a threshold 600 

determined by an algorithm with a zone selection, the zone selection is done before run- 601 

ning the algorithm. Indeed, to determine a threshold value, algorithms take the whole 602 

image into account, which can become a problem if there is a highly illuminated artifact 603 

outside of the region of interest. To allow a wide range of application for this macro, we 604 

have chosen to ask the "Analyze Particles" function to quantify all the possible readouts.  605 

4. Conclusions 606 

Apoptosis quantification in a tissue is usually indirect as it generally relies on imag- 607 

ing techniques. There are many ways to analyze an image and once a readout has been 608 

chosen, many processing protocols are possible. Here, we describe a semi-automatic pro- 609 

tocol running on Fiji for quantification of apoptosis on Drosophila wing imaginal discs after 610 

TUNEL or activated-caspase labelings. During the development of this protocol, we paid 611 

particular attention to the weight of specific steps to obtain a realistic segmentation, which 612 

underlies an accurate quantification. As in many image processing protocols, determina- 613 

tion of the threshold for binarization turned out to be a critical step. In our case, none of 614 

the algorithms available in Fiji was satisfying to determine relevant thresholds.  615 

We also considered using the same threshold value to treat several images but, in the 616 

end,, the best option for our data, was to use a specific threshold manually determined for 617 

each image. Indeed, this method proved to carry out a proper segmentation for all images 618 

resulting in valid quantification and subsequent detection of biological effects. Even if one 619 

could be concerned about the bias that might be induced by this approach, the bias is in 620 

fact limited as we observed that threshold values obtained by experimenters are actually 621 

very consistent both for a given experimenter and between experimenters. Moreover, an 622 

appropriate processing of the images can facilitate this determination of a threshold value. 623 

In this sense, association of a “Median Filter” with a radius of 1 and a Max Intensity z-pro- 624 

jection proved to be very efficient. It would also be interesting to try the "Sum Slices" pro- 625 

jection that adds up all pixels intensity of a z-axis which should enhance contrast even 626 

more (particularly after a median filter) and thus facilitate threshold determination.  627 

The protocol presented here should not affect other readouts available in the “Ana- 628 

lyze Particles” function such as: bounding rectangle, shape descriptors, centroid, perime- 629 

ter, Feret’s diameter or stack position. Furthermore, we kept the options implemented in 630 

CASQITO macro rather open offering a possible use of this tool for a great variety of 631 

readouts, stainings and biological questions.  632 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: 633 

Individual experimenters' choice of threshold values, Figure S2: Statistical analysis of threshold val- 634 

ues consistency, Figure S3: Pairwise comparison of thresholding methods. 635 
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Supplementary Figure S1. Individual experimenters' choice of threshold values. 

Results of each experimenter manual determination of threshold in triplicate for the 28 images 

of the vg > rbf1 genotype are presented for TUNEL (on the left) and anti-cleaved Dcp-1 (on the 

right). For every experimenter, the first measure is in green, the second in red and the third in 

blue. In order to facilitate comparison between experimenters, the mean of those 9 measures 

have been added (in black) and yellow bars correspond to experimenters' range of values for 

each image. 
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Supplementary Figure S2: Statistical analysis of threshold values consistency  

Statistical analysis by linear regression of the threshold values obtained by experimenters or 

Moments for TUNEL (A) or anti-cleaved Dcp-1 (B) stainings. In yellow, relationship between 

the two furthest experimenters datasets. In green, relationship between the values obtained 

with Moments and its closest experimenter dataset.  
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Supplementary Figure 3: Pairwise comparison of thresholding methods 

Results presented here are the same as the one presented Figure 5 (e-h) but in a pairwise 

organization. Upper panel presents the number of object counted for TUNEL (on the left) and 

anti-cleaved Dcp-1 (on the right) for both vg > rbf1 and vg > rbf1, debclE26 after applying different 

thresholding methods (Manual in black, Total in yellow). Bottom panel similarly presents the 

total number of white pixels after applying different thresholding methods. Images order have 

been reorganized for each panel in ascending order of results according to Manual method. 
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