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Abstract

Recently, a two-dimensional model that leads to first order phase tran-
sitions has been proposed. This model also leads to phase diagrams which
present the characteristics observed in phase diagrams of the substances :
three thermodynamic phases, three coexistence curves, a triple point and
a critical point.

In the present study, the calculation of the latent heats of the different
first order phase transitions as well as the experimental data concerning
the phase diagram of a pure substance, here carbon dioxyde, are intro-
duced into the two-dimensional model.

By assuming that the pressure does not modify the chemical bond
between two nearest-neighbors atoms but modifies that betwen two next
nearest-neighbors atoms we can calculated the phase diagram of the com-
pound in (bar,Kelvin) plane and the Joule values of the different latent
heats of transition. Moreover, the energy value of the chemical bond
between two nearest-atoms is obtained.

1 Introduction

Let us consider a cristal of N identical atoms. In the adiabatic approximation,
it can be considered as a set of electronic bonds ( or chemical bonds) and elastic
springs between the atoms, each elastic spring being related to a bond [1− 2].
So any modification of the quantum states of the electrons involved in a chemical
bond can modify the elastic force constant of the spring associated to it. We
consider harmonic vibrations.
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Recently [3], a two-dimensionnal model taking into account this kind of
atoms- phonon coupling leads to a phase diagram which displays, at least qual-
itatively, the features observed in the phase diagram of a pure substance: first
order phase transitions between three thermodynamic phases, three coexistence
curves, one triple point and one critical point. In this model it is assumed that,
for each atom, the electrons involved in the bond between this atom and its
nearest-neighbors are different from those involved in the bond between this
atom and its next nearest-neighbors. It is assumed that each kind of electrons
has two energy levels. These assumptions lead to a coupling between a chemical
bond and the spring associated to it. This coupling is described below.

Let us consider the bond between two atoms nearest neighbors. The po-
tential energy between those atoms can have three values depending on the
quantum states of electrons involved in the bond. Let us call V0 (r) this po-
tential energy when the electrons of both atoms are in their fundamental level,
where r is the distance between both atoms. It is assumed that V0 (r) has a
minimun for r = r0 and a second derivative equal to λ at the minimun. Let us
call V1 (r) this potential energy when the electrons of both atoms are in their
excited level. It is assumed that V1 (r) has a minimun for r = r1 and a second
derivative equal to ν at the minimun. We neglect the difference between r0 and
r1 and we assume that ν is smaller than λ. As ν < λ, the vibrational energy of
both atoms is smaller when the electrons are in their excited level than when
they are in their fundamental level. Consequently, when the electrons are in
their fundamental level the electronic energy is small but the vibrational energy
is large, while, when they are in their excited level, the electronic energy is
large but the vibrational energy is small. So there is a competition between the
electronic interactions which favour the fundamental levels and the vibration
interactions which favour the excited one. This competition can lead to a first
order phase transition [4].
In the present study we add to the two-dimensional model the calculation of

the latent heats of the different first order phase transitions. Moreover, using the
experimental data concerning the phase diagram of the carbon dioxide, CO2,
we show how those data can be introduced in the model and which results can
be obtained. In Section 2, we present the crystal Hamiltonian and the method
used to study it. In Section 3 we give the results obtained by the numerical
study, and the last Section is devoted to discussion and conclusion.
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2 Theoretical study

2.1 Lattice Hamiltonian

Let us consider a square lattice of N identical atoms. Each atom l moves around
a lattice point l. The position vector of the lattice point l is

−→
Rl = l1

−→a1 + l2
−→a2 (1)

where −→a1 and −→a2 , the basis vectors of the lattice, are orthogonal and have the
same length a0, and where l1 = 0, 1, 2, ...N1 − 1 and l2 = 0, 1, 2, ...N2 − 1. So
the lattice point l is defined by the set (l1, l2), and we can write l = (l1, l2). It
is clear that N = N1N2.
For studying the atoms movements, we introduce the orthogonal axes

−→
Ox

and
−→
Oy which are parallel to −→a1 and −→a2, respectively, the origin, O, being at

the lattice point (0, 0). We assume that each atom is linked to its four nearest
neighbors and to its four next-nearest neighbors by harmonic springs.
The four nearest neighbors of the atom l = (l1, l2), are the atoms : l(1) =

(l1 + 1, l2), l(2) = (l1, l2 + 1), l(3) = (l1 − 1, l2) and l(4) = (l1, l2 − 1). We call
ell(α) , the elastic force constant of the spring linking the atoms l and l

(α), with
α = 1, 2, 3, 4. The potential energy of the elastic interaction between the atom
l and its four nearest neighbors is Ep1(l) given by

Ep1(l) =
1

2
(ell(1) (ul − ul(1))

2
+ ell(3)(ul − ul(3) )

2

+ ell(2) (vl − vl(2))
2

+ ell(4) (vl − vl(4))
2
) (2)

where ul and vl are the components, on the respective axes
−→
Ox and

−→
Oy, of

the displacement of the atom l around the lattice point l. So, the total elastic
interaction between pairs of atoms nearest neighbors is

Ep1tot =
1

2

∑
(l)

Ep1(l) (3)

∑
(l)

is the sum over the N lattice points. Periodic boundary conditions are

assumed.
The four next-nearest neighbors of the atom l = (l1, l2) are the atoms:

L(1) = (l1 + 1, l2 + 1), L(2) = (l1 − 1, l2 + 1), L(3) = (l1 − 1, l2 − 1) and L(4) =

(l1 + 1, l2 − 1). We call ẽl,L(α) , the elastic force constant of the spring which
links the atoms l and L(α), with α = 1, 2, 3, 4. The potential energy of the
elastic interaction between the atom l and its four next- nearest neighbors is
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Ep2(l) =
1

2
(ẽlL(1)blL(1) + ẽlL(2)blL(2) + ẽlL(3)blL(3) + ẽlL(4)blL(4)) (4)

with
blL(1) =

1

2

(
uL(1) − ul + v

L
(1) − vl

)2
(5)

blL(2) =
1

2
(ul − uL(2) + vL(2) − vl)

2 (6)

blL(3) =
1

2
(uL(3) − ul + vL(3) − vl)

2 (7)

blL(4) =
1

2
(ul − uL(4) + vL(4) − vl)

2 (8)

So, the total elastic interaction between pairs of atoms next-nearest neighbors
is

Ep2tot =
1

2

∑
(l)

Ep2(l) (9)

The Hamiltonian of the crystal vibrations is

Hph = Ec + Ep1tot + Ep2tot (10)

where Ec is the kinetic energy of the atoms.

Now we introduce the following assumptions :
i) Each atom l contains two electronic subsystems (1) and (2). The electronic

subsystem (1) contains the electrons which are involved in the bond between the
atom l and its four nearest neighbors and the electronic subsystem (2) contains
the electrons which are involved in the bond between the atom l and its four
next-nearest neighbors. The electronic subsystem (i) (i = 1, 2) has two energy
levels separated by ∆i: the fundamental level, called (ai) is not degenerated
while the excited one, called (bi) has the degeneracy ri. To the subsystem (i) is
associated the fictitious spin σ̂il which has two eigenvalues σil = ±1. In others
words, each subsystem (i) has its own space of quantum states and its physical
observable σ̂il. And we work in the tensorial ( or direct) product of both spaces.
The electronic Hamiltonian of the atom l can be written

He (l) =
∆1

2
σ̂1l +

∆2

2
σ̂2l (11)

and the electronic Hamiltonian of the crystal is

He =
∑
(l)

(
∆1

2
σ̂1l +

∆2

2
σ̂2l

)
(12)
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ii) The value of the spring constant ell(α) , with α = 1, ..4, depends only on
the quantum states of the electronic subsystems (1) of the atoms l and l(α)

following the relation

ell(α) =
λ+ 2µ+ ν

4
+
ν − λ

4
(σ1l + σ1l(α)) +

λ− 2µ+ ν

4
σ1lσ1l(α) (13)

We can verify that the above formula gives ell(α) = λ when σ1l = σ1l(α) = −1,
ell(α) = ν when σ1l = σ1l(α) = +1 and ell(α) = µ when σ1l 6= σ1l(α) . Moreover,
we assume that

λ ≥ µ ≥ ν (14)

iii) The value of the spring constant ẽlL(α) , with α = 1, ..4, depends only
on the quantum states of the electronic subsystems (2) of the atoms l and L(α)

following the relation

ẽlL(α) =
λ̃+ 2µ̃+ ν̃

4
+
ν̃ − λ̃

4
(σ2l + σ2L(α)) +

λ̃− 2µ̃+ ν̃

4
σ2lσ2L(α) (15)

We can verify that the above formula gives ẽl,L(α) = λ̃ when σ2l = σ2L(α) =

−1, ẽl,L(α) = ν̃ when σ2l = σ2L(α) = +1 and ẽl,L(α) = µ when σ2l 6= σ2L(α) .
Moreover, we assume that

λ̃ ≥ µ̃ ≥ ν̃ (16)

The Hamiltonian of the crystal, H, is the sum of Hph and He. So,

H = Ec + Ep1tot + Ep2tot +
∑
(l)

(
∆1

2
σ̂1l +

∆2

2
σ̂2l

)
(17)

2.2 Reduced parameters

It is interesting to take λ and λ̃ as the units of elastic force constant and to
introduce the sets of reduced parameters (x, y) and (x̃, ỹ) defined by

x =
ν

λ
(18)

x̃ =
ν̃

λ̃
(19)

2µ = (λ+ ν) + y (λ− ν) (20)

2µ̃ =
(
λ̃+ ν̃

)
+ ỹ

(
λ̃− ν̃

)
(21)

From the relations (14) and (16), the parameters x and x̃ are comprised
between 0 and 1, and the parameters y and ỹ must be comprised between −1

and +1.
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With these new parameters, ell(α) and ẽlL(α) can be written

ell(α) = λ (a+ b (σ1l + σ1l(α)) + c σ1lσ1l(α)) (22)

and
ẽlL(α) = λ̃

(
ã+ b̃ (σ2l + σ2L(α)) + c̃ σ2lσ2L(α)

)
(23)

with
a =

1 + x

2
− c (24)

b =
x− 1

4
(25)

c = yb (26)

and
ã =

1 + x̃

2
− c̃ (27)

b̃ =
x̃− 1

4
(28)

c̃ = ỹb̃ (29)

It is worth to notice that the parameters b and b̃ are negative or equal to
zero.

2.3 Phonon - atom interaction

By inserting relation (22) in the expression of Ep1 (l), equation (2), the potential
energy Ep1tot can be writen

Ep1tot =
1

4
λa
∑
(l)

Al + VZ + VEx (30)

with
Al = (ul − ul(1))

2
+ (ul − ul(3) )

2 + (vl − vl(2))
2

+ (vl − vl(4))
2 (31)

VZ =
1

2
λb
∑
(l)

Al σ1l (32)

and

VEx =
1

2
λc
∑

((ul − ul(1))
2
σ1lσ1l(1) + (ul − ul(3))

2
σ1lσ1l(3) (33)

+ (vl − vl(2))
2
σ1lσ1l(2) + (vl − vl(4))

2
σ1lσ1l(4))
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The energy term VZ is a Zeeman-like interaction which can be written

VZ =
∑
(l)

− hlσ̂1l (34)

with
hl = −1

2
λbAl (35)

As the parameter b is negative, the field-like hl which acts on the fictitious spins
σ̂1l favours the eigen value σ1l = +1.

The energy term VEx is an exchange-like interaction between the fictitious
spin σ̂1l and its four nearest neighbors σ̂1l(α) (α = 1, ..4). When the parameter
c is positive, this interaction favours the case σ1l = −σ1l(α) when this parameter
is negative this interaction favours the case σ1l = σ1l(α) and when it is equal to
zero, the exchange-like interaction is equal to zero.
For the folIowing we assume

y = 0 (36)

which implies that the exchange-like interaction VEx is equal to zero.
By inserting relation (23) in the expression of Ep2 (l), equation (4), the

potential energy Ep2tot can be written

Ep2tot =
1

4
λ̃ã
∑
(l)

Bl + ṼZ + ṼEx (37)

with
Bl = blL(1) + blL(2) + blL(3) + blL(4) (38)

ṼZ =
1

2
λ̃ b̃
∑
(l)

Bl σ̂2l (39)

and

ṼEx =
λ̃c̃

2

∑
(l)

(blL(1)σ2lσ2L(1) + blL(2)σ2lσ2L(2) + blL(3)σ2lσ2L(3) + blL(4)σ2lσ2L(4))

(40)
As previously, the energy term ṼZ is a Zeeman-like interaction. As the

parameter b̃ is negative, the field-like which acts on the fictitious spin σ̂2l favours
the eigenvalue σ2l = +1. The energy term ṼEx is an exchange-like interaction
between the fictitious spin σ̂2l and its next-nearest neighbors σ̂2L(α) (α = 1, ..4).
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When the parameter c̃ is positive, this interaction favours the case σ2l = −σ2L(α)
when this parameter is negative this interaction favours the case σ2l = σ1L(α)

and when it is equal to zero, the exchange-like interaction is equal to zero.
For the following we assume that

ỹ = 0 (41)

which implies that the exchange-like interaction ṼEx is equal to zero.

2.4 Variational method: effective parameters

For the variational Hamiltonian H0 [5, 6], we take the sum of a phonon Hamil-
tonian H0ph and a spin Hamiltonian H0sp

H0 = H0ph +H0sp (42)

2.4.1 Variational phonon Hamiltonian H0ph

We introduce two parameters E and Ẽ. The first one, E, is an effective spring
constant that replaces the spring constants ell(α) , and the second one, Ẽ, is an
effective spring constant that replaces the spring constants ẽlL(α) . Those E and
Ẽ do not depend on the electronic states of the subsystems (1) and (2). The
phonon Hamiltonian H0ph

(
E, Ẽ

)
is then

H0ph

(
E, Ẽ

)
= Ec + Ep10 (E) + Ep20

(
Ẽ
)

(43)

with

Ep10 (E) =
1

2

∑
(l)

1

2
EAl (44)

Ep20

(
Ẽ
)

=
1

2

∑
(l)

1

2
ẼBl (45)

The Hamiltonian H0ph

(
E, Ẽ

)
is the Hamiltonian of vibrations of a square

lattice of atoms linked by springs between atoms nearest neighbors and atoms
next-nearest neighbors with the spring constants E and Ẽ, respectively. It is
known that there are two dispersion relations

ω = ω1

(−→
k
)
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and
ω = ω2

(−→
k
)

which correspond to two acoustic branches of the crystal. In the previous rela-
tions the vector

−→
k is the phonons wave vector. The previous dispersion relations

are in agreement with those obtained by Blackman [7] and de Launay [8]. They
are given in the Appendix.
The free energy associated to the Hamiltonian H0ph

(
E, Ẽ

)
is

F0ph = kBT
∑
(−→
k
)
′

ln

2 sinh

β ~ω
(−→
k
)

2

 (46)

where kB is the Boltzmann constant, β = 1
kBT

and
∑
(−→
k
)
′

is the sum over the

two phonons branches. Using the matrix density of H0ph

(
E, Ẽ

)
, the thermal

mean values 〈Al〉0 and 〈Bl〉0 of the parameters Al and Bl, respectively, are

〈Al〉0 =
4

N

∑
(−→
k
)
′

coth

β ~ω
(−→
k
)

2

 ~
2

∂ω

∂E
(47)

and

〈Bl〉0 =
4

N

∑
(−→
k
)
′

coth

β ~ω
(−→
k
)

2

 ~
2

∂ω

∂Ẽ
(48)

where ∂ω
∂E and

∂ω

∂Ẽ
are the partial derivatives of the dispersion relations. The

expressions of ∂ω
∂E and ∂ω

∂Ẽ
are given in the Appendix.

2.4.2 Variational spin Hamiltonian H0sp

We consider the case where the exchange-like interactions VEx and ṼEx are equal
to zero. We introduce two fields-like h1 and h2 which act over the fictitious spin
σ̂1l and σ̂2l, respectively. Those fields-like are uniform.
The spin Hamiltonian H0sp is

H0sp = H0sp1 +H0sp2 (49)

with
H0sp1 =

∑
(l)

− h1σ̂1l (50)
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and
H0sp2 =

∑
(l)

− h2σ̂2l (51)

With this spin Hamiltonians, all the fictitious spins of the electronic subsystem
i, (i = 1, 2), have the same thermal mean value mi given by

mi =
− exp(−βhi) + ri exp(βhi)

exp(−βhi) + ri exp(βhi)
(52)

The equations (52) are called self-consistent equations.
The free energy related to H0sp is

F0sp = −NkBT (ln z0sp1 + ln z0sp2) (53)

where the partition function z0spi is given by

z0spi = exp(−βhi) + ri exp(βhi) (54)

2.4.3 Variational Hamiltonian H0

So, the variational Hamiltonian is given by

H0 = Ec + Ep10 (E) + Ep20

(
Ẽ
)

+
∑
(l)

− h1σ̂1l +
∑
(l)

− h2σ̂2l (55)

The free energy associated with H0 is given by

F0 = F0ph + F0sp (56)

that is

F0 = kBT
∑
(−→
k
)
′

ln

2 sinh

β ~ω
(−→
k
)

2

−NkBT ln z0sp1 −NkBT ln z0sp2

(57)

2.4.4 Thermodynamic parameters

At the first order of a perturbation calculation we obtain the following
results.

E = λ
(
a+ 2bm1 + cm2

1

)
(58)

Ẽ = λ̃
(
ã+ 2b̃m2 + c̃ m2

2

)
(59)
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h1 = −∆1

2
− 1

2
〈Al〉0 λ (b+ cm1) (60)

h2 = −∆2

2
− 1

2
〈Bl〉0 λ̃

(
b̃+ c̃m2

)
(61)

In the present study the parameters c and c̃ are equal to zero.
The crystal free energy, at the thermodynamic equilibrium, is

F = F0 +N

(
∆1

2
+ h1

)
m1 +N

(
∆2

2
+ h2

)
m2 (62)

The fraction of atoms in the excited level (b1) is

n1 =
1 +m1

2
(63)

and the fraction of atoms in the excited level (b2) is

n2 =
1 +m2

2
(64)

When the parameter mi (i = 1, 2) is equal to −1, the fraction ni is equal to zero
and the electronic subsystems (i) are in the fundamental level (ai) and when
mi = +1, they are in the excited level (bi).
We can calculate the crystal entropy by using the relation

S = −∂F
∂T

(65)

So we obtain
S = Sph + Ssp (66)

with

Sph =
1

T

∑
(−→
k
)
′
coth

β ~ω
(−→
k
)

2

 ~ω
(−→
k
)

2
− kB

∑
(−→
k
)
′
ln

2 sinh

β ~ω
(−→
k
)

2


(67)

and

Ssp = NkB (ln z0sp1 + ln z0sp2)−N
1

T
(m1h1 +m2h2) (68)

From the relation
F = U − TS (69)
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we deduce for the internal energy U

U =
∑
(−→
k
)
′
coth

β ~ω
(−→
k
)

2

 ~ω
(−→
k
)

2
+N

∆1

2
m1 +N

∆2

2
m2 (70)

We recall that in a first order phase transition there is not a discontinuity in
F , but there are a discontinuity in the extensive parameters Nn1, Nn2, S, and
U . At the transition, ∆S, the discontinuity in S, and ∆U , the discontinuity in
U , are related by

∆U = T∆S (71)

where T is the transition temperature. The latent heat of the transition L is
given by

L = T∆S = ∆U (72)

3 Numerical study

The numerical study consists essentially in solving the self-consistent equations
(52) by taking into account the relations (58) to (61) . Both self-consistent
equations are coupled.

3.1 New reduced parameters

It is interesting to introduce new reduced parameters by taking ~ωM (λ) as the
unit of energy with

ωM (λ) = 2

√
λ

ma
(73)

wherema is the mass of the atoms. The value of ~ωM (λ) is roughly estimated
to 1000K or 695 cm−1.
With this unit of energy, we introduce the following reduced parameters:

• the reduced temperature
t =

kBT

~ωM (λ)
(74)

• the reduced energy gaps
δ1 =

∆1

~ωM (λ)
(75)

and
δ2 =

∆2

~ωM (λ)
(76)
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• the reduced free energy per atom that we call reduced free energy

f =
1

N~ωM (λ)
F (77)

• the reduced internal energie per atom that we call reduced internal energy

u =
U

N~ωM (λ)
(78)

The quantities t, δ1, δ2, f and u have no unit.

• We call reduced entropy, which is denoted s, the entropy per atom in the
unit kB ( Boltzmann constant). So,

s =
1

kB

S

N
(79)

The quantity s has no unit.

From (79), a variation of s, ∆s, is related to an entropy variation, ∆S, by
the relation

∆s =
1

kB

∆S

N
(80)

Using the definition of the reduced temperature t, we have

t∆s =
T∆S

N~ωM (λ)
(81)

In a first order transition T∆S is the latent of the transition, ∆S being the
discontinuity in entropy at the transition. Then, t∆s is the reduced latent heat
per atom at the transition that we call reduced latent heat.
We can caculate f , u and s.

3.2 Study of the self-consistent equations

We fix the values of the temperature and that of all the model parameters and
we look for the values of m1 and m2 which satisfy the self-consistent equations
(52). A solution is a set (m1,m2) or (n1, n2). For each solution we can calculate
the values of the thermodynamic parameters f , u and s.

If there is one solution, this solution is the stable solution ( or the stable state
or the thermodynamic state of the crystal). If there are several solutions, the
reduced free energy values of those solutions must be compared. The solution
which has the lowest reduced free energy value is the stable state. When the
reduced free energy values of two solutions (n1, n2) and (n′1, n

′
2) are equal and

13



are the lowest, both solutions are the thermodynamic states of the crystal which
then displays a first order phase transition between those thermodynamic states.
At the transition, the parameters Nni (i = 1, 2), the crystal entropy and the

internal energy display a discontinuity. In some cases, the magnitude of those
discontinuities decrease when the transition temperature increases and are equal
to zero when the temperature is higher or equal to a temperature value TC ( or
tC). We have used this property for finding tC . The value tC is called reduced
critical temperature.
It is worth to count the number of independent parameters. In this study

N1 = 40, N2 = 50, r1 = r2 = 4, y = ỹ = 0, z = λ̃
λ = 0.2, δ1 = 10 and x = 10−5.

So, a thermodynamic state of the system, that is a stable solution, depends on
the three parameters : δ2, x̃ and t. A first order phase transition implies the
existence of one relation between those parameters and a triple point implies
the existence of another relation between those parameters. So, at the phase
transition, the transition temperature, the magnitude of the discontinuities and
the latent heat values depend on the two parameters δ2 and x̃. At a triple point,
the triple point temperature, the magnitude of the discontinuities and the latent
heats values, depend on one parameter x̃ or δ2. We take x̃ as the independent
parameter.
One can expect that the stable state is (0.000, 0.000) at very low tempera-

ture and (1., 1.) at high temperature. Between the brackets, the first number
corresponds to the value of n1 and the second one to that of n2.

3.3 Phase diagram for x̃ constant

3.3.1 Phases and discontinuities

A phase diagram of the crystal in the (δ2, t) plane for x̃ = 0.0263 is shown in
Fig.1. The coordinates of the point T are (δ2T = 14.84919, tT = 3.032334). The
method for obtening those coordinates is explained in [3] and in the following.
When the value of δ2 is fixed the thermodynamic state of the crystal depends

only on the temperature. As shown in Fig.1, when we fix the value of δ2, the
study of the thermal variation of the stable solution shows the presence of one
or two first order phase transitions depending on whether δ2 is smaller or larger
than δ2T .

Case δ2 = 14 At very low temperature, t = 0.001, the thermodynamic state
is (0.000, 0.000). Increasing the temperature, the values of n1, n2, f , s and
u vary but there is only one stable state. At t = 2.917849, which corresponds
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to point A3 in Fig.1, there are two stable states (1, 1) and (0.249, 0.043) . So,
there is a first order transition between both states.
For the state (0.249, 0.043), as for the state (0.000, 0.000), the majority

of the electronic subsystems (1) and (2) are in their fundamental level (a1)

and (a2), respectively. We say that those states belong to the thermodynamic
phase (a, a). For the state (1, 1) all the electronic subsystems (1) and (2) are in
their excited level (b1) and (b2), respectively. We say that this state belongs to
the (b, b) phase. So, at t = 2.917849, we say that there is a first order phase
transition between the (a, a) and (b, b) phases.

For t lower than the transition temperature, 2.917849, the stable state be-
longs to the (a, a) phase because n1 and n2 are lower than 0.5, and for t higher
than 2.917849 the stable state belongs to the (b, b) phase because n1 and n2 are
equal to 1..

We denote t3 the temperature of the transition (a, a)− (b, b). So for δ2 = 14,
t3 = 2.917849. In Fig.1, the curve with black circles represents the values of
t3 for different values of δ2 lower than δ2T . This curve is the (a, a) − (b, b)

coexistence curve.
At the transition, the parameters ni (i = 1, 2), s and u display a disconti-

nuity. We call (∆ni)3 the discontinuity in ni, (∆s)3 that in s and (∆u)3 that
in u. The value of the discontinuity in ni is the value of ni in the (1, 1) state
minus its value in the (0.249, 0.043) state. So, for δ2 = 14, at t3 = 2.917849,
(∆n1)3 = 0.751 and (∆n2)3 = 0.957.

For δ2 = 14, at t3 = 2.917849, the values of s and u for the (0.249, 0.043)

state are 6.325423 and −3.050334, respectively, and they are 13.482498 and
17.832931, respectively, for the (1, 1) state. So, the discontinuity s is (∆s)3 =

7.157075 and that in u is (∆u)3 = 20.883265.
We denote l3 the reduced latent heat for the (a, a) − (b, b) transition . We

have
l3 = t3 (∆s)3 (82)

So, for δ2 = 14, at t3 = 2.917849, l3 = 20.883264. We we can verify that
l3 = (∆u)3.

Case δ2 = 17 At very low temperature, t = 0.001, the thermodynamic state is
(0.000, 0.000). As the temperature increases, the values of n1, n2, f , s and u but
there is only one stable state. At t = 3.056919, which corresponds to point A1
in Fig.1, there are two stable solutions which are (1, 0.040) and (0.286, 0.020).
The state (0.286, 0.020) belongs to the (a, a) phase. In the state (1, 0.040)

all the electronic subsystems (1) are in their excited level (b1) while the majority
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of the electronic subsystems (2) are in their fundamental level (a2). We say that
this state belongs to the (b, a) phase. So, at t = 3.056919, there is a first order
phase transition between the (a, a) and (b, a) phases.

Above the temperature values 3.056919 and up to the temperature value
3.471697, which corresponds to point A2 in Fig.1, there is only one stable state
(1, n2), where n2 varies from the value 0.040 to the value 0.079. It is clear that
this state (1, n2) belongs to the (b, a). At the temperature value t = 3.471697

there are two stable states which are (1, 1) and (1, 0.079). So, at t = 3.471697,
there is another first order phase transition between the (b, a) and (b, b) phases.
In some case the value of n2 is higher than 0.5 for the state (1, n2). We consider
that this state (1, n2) belongs to the (b, a) phase even if the value of n2 is higher
than 0.5.
In summary for temperature value lower than 3.056919 the stable state be-

longs to the (a, a) phase, between the temperature values 3.056919 and 3.471697

it belongs to the (b, a) phase and for temperature value higher than 3.471697 it
belongs to the (b, b) phase because n1 and n2 are equal to 1..

We denote t1 the temperature of the transition (a, a)− (b, a) and t2 that of
the transition (b, a) − (b, b). So, for δ2 = 17, t1 = 3.056919 and t2 = 3.471697.
In Fig.1, the curve with open circles and that with crosses represent the values
t1 and t2, respectively, for different values of δ2 higher than δ2T . The first
curve is the (a, a)− (b, a) coexistence curve and the second one the (b, a)− (b, b)

coexistence curve.
At each of the two phase transitions, the parameters ni (i = 1, 2), s and u

display a discontinuity. We call (∆ni)1, (∆s)1 and (∆u)1 the values of this
discontinuity at t1 and (∆ni)2, (∆s)2 and (∆u)2 those values at t2. It is worth
to notice that (∆n1)2 is always equal to zero.
We denote l1 the reduced the latent heat for the (a, a)− (b, a) transition and

l2 that for the (b, a)− (b, b) transition. We have

l1 = t1 (∆s)1 (83)

and
l2 = t2 (∆s)2 (84)
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Fig. 1. Phase diagram for x̃ constant. The symbol xtd stands for x̃. As
the parameters δ1, x and z are constant In this study a thermodynamic state
depends on the three parameters t, δ2 and x̃. For given value to δ2, there are
one or two first order phase transitions depending on the value of δ2 compared
to that of δ2T . We recall that in all this study δ1 = 10, x = 10−5 and z = 0.2.

3.3.2 Triple point T

In Fig.1, the value of t2 minus that of t1, t2− t1, is equal to 0.414778 for δ2 = 17

and decreases when the value of δ2 decreases. There is a value of δ2 such as t2
is equal to t1. Let us call δ2T this value. Similarly let us call tT the value of t1
when t1 and t2 are equal. The set (δ2T , tT ) are the coordinates of the point T
in Fig.1.
When t1 and t2 are equal, there are three stable solutions. In Fig. 1, those

solutions are (0.280, 0.039), (1, 0.079) and (1, 1). They belong to the (a, a),
(b, a), and (b, b) phases, respectively. The values of f for those solutions are
−22.630346, −22.630347 and −22.630340, respectively. So we can say that the
state T is a triple point. Indeed, in thermodynamics, << a state of three-phase
comptability is a"triple point" >>[9].
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For each of the three stable solutions we can calculate the values of s and
u. So, for the stable solutions (0.280, 0.039), (1, 0.079), and (1, 1) the values
of s are 6.489363, 9.048688, and 13.559420, respectively. Consequently, for the
transition (a, a)− (b, a), (∆s)1 = 2.559325 and l1 = 7.760728, for the transition
(b, a) − (b, b), (∆s)2 = 4.510740 and l2 = 13.678070 and for the transition
(a, a)− (b, b), (∆s)3 = 7.070065 and l3 = 21.438799.
We introduce the following notations: the values of l1 and l2 at a triple

point are denoted l1T and l2T , respectively. So, for x̃ = 0.0263 the triple point
is characterized by the values δ2T = 14.84919, tT = 3.032334, l1T = 7.760728

and l2T = 13.678070. We recall that those values are obtained for δ1 = 10,
z = 0.2 and x = 10−5.
In fact, it is diffi cult to obtain the condition t1 = t2. We consider that this

condition is reached when t2− t1 ≤ 5 10−6. We then take for tT the value of t1
and for δ2T the corresponding value of δ2. When t2− t1 ≤ 5 10−6 the difference
between the three values of f is lower than 10 10−6.
For each value of x̃ there is a triple point characterized by the values δ2T ,

tT , l1T and l2T . The variation of δ2T with the value of x̃ is shown in Fig. 2,
those of l1T and l2T in Fig. 3. As for tT , it decreases from 3.081895 to 2.877612

when the value of x̃ increases from 5 10−4 to 10−1.
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Fig. 2. Variation of δ2T with x̃. The parameter δ2T is the value of δ2 at the
Triple point. The numbers between brackets are the values of the ratio l2T

l1T
. It

is interesting to notice that for a value of x̃ corresponds only one value of this
ratio.

Fig. 3. Variation of l1T and l2T with x̃. The parameter l1T is the value at
the Triple point of the latent heat of the (a, a)− (b, a) phase transition and l2T
is that of the (b, a) − (b, b) phase transition. The value l2T decreases when x̃
increases and is equal to zero when x̃ is higher than the critical value x̃c which
is near 0.166.

3.3.3 Critical value x̃C

In the phase diagram of Fig.1, (∆n2)2, the value of the discontinuity in n2 along
the (b, a)− (b, b) coexistence curve is constant and equal to 0.921. In a previous
study [3], we have shown that (∆n2)2 does not depend on the values of δ1 and
δ2, but depends only on that of x̃. The discontinuity value (∆n2)2 decreases
when x̃ increases and is equal to zero when x̃ is higher than a value called critical
value of x̃ and denoted x̃C . For x̃ higher than x̃C , the first order (b, a)− (b, b)
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phase transition does not exist and the crystal passes from the (b, a) phase to
the (b, b) phase continuously.
The value x̃C is lower than 0.18. For x̃ equal to 0.166 and 0.169, (∆n2)2

is equal to 0.159 and 0.078, respectively. Taking into account the diffi culty for
working around the value x̃C , we consider that the (b, a)−(b, b) phase transition
does not exist when x̃ > 0.166 and we consider that the critical value x̃C is equal
to 0.166.
In this study, we have verify that the values of (∆s)2, (∆u)2, and that of

the latent heat l2 decrease when x̃ increases and are nearly equal to zero when
x̃ is equal to 0.166.
The phase diagram of the crystal in the (δ2, t) plane for x̃ = x̃C = 0.166

looks like that of Fig.1. So, for each value of δ2, larger than δ2T , there is a
(b, a)− (b, b) phase transition and a transition temperature t2. This value of t2
is the critical temperature value that we denote tC . The variation of tC with δ2
is shown in Fig.4.
So, in this study, the critical point is characterised by x̃ = x̃C = 0.166 and

by the values of δ2 and t.

Fig. 4. Variation of the critical temperature tC with δ2. The critical tem-
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perature is the transition temperature t2 when the parameter x̃ is equal to
x̃C = 0.166. The value δ2 must be greater than the triple point value δ2T for
x = x̃C = 0.166.

3.4 Phase diagram for x̃ and δ2 varying

We look for a phase diagram where z, δ1 and x are constant while δ2 and x̃ can
vary. We consider the case where the variations of δ2 and x̃ are controled by a
parameter P following the relations

x̃ = x̃0 + c̃P (85)

and
δ2 = δ20 + c2P (86)

where the coeffi cients x̃0,c̃, δ20 and c2 are constants.
In order to give values to those coeffi cients, we use the experimental data

concerning the phase diagram of carbon dioxyde CO2. So, we must assume that
the phases (a, a), (b, a) and (b, b) of the model correspond to the solid, liquid
and gas states, respectively and that P is the applied pressure. Consequently, l1
corresponds to the latent heat of fusion Lf , l2 to the latent heat of vaporization
Lv and l3 to the latent heat of sublimation Ls. We recall that z = 0.2, δ1 = 10

and x = 10−5.

3.4.1 Experimental data concerning CO2

For CO2, the coordinates of the triple point in the (P, T ) diagram are PT =

5.19bar and TT = 216.55K and those of the critical point are PC = 73.8bar

and TC = 304.25K.. Moreover, for P = 1atm = 1.013bar the temperature
of sublimation is Ts (1atm) = 194.67K. Concerning the latent heats : the
values of the latent heat of fusion and of vaporization at the triple point are
LfT = 199kJkg−1 and LvT = 350.83kJkg−1, respectively. The latent heat of
sublimation at 1atm is Ls (1atm) = 573kJkg−1. The latent heat LvT has been
obtained by extrapolating data found in gazechim website . All the other data
are obtained from wikipedia website. We accept those experimental data and
we shall show how they can be introduced in the model.

3.4.2 Determination of the constants x̃0, c̃, δ20 and c2

Triple point data At the triple point of CO2 the ratio of the latent heats
of vaporization and fusion, LvTLfT

, is equal to 1.7630.
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We look for, in the model, the triple point for which the ratio l2T
l1T

is equal to
1.7630. This triple point correspons to x̃ = 0.0263 (see Fig. 2.). For this value
of x̃, the latent heats l1 and l2 are equal to l1T = 7.760728 and l2T = 13.678108,
respectively, and then the ratio l2T

l1T
is equal to 1.7625. Moreover for this value

of x̃, the value of the parameter δ2 is δ2T = 14.84919 and the value of the triple
point temperature is tT = 3.032334.

As the pressure value at the triple point of CO2 is 5.19 bar, we can write
the following equations

0.0263 = x̃0 + c̃ 5.19 (1a)

14.84919 = δ20 + c2 5.19 (2a)

Critical point data For CO2, the ratio of the values of the critical temper-
ature and the triple point temperature, TCTT , is equal to 1.4050.
We look for , in the model, the value tC such as tC

tT
= 1.4050. As we have

obtained for tT the value 3.032334, the reduced temperature tC should be equal
to 4.260429. As shown in Fig.4 the critical temperature value tC depends on
that of δ2. We look for the value of δ2 such as tC = 4.260429. This value is
δ2 = 10.6115.
As the pressure value at the critical point of CO2 is 73.8 bar, we can write

the following equations

0.166 = x̃0 + 73.8 c̃ (1b)

10.6115 = δ20 + 73.8 c2 (2b)

The solution of the system of equations (1a) and (1b) is

x̃ = 15.732414 10−3 + 2.036146 10−3P (I)

The solution of the system of equations (2a) and (2b) is

δ2 = 15.16975− 61.764903 10−3P (II)

The relations (I) and (II) can be used above the triple point of CO2, that is
for P ≥ 5.19 bar.
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Data at P = 1atm For CO2, the ratio of the values of the sublimation tem-
perature at the atmospheric pressure and the triple point temperature, Ts(1atm)TT

,
is equal to 0.8990. Moreover, the ratio of the values of the latent heat of subli-
mation at the atmospheric pressure and that of vaporization at the triple point,
Ls(1atm)
LvT

, is equal to 1.6333.
We look for, in the model, a state on the (a, a) − (b, b) coexistence curve

where t3 satisfies the relation t3
tT

= 0.8990 and where l3 satisfies the relation
l3
l2T

= 1.6333. As tT is equal to 3.032334, the transition temperature t3 (1atm)

should be equal to t3 (1atm) = 2.726068. As l2T is equal to 13.678108, the
reduced latent heat l3 (1atm) should be equal to l3 (1atm) = 22.340454. The
state looking for is defined by a value for x̃ and a value for δ2.

Let us use the relations (I) and (II). For P = 1atm = 1.013bar, those
relations lead to the values x̃calc = 0.017795 and δ2calc = 15.107182. Using
these values of x̃ and δ2 in the self-consistent equations we obtain for t3 and
l3 the values t3calc = 2.912993 and l3calc = 22.163028. We see that the set
(l3calc, t3calc) is different from the set (l3 (1atm) , t3 (1atm)). This disagreement
means that the relations (I) and (II) are not valid for P ≤ PT = 5.3 bar.
Finally, with x̃ = 0.011625 and δ2 = 14.720, the self-consistent equations

lead to l3 = 22.359920 and t3 = 2.724432. Those values are very near the set
(l3 (1atm) , t3 (1atm)).

We then can write for P = 1atm = 1.013 bar the following equations

0.011625 = x̃0 + 1.013 c̃ (1c)

and
14.720 = δ20 + 1.013 c2 (2c)

The solution of the system of equations (1a) and (1c) is

x̃ = 8.06604 10−3 + 3.51329 10−3P (III)

The solution of the system of equations (2a) and (2c) is

δ2 = 14.688669 + 30.928896 10−3P (IV)

The relations (III) and (IV) are valid for P ≤ PT .
In summary, for CO2 we have obtained the following values

tT = 3.032334, tC = 4.260429, t3 (1atm) = 2.726068 (87)

l1T = 7.760728, l2T = 13.678108, l3 (1atm) = 22.340454 (88)

and the relations (I) to (IV). Those results are obtained for δ1 = 10, z = 0.2

and x = 10−5.
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3.4.3 Use of the relations (I) to (IV)

The relations (I) to (IV) contain more informations than the set of reduced
values obtained above in relations (87) and (88). Indeed, for each value of the
applied pressure they allow to calculate the values of x̃ and δ2. Then using the
self-consistent equations we can calculate the values of the transition temper-
ature t1, t2 and t3 and the values of the corresponding latent heat l1, l2 and
l3.
First, we have verified that using the relations (I) to (IV) we obtain for

P = 5.19bar the values tT , l1T and l2T contained in relation (87) and (88),
for P = 73.8bar the value tC contained in relation (87) and for P = 1atm the
values t3 (1atm) and l3 (1atm) contained in relation (87) and (88). Then, we
have calculated the phase diagram of the crystal in the (P, t) plane and the
variations with the applied pressure of the different latent heats.
The phase diagram in the (P, t) plane is shown in Fig.5. For P = 0bar the

value of reduced temperature of sublimation is t3 (0bar) = 2.606381. As shown
in Fig.5, the temperature of vaporization and that of sublimation increase when
the applied pressure increases, which is in agreement with the experimental
results. But the temperature of fusion decreases when the applied pressure
increases. In this study, we have not analyse this last result which has been
observed only for water, H2O.

Fig. 5. Phase diagram obtained by using the relations (I) to (IV). It is
assume that only the parameters x̃ and δ2 can vary with the applied pressure.
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The variations with pressure of the different latent heats are shown in Fig.6.
For P = 0bar the value of the latent heat of sublimation is l3 (0bar) = 22.685849.
For a given atom, when the electrons involved in the bonds are in their

excited level, the increase of electronic energy is δ1 + δ2, in reduced unit. But
the thermal energy necessary to move these electrons from their fundamental
level to their excited one is l3, the reduced latent heat of sublimation. As shown
in Fig.6, this latent heat is lower that the sum δ1 + δ. The values of the ratio
l3/ (δ1 + δ2) is equal to 0.92 and to 0.91 for 0bar and 1atm, respectivement.
Likewise, for pressure values greater than PT the reduced latent of fusion l1 is
lower than the energy gap δ1 which is equal to 10.

Fig. 6. Variation with pressure of the latent heat of fusion (l1), vaporization
(l2) and sublimation (3). The unit of energy is ~ωM (λ).

For all substances the latent heat of vaporization decreases when the pressure
increases and vanishes at the critical pressure. This result is verified in this study
as seen in Fig.7.
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Fig.8. Variation with pressure of the latent heat of fusion (l1) and vaporiza-
tion (l2). The pressure varies from PT to PC .

3.4.4 Determination of the energy unit ~ωM (λ)

For the following, we use those numerical values : Boltzmann’s constant kB =

1.381 10−23J K−1, elementary charge e = 1.602 10−19C, Avogadro’s num-
ber NA = 6.023 1023mol−1, Planck’s constant h = 6.626 10−34J s and ~ =

1.055 10−34J s, Gas constant R = 8.314 J mol−1 K−1, molar mass of CO2
M = 44 g.
If we assume that tT is the reduced value of the experimental transition

temperature TT we can write

kBTT
~ωM (λ)

= tT (89)

So
~ωM (λ) =

kBTT
tT

(90)

With TT = 216.55K and tT = 3.032334 the energy unit is equal to

~ωM (λ) = 98.622 10−23 J = 61.562 10−4 eV (91)
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Using this value for ~ωM (λ) we obtain for the critical temperature

~ωM (λ) tC
kB

= 304.25K (92)

and for temperature of sublimation at the atmospheric pressure

~ωM (λ) t3 (1atm)

kB
= 194.68K (93)

Both calculated values are equal to the experimental values. So, if we
pass from the phase diagram in the (P, t) plane to the phase diagram in the
(bar,Kelvin) plane by using this value for the energy unit, the values of the
triple point temperature, the critical temperature and the sublimation tem-
perature at the atmospheric pressure are equal to the respective experimental
values. The transition temperature values for other values of the pressure depend
on the relation (I) to (IV).
Using l2T = 13.678070 and this energy unit we can calculate the latent heat

of vaporization at the triple point. So

1000

44
NAl2T~ωM (λ) = 185kJ kg−1 (94)

In relation (94) 1000
44 is the number of mole per kg. This value, 185kJ kg−1,

is different from the experimental value LvT = 350.83kJ kg−1. For the latent
heat of fusion at the triple point and that of sublimation at the atmospheric
pressure the calculated values are 104.8kJ kg−1 and 301.6kJ kg−1. Both cal-
culated values are different from the experimental values which are equal to
199kJ kg−1 and 573kJ kg−1, respectively. These disagreements between the
calculated values for the latent heats and the experimental one are discussed in
the next section. We think that a part of the disagreement comes from the fact
that the sum

∑(−→
k
)′ is made on two phonon branches and not three.

The parameter ∆1, which is constant, is equal to

∆1 = ~ωM (λ) δ1 = 61.562 10−3 eV

The parameter δ2 varies with the pressure. Its value for P = 0 is 14.688669.
So, for P = 0 the value of ∆2 is ∆2 (0bar) with

∆2 (0bar) = 90.426 10−3 eV
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4 Conclusion and discussion

To apply the model to the study of the phase diagram of a substance, we have
assumed that the phases (a, a), (b, a) and (b, b) of the model correspond to the
solid, liquid and gas states, respectively. And consequently, l1 corresponds to
the latent heat of fusion Lf , l2 to the latent heat of vaporization Lv and l3
to the latent heat of sublimation Ls. Moreover, we have assumed that the
parameters z, δ1 and x are constant while the parameters δ2 and x̃ vary linearly
with the applied pressure P . The parameters δ1 and x refer to the chemical
bond between two atoms nearest-neighbors and the parameters δ2 and x̃ refer
to the chemical bond between two atoms next nearest-neighbors. Taking into
account the experimental data of CO2 we get the reduced values contained in the
relations (87) and (88) and the equations (I) to (IV). By using the self-consistents
equations, these equations allow to determine the phase diagram of CO2 in the
plane (P, t) and the reduced values of the latent heat in the different first-
order transitions (fusion, vaporization and sublimation), t being the reduced
temperature, We obtain the results in Kelvin and Joule by multiplying the
reduced values by the energy unit ~ωM (λ). From equation (89) the energy unit
is chosen so that the calculated value in Kelvin of the triple point temperature
is equal to the experimental value.

4.1 Meaning of the results

The parameter x is the ratio ν
λ , where λ is the value in the solid state of elastic

constant of the elastic spring which links two atoms nearest-neighbors and ν is
its value in the liquid and gas states. The value x = 10−5 means that the value of
ν is zero. So, in the liquid and gas phases the spring does not exist neither does
the chemical bond. Moreover this result means that the value of the parameter
∆1 is that of the energy of the chemical bond between two nearest-neighbors
atoms.
As for the elastic constant of the spring which links two atoms next nearest-

neighbors its value is never zero. Consequently, the chemical bond between two
atoms next nearest-neighbors exists in the three phases. Concerning the gas
phase, this result is contained in the van der Waals equation.
As shown in Fig.6 the latent heat of sublimation l3 is smaller than the

electronic energy δ1+δ2. This result is contained in the expression of the internal
energy U and is independent of relations (I) to (IV) as explained below.
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In the (a, a) phase , m1 and m2 are equal to −1 and they are equal to 1 in
the (b, b) phase. Calling U(a,a) and U(b,b) the values of the internal energy in the
(a, a) and (b, b) phases, respectively, we have from relation (70)

U(b,b) − U(a,a) = N (∆1 + ∆2)−
(
Uvib(a,a) − Uvib(b,b)

)
(95)

As the values of the elastic force constants are lower in the (b, b) phase than
in the (a, a) phase, the value of the vibration energy in the (b, b) phase, Uvib(b,b),
is lower than its value in the (a, a) phase, Uvib(a,a). So the variation of internal
energy is less than the variation of electronic energy, N (∆1 + ∆2).

4.2 Comments on the results

The method used to introduce the experimental data of the substance into the
model causes that if the Kelvin value of one of the three reduced temperatures
tT , tC and t3 (1atm) ( relations 87) is equal to the corresponding experimental
value it is the same for the other two values. The use of relation (89) imposes
that the Kelvin value of tT is equal to the experimental value of the triple point
temperature of CO2. So three points of the phase diagram of the compound in
the plane (bar,Kelvin) agree with the experimental data whatever the values
of the coeffi cients of equations (I) to (IV), that is whatever the values of δ1 and
z.
Likewise, if the Joule value of one of the three reduced latent heats l1T , l2T

and l3 (1atm) (relations 88) is equal to the corresponding experimental value it
is the same for the other two values. With the energy unit given by relation
(89), the Joule value of l2T is equal to 185kJ kg−1 while the experimental value
of the latent heat of vaporization at the triple point is equal to 350, 83kJ kg−1.
We think that the disagreement between these two values comes from the fact
the values of δ1 and z used in this study are arbitrary values. It would be
interesting to see how vary all the results obtained when one varies the values
of δ1 and z = λ̃

λ .
The study of speed of sound in the crystal at low temperature should make

it possible to determine the values of the elastic constants λ and λ̃. We then
can deduce the value of the report z = λ̃

λ and that of the energy unit ~ωM (λ).
Let us denote by (~ωM (λ))sound this value. Using relation (89) we write

kBTT
tT

= (~ωM (λ))sound (96)

As the value of tT depends on those of δ1 and z, we seek the value of δ1 so
that this relation is satisfied.
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For some substances, the ratio LvT /LfT is equal to 10. In Fig.3, the highest
value for the ratio l2T

l1T
is around 4. Preliminary calculations show that the value

of the ratio l2T
l1T

increases when z increases, the value of δ1 being fixed.
Moreover, we think that the slope of the (a, a)− (b, a) coexistence curve in

Fig. 5 depends on the values of the coeffi cients of relation (I) to (IV) and then
it depends on the values of δ1 and z.

4.3 Conclusion

Having found the values of δ1 and z for the substance, we can carry out the study
describe here. This study is based on the fact that when atoms ( or molecules)
have two energy levels an atom-vibrations coupling can exist. Spin conversion
compounds are an example of such coupling.

The author has done alone this study and has written alone this manuscript.

APPENDIX

4.4 Phonon dispersion relations for the square lattice

The dispersion relations for the two acoustics branches are

ω1 =

(
1

2

(
c1 + c2 +

√
(c1 − c2)2 + 4c23

))1/2

ω2 =

(
1

2

(
c1 + c2 −

√
(c1 − c2)2 + 4c23

))1/2
with

c1 =
2E

ma
(1− cos kxa) +

2Ẽ

ma
(1− cos kxa cos kya)

c2 =
2E

ma
(1− cos kya) +

2Ẽ

ma
(1− cos kxa cos kya)

c3 =
2Ẽ

ma
sin kxa sin kya

In the above relations, ma is the atoms mass, a is the distance of the equilib-
rium positions of the atoms, E and Ẽ are the elastic force constants for atoms
pairs first neighbors and second neighbors, respectively.
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With the boundary periodic conditions, the components kx and ky of the
wave vectors

−→
k are

kx = αx
2π

N1a
and ky = αy

2π

N2a

with αx = 0,±1,±2, ..,±
(
N1

2 − 1
)
, N1

2 and αy = 0,±1,±2, ..,±
(
N2

2 − 1
)
, N2

2 .

The wave vector
−→
k (0, 0) corresponds to a translation mode. So, there are

N1N2 − 1 different wave vectors which correspond to phonon frequency values.
The parameters N1, N2 and a are defined in the text.

4.5 Calculation of the partial derivatives ∂ω
∂E
and ∂ω

∂Ẽ

We introduce r by
ω =
√
r

with

r =
1

2

(
(c1 + c2)±

√
(c1 − c2)2 + 4c23

)
We can write

r =
1

2

 2E

ma
d1 +

4Ẽ

ma
d2 ±

√√√√( 2E

ma

)2
d23 + 4

(
2Ẽ

ma

)2
d24


or

r =
E

ma
d1 +

2Ẽ

ma
d2 ±

√
E2

m2
a

d23 +
4Ẽ2

m2
a

d24

where

d1 = 2− cos kxa− cos kya

d2 = 1− cos kxa cos kya

d3 = cos kya− cos kxa

d4 = sin kxa sin kya

So we have
∂ω

∂E
=

1

2ω

∂r

∂E
with

∂r

∂E
=

1

ma

d1 ± E

ma

d23√
E2

m2
a
d23 + 4Ẽ2

m2
a
d24


and

∂ω

∂Ẽ
=

1

2ω

∂r

∂Ẽ
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with

∂r

∂Ẽ
=

1

ma

2d2 ±
4Ẽ

ma

d24√
E2

m2
a
d23 + 4Ẽ2

m2
a
d24


For some values of wave vector components (kx, ky) the parameter d4 is equal

to zero. In that case the above relations are modified. So, r becomes

r =
E

ma
d1 +

2Ẽ

ma
d2 ±

E

ma
|d3|

the parameters ∂r
∂E and ∂r

∂Ẽ
become

∂r

∂E
=

d1
ma
± |d3|
ma

and
∂r

∂Ẽ
=

2d2
ma

where |d3| is the absolute value of d3
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