Manel Jerbi
email: manel.jerbi@gmail.com

Zaineb Chelly

Ben Said

Malware Detection Using Rough Set Based Evolutionary Optimization

Keywords: Evolutionary optimization, Rough Set Theory, Malware detection

Despite the existing anti-malware techniques and their interesting achieved results to "hook" attacks, the unstoppable evolution of malware makes the need for more capable malware detection systems overriding. In this paper, we propose a new malware detection technique named Bilevel-Roughset based Malware Detection (BLRDetect) that is based on, and exploits the benefits of, Bilevel optimization and Rough Set Theory. The upper-level of the Bilevel optimization component uses a Genetic Programming Algorithm in its chase of generating powerful detection rules while the lower-level leans on both a Genetic Algorithm and a Rough-Set module to produce high quality, and reliable, malware samples that escape, to their best, the upper-level's generated detection rules. Both levels interact with each other in a competitive way in order to produce populations that depend on one another. Our detection technique has proven its outperformance when tested against various stateof-the-art malware detection systems using common evaluation metrics.

Introduction

Malware authors tend to use obfuscation techniques to infiltrate and hack a targeted system. To counter these attacks, a "good" malware detection system has to detect every sort of attacks and neutralize them. We will focus specifically on the works that opted to generate new, and evolve, malware aiming at keeping the base of malware samples varied and rich; as a way to better detect malicious code. Among these works, we mention [START_REF] Xue | Auditing antimalware tools by evolving android malware and dynamic loading technique[END_REF][START_REF] Sen | Coevolution of mobile malware and antimalware[END_REF], where authors applied evolutionary algorithms to generate malware samples. Among the most recent and efficient ones, we mention [START_REF] Jerbi | On the use of artificial malicious patterns for android malware detection[END_REF], where a malware detection system (AMD) was proposed that produces patterns using a Genetic Algorithm (GA) in order to mimic real malware patterns. This is to keep the data set used in the conception of the detection system as varied as possible, which allows AMD to be resistant to obfuscated malware. Also, the work of [START_REF] Sen | Coevolution of mobile malware and antimalware[END_REF], opted for a system using co-evolutionary algorithms where a first population generates detection rules, and a second population generates artificial malware. In this work, both populations are executed in parallel without any hierarchy. In spite of their interesting detection rates, these works suffer from many limitations: (1) they refer to a limited number of malware samples which makes the produced base of malicious malware not varied enough, [START_REF] Wei | Deep ground truth analysis of current android malware[END_REF] there is no check of the structure of the generated malicious patterns, (3) the malware generation and detection tasks are achieved separately. To overcome the above mentioned shortcomings, our BLRDetect detection technique, also, generates artificial malware -technically called "patterns" which are a set of Application Programming Interface (API) call sequences -but its main distinction and novelty rely on combining evolutionary algorithms, responsible for producing both detection rules and malware patterns, following a BiLevel OPtimization (BLOP) [START_REF] Colson | An overview of bilevel optimization[END_REF] process, and Rough Set Theory [START_REF] Zhang | A survey on rough set theory and its applications[END_REF] to guarantee the "reliability" of the generated patterns.

The Bi-level Rough Set Malware Detection Technique

Figure 1 presents the overall running process of BLRDetect: (1) Module 1 is based on a GP which aims to produce a set of efficient detection rules (F SDR) and (2) Module 2 leans on a GA that produces artificial malicious patterns (SAM P) (step 1) and a rough set based component that keeps only the reliable set of artificial malicious patterns that does not present deficiencies concerning their structure, referred to as "High-quality" artificial patterns (F AP) (step 2). First module: Upper-level In order to produce a set of effective detection rules, and as shown in Figure 1 and Algorithm 1, the upper-level's first step consists of generating a set of detection rules (Algorithm 1, line 1) which will go through an evaluation process (Algorithm 1, lines 2-3). This evaluation is based on the coverage of the base of examples (input) and also the coverage of the artificial malicious patterns generated by the lower-level. These two measures are used to be maximized by the population of detection rules solutions (Algorithm 1, lines 4-6). The output of this module is a set of final detection rules (F SDR) that will be used by the detection task which is responsible for labelling new apps either as malicious or as benign. As the upper-level relies upon a GP process, the GP evolutionary operators require a specific formalization to deal with the manipulated solutions (i.e., the detection rules). and Union (OR)). (2) Solution variation: The GP mutation operator is applied to a function or to a terminal by randomly selecting one of them. If a terminal is selected then it is replaced by another terminal; if it is a function then it is replaced by a new function. As for the GP crossover operator, two parent individuals are selected, and a sub-node is picked on each selected parent. The crossover swaps the nodes and their related sub-node from one parent to the other. (3) Solution evaluation: The encoding of an individual is formalized as a mathematical function called the "fitness function" that quantifies the quality of the proposed detection rules and the artificial malicious patterns. For the GP adaptation, we used the fitness function f upper defined in Equation 1 to evaluate detection-rules solutions (DR).

f upper (DR) = M ax(P recision(DR)+Recall(DR) 2 + #damp #amp 2) (1)
where #damp refers to the number of detected artificial malicious patterns and #amp refers to the number of artificial malicious patterns and

P recision(DR) = p i=1 DR i t , Recall(DR) = p i=1 DR i p (2)
p is the number of detected malicious patterns after executing the solution, i.e., the detection rule, on the base of malicious patterns examples (SM P), t is the total number of malicious patterns within SM P , and DR i is the i th component of a detection rule DR such that: DR i = 1 if the i th detected malicious pattern exists in SM P ; 0 otherwise. Second module: Lower-level The generation process of "High-quality" artificial malicious patterns (F AP , Algorithm 2, line 4.8) is performed as follows:

-Step 1: A GA is applied that (i) maximizes the distance between the generated malicious patterns (SAM P) and the reference benign patterns (input, not-generated patterns (SBP)), (ii) minimizes the distance between the generated malicious patterns (SAM P) and the reference malicious ones (SM P), and (iii) maximizes the number of the generated malicious patterns that are not detected by the upper-level; i.e., by the detection rules (SDR) (Algorithm 2, lines 1-4.6). To generate the patterns, the GA evolutionary operators require a specific formalization to deal with the manipulated solutions (i.e., the patterns). These are defined as follows: (1) Solution representation: The GA solutions are formalized as chromosomes which are composed of API call sequences. These are identified via their identifiers (IDs) and described by their class labels which indicate their nature (malicious or benign), their different calling depths, and a set of binary values indicating if an API call shows or not in the whole API call sequence.

(2) Solution variation: For the GA, as previously explained for the GP, the crossover and the mutation operators are applied.(3) Solution evaluation: An artificial malicious pattern (AP) is evaluated based on the following GA fitness function:

f lower (AP) = M ax((#gamp -#dagmp) + N i=1 f Qual (AP i)) (3)
where i ∈ [1, n]; n indicates the total number of artificial patterns, and #gamp refers to the number of artificial malicious patterns and #dagmp refers to the number of detected artificial malicious patterns. The function f Qual () defined in 4, and its components in Table 1, guarantees the diversity of the artificial malicious patterns.

f Qual (AP i) = Sim 1 + Sim 2 + Overlap(AP i) 3 (4)
A detailed description of the similarity function Sim() can be found in [START_REF] Jerbi | On the use of artificial malicious patterns for android malware detection[END_REF]. -Step 2: The GA above mentioned evolutionary operators may cause the manipulated solutions to be distorted, and hence ambiguous. Technically, a set of patterns is declared to be ambiguous when they share the same values of the features (API calls) but do have different label values (malicious/benign).

To handle this ambiguity issue and to guarantee the reliability of the generated malicious patterns, a rough set component which uses mainly the rough

Sim(MS, APi) = M S j∈M S Sim(AP i ,M S j)
|M S| [START_REF] Jerbi | On the use of artificial malicious patterns for android malware detection[END_REF] The similarity between the generated pattern APi and the malicious where j ∈ [1, m];m indicates patterns (M S).This measure of the total number of malicious patterns. similarity needs to be maximized Sim2 = Sim(BS, APi)

Sim (BS, APi) = BS k∈BS Sim(AP i ,BS k) |BS| (6)
The similarity between the generated pattern APi where k ∈ [1, p];p indicates and the benign patterns (BS) the total number of benign patterns.

which has to be the lowest. Overlap(APi)

Overlap (APi) = 1 - AP l,i =l Sim(AP i ,AP l) |AP | (7)
Measured as the average value of the individual Sim(APi, AP l) between the generated pattern APi and all the other generated patterns AP l in the generated data set SAP . l refers to the total number of the generated artificial patterns.

set lower approximation concept is plugged to the lower-level. (See Figure 1 and Algorithm 2, lines 4.7-4.8). Detection task based on detection rules Each pattern is labeled as benign or as malicious by comparing it to the patterns of the SM P and SBP databases. Then, the obtained patterns are compared to the antecedent of F SDR.

Experimental Setup and Results

To evaluate the performance of BLRDetect, we have considered datasets obtained from the Android Malware Data set (AMD set) [START_REF] Wei | Deep ground truth analysis of current android malware[END_REF], and from various portable benign tools such as Google play. We have gathered 3 000 Android apps where 2 000 are malicious and 1 000 apps are benign files. The Drebin dataset [START_REF] Arp | Drebin: Effective and explainable detection of android malware in your pocket[END_REF], which contains 123 453 benign applications and 5 560 malware samples, is used for the evaluation of our approach against the new variants of malware and 0-day attacks. Different state-of-the-art methods were considered for comparisons. These are the classical classifiers named in Table 2, tested using Weka with the proposed default parameters settings, the two most recent EA-based methods (AMD [START_REF] Jerbi | On the use of artificial malicious patterns for android malware detection[END_REF] and Sen et al. [START_REF] Sen | Coevolution of mobile malware and antimalware[END_REF]) previously described in Section 1. To ensure the fairness of comparisons between evolutionary approaches, we set to 0.9 the crossover rate and to 0.5 the mutaion rate. All of the evolutionary approaches perform 810 000 function evaluations in each run. When running the experiments, we concluded that the fitness functions become stabilized around the 40 th generation. For these reasons, the algorithms did not suffer from premature convergence. The metrics used for the evaluation are: true positives (TP), false positives (FP), true negatives (TN), false negatives (FN), recall (RC), specificity (SP), accuracy (AC), precision (PR), F1 score (FS), and the Area Under the Receiver Operating Characteristics (ROC) Curve (AUC). All of the conducted experiments, based on a 10-fold cross validation, are run on an Intel Xeon Processor CPU E5-2620 v3, with a 16 GB RAM.

We compare the BLRDetect obatined results to a set of state-of-the-art non-EA based classifiers (Table 2) and two EA-based approaches (Sen et al. [START_REF] Sen | Coevolution of mobile malware and antimalware[END_REF] and AMD [START_REF] Jerbi | On the use of artificial malicious patterns for android malware detection[END_REF]). Concerning the comparison with non-EA based classifiers, Table 2 shows that BLRDetect outperforms all classifiers based on all the used evaluation metrics. For instance, BLRDetect achieved a precision of 98.09%, an accuracy of 98.21%, an F1 score of 97.82%, and a specificity of 98.36% in comparison to the LDA and J48 classifiers, which achieved the second best results among the rest of the classifiers, with a pair of precision and accuracy of (98.36% , 97.82%) for LDA and (97.73%, 96.58%) for J48 and a pair of F1 score and specificity of (97.32%,97.31%) for LDA and (98.37%,97.13%) for J48. These interesting BLRDetect results are based on its interesting reached values of true positives (98.09%) and the low false positives (01.91%); which are, indeed, the best achieved values among the classifiers' obtained results. These satisfying results confirm that BLRDetect is powerful in performing its detection task between the two possible labels (malicious/benign). Furthermore, from Table 2, we can deduce that, when compared against EA-based methods using the unknown dataset [START_REF] Arp | Drebin: Effective and explainable detection of android malware in your pocket[END_REF], BLRDetect came first with particularly an accuracy = 96.46%, a 2 highlights the ability of BLRDetect -thanks to its set of efficient produced rules which are generated using the most reliable set of the generated artificial malicious malware; both guaranteed via the use of the BLOP architecture and the rough set component -to achieve accurate detection operations against new and unknown variants of malware. To better clarify the efficiency and benefits of relying on the bilevel architecture within BLRDetect, we analyse the results in terms of false positive and the false negative rates. The registered BLRDetect values of those two metrics (Table 2) confirm the usefulness of a bilevel architecture to detect efficiently malicious code. The continuous competition between both levels permitted good solutions generation (detection rules and artificial malicious patterns) and this had positive impact on the values of FPR (02.77%) and FNR (02.02%). In comparison to BLRDetect, the registered FPR/FNR values for both [START_REF] Sen | Coevolution of mobile malware and antimalware[END_REF] and [START_REF] Jerbi | On the use of artificial malicious patterns for android malware detection[END_REF], which rely on a single-layer based architecture via the use of EAs, are (02.91%/06.49%) and (06.37%/08.84%), respectively. In addition, we can state that the rough-set based module succeeded to set apart 212 000 ambiguous instances among the generated artificial patterns SAM P (468 000 instances) and to produce 256 000 reliables instances. This distinction brings to light the rough set component's important contribution in improving the quality of the artificial malicious patterns by the lower-level and which, consequently, positively affected the false alarms rate.

Conclusion

We developed a malware detection technique named BLRDetect which leans on a bilevel architecture and a rough set module. Within the bilevel architecture, the malware generation task (lower-level) and the rules generation task (detection task, upper-level) are in mutual competition. The lower-level generates "Highquality" malicious patterns which are generated by a GA and thoroughly checked by a rough set component that only keeps the most reliable ones, and which are capable to escape the set of detection rules which are produced by a GP within the upper-level. These efficient generated detection rules try their best to detect the set of artificial malicious patterns generated in the lower-level.

Fig. 1 .

 1 Fig. 1. BLRDetect overview.

Table 1 .

 1 The different f Qual () components.

	Similarity used	Description
	Sim1 = Sim(M S, APi)

Table 2 .

 2 Comparison between BLRDetect and other detection techniques. = 97.77%, a recall = 98.05%, a precision = 96.93%, and an AUC = 87.00%. As for Sen et al. and AMD, they achieved an accuracy of 95.15% and 92.28% , a precision of 97.13% and 93.60%, and an AUC of 82.10% 57.69%, respectively, which are lower than those obtained by our proposed technique. The results reported from Table

	Classifier/ TP FP TN FN RC SP AC PR FS AUC FPR FNR approach
	BLRDetect 98.09 01.91 98.15 01.65 98.37 98.36 98.21 98.09 97.82 86.83 01.90 01.65
	LR	93.81 06.19 96.75 03.25 96.65 93.98 95.28 93.17 95.60 63.69 06.01 03.34
	NB	92.30 07.70 28.41 71.59 56.31 78.67 60.35 92,37 93,62 65.06 02.13 09.03
	RF	97.41 02.59 95.90 04.10 96.00 98.37 97.16 97.36 97.17 73.04 02.62 04.03
	J48	97.18 02.82 93.98 06.02 94.27 97.13 96.58 97.73 98.37 83.90 02.91 05.83
	k-NN	89.52 10.48 95.21 04.79 94.92 90.08 92.37 85.74 90.56 57.69 09.91 05.07
	LDA	97.29 02.71 98.36 01.64 98.34 97.31 97.82 98.36 97.32 75.96 02.68 01.65
	BLRDetect 97.20 02.80 97.99 02.01 98.05 97.77 96.46 96.93 96.41 87.00 02.77 02.02
	Sen et al. 97.10 02.80 93.25 06.75 98.24 95.37 95.15 97.13 95.88 82.10 02.91 06.49
	AMD	93.80 06.19 90.90 09.10 96.20 92.70 92.28 93.60 92.37 57.69 06.37 08.84
	LR: Logistic Regression; LDA: Linear Discriminant Analysis; RF: Random Forest;
	J48: Decision Tree; NB: Naive Bayes; k-NN: k-Nearest Neighbours.

specificity

https://www.cs.waikato.ac.nz/ml/weka/