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Abstract. Despite the existing anti-malware techniques and their in-
teresting achieved results to “hook” attacks, the unstoppable evolution
of malware makes the need for more capable malware detection systems
overriding. In this paper, we propose a new malware detection technique
named Bilevel-Roughset based Malware Detection (BLRDetect) that is
based on, and exploits the benefits of, Bilevel optimization and Rough
Set Theory. The upper-level of the Bilevel optimization component uses
a Genetic Programming Algorithm in its chase of generating powerful
detection rules while the lower-level leans on both a Genetic Algorithm
and a Rough-Set module to produce high quality, and reliable, malware
samples that escape, to their best, the upper-level’s generated detection
rules. Both levels interact with each other in a competitive way in order
to produce populations that depend on one another. Our detection tech-
nique has proven its outperformance when tested against various state-
of-the-art malware detection systems using common evaluation metrics.

Keywords: Evolutionary optimization · Rough Set Theory · Malware
detection.

1 Introduction

Malware authors tend to use obfuscation techniques to infiltrate and hack a tar-
geted system. To counter these attacks, a “good” malware detection system has
to detect every sort of attacks and neutralize them. We will focus specifically on
the works that opted to generate new, and evolve, malware aiming at keeping
the base of malware samples varied and rich; as a way to better detect malicious
code. Among these works, we mention [7, 6], where authors applied evolutionary
algorithms to generate malware samples. Among the most recent and efficient
ones, we mention [5], where a malware detection system (AMD) was proposed
that produces patterns using a Genetic Algorithm (GA) in order to mimic real
malware patterns. This is to keep the data set used in the conception of the
detection system as varied as possible, which allows AMD to be resistant to ob-
fuscated malware. Also, the work of [6], opted for a system using co-evolutionary
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algorithms where a first population generates detection rules, and a second pop-
ulation generates artificial malware. In this work, both populations are executed
in parallel without any hierarchy. In spite of their interesting detection rates,
these works suffer from many limitations: (1) they refer to a limited number
of malware samples which makes the produced base of malicious malware not
varied enough, (2) there is no check of the structure of the generated malicious
patterns, (3) the malware generation and detection tasks are achieved separately.
To overcome the above mentioned shortcomings, our BLRDetect detection tech-
nique, also, generates artificial malware – technically called “patterns” which are
a set of Application Programming Interface (API) call sequences – but its main
distinction and novelty rely on combining evolutionary algorithms, responsible
for producing both detection rules and malware patterns, following a BiLevel
OPtimization (BLOP) [3] process, and Rough Set Theory [4] to guarantee the
“reliability” of the generated patterns.

2 The Bi-level Rough Set Malware Detection Technique

Figure 1 presents the overall running process of BLRDetect: (1) Module 1 is
based on a GP which aims to produce a set of efficient detection rules (FSDR)
and (2) Module 2 leans on a GA that produces artificial malicious patterns
(SAMP ) (step 1) and a rough set based component that keeps only the reliable
set of artificial malicious patterns that does not present deficiencies concerning
their structure, referred to as “High-quality” artificial patterns (FAP ) (step 2).

Colson, B., Marcotte, P., Savard, G.: An overview of bilevel optimization. Annals of
operations research, 153(1), 235-256, (2007)

Fig. 1. BLRDetect overview.

First module: Upper-level In order to produce a set of effective detection
rules, and as shown in Figure 1 and Algorithm 1, the upper-level’s first step
consists of generating a set of detection rules (Algorithm 1, line 1) which will go
through an evaluation process (Algorithm 1, lines 2-3). This evaluation is based
on the coverage of the base of examples (input) and also the coverage of the
artificial malicious patterns generated by the lower-level. These two measures are
used to be maximized by the population of detection rules solutions (Algorithm
1, lines 4-6). The output of this module is a set of final detection rules (FSDR)
that will be used by the detection task which is responsible for labelling new apps
either as malicious or as benign. As the upper-level relies upon a GP process,
the GP evolutionary operators require a specific formalization to deal with the
manipulated solutions (i.e., the detection rules). These are the following: (1)
Solution representation: The solution is formalized as a set of terminals, referring
to different patterns (API call sequences), and functions (Intersection (AND)
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Algorithm 1: The Upper-Level Algorithm

Inputs: SMP : set of malicious patterns, SBP : set of benign patterns, FAP :
set of High-quality artificial malicious patterns, NDR: number of detection
rules, NAP : number of High-quality artificial malicious patterns in SAMP ,
NU : number of iterations in the upper-level, NL: number of iterations in the
lower-level

Output: Final set of detection rules FSDR
1: SDR0 ← Initialization(NDR,SAMP ,SBP )
2: For each DR0 in SDR0 do
2.1: SAP0 ← APGeneration(DR0,FAP ,NAP , NL)
2.2: DR0 ← Evaluation(DR0,SAMP ,SAP0)
3: End For
4: t← 1
5: While (t < NU) do
5.1: Qt ← Variation(SDRt−1 )
5.2: For each DRt in Qt do
5.2.1: DRt ← UpperEvaluation(DRt,SAMP )
5.2.2: SAPt ← APGeneration(DRt,SAMP ,NAP ,NL)
5.2.3: DRt ← EvaluationUpdate(DRt,SAPt)
5.3: End For
5.4: Ut ← Qt∪ SDRt

5.5: SDRt+1 ← Selection(NDR,Ut)
5.6: t← t+1
6: End While
7: FSDR← FittestSelection(SDRt)

and Union (OR)). (2) Solution variation: The GP mutation operator is applied
to a function or to a terminal by randomly selecting one of them. If a terminal
is selected then it is replaced by another terminal; if it is a function then it
is replaced by a new function. As for the GP crossover operator, two parent
individuals are selected, and a sub-node is picked on each selected parent. The
crossover swaps the nodes and their related sub-node from one parent to the
other. (3) Solution evaluation: The encoding of an individual is formalized as a
mathematical function called the “fitness function” that quantifies the quality
of the proposed detection rules and the artificial malicious patterns. For the GP
adaptation, we used the fitness function fupper defined in Equation 1 to evaluate
detection-rules solutions (DR).

fupper(DR) = Max(

Precision(DR)+Recall(DR)
2 + #damp

#amp

2
) (1)

where #damp refers to the number of detected artificial malicious patterns and
#amp refers to the number of artificial malicious patterns and

Precision(DR) =

∑p
i=1 DRi

t
, Recall(DR) =

∑p
i=1 DRi

p
(2)
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p is the number of detected malicious patterns after executing the solution,
i.e., the detection rule, on the base of malicious patterns examples (SMP ), t is
the total number of malicious patterns within SMP , and DRi is the ith com-
ponent of a detection rule DR such that: DRi = 1 if the ith detected malicious
pattern exists in SMP ; 0 otherwise.

Second module: Lower-level The generation process of “High-quality” arti-
ficial malicious patterns (FAP , Algorithm 2, line 4.8) is performed as follows:

– Step 1: A GA is applied that (i) maximizes the distance between the gener-
ated malicious patterns (SAMP ) and the reference benign patterns (input,
not-generated patterns (SBP )), (ii) minimizes the distance between the gen-
erated malicious patterns (SAMP ) and the reference malicious ones (SMP ),
and (iii) maximizes the number of the generated malicious patterns that are
not detected by the upper-level; i.e., by the detection rules (SDR) (Algo-
rithm 2, lines 1-4.6). To generate the patterns, the GA evolutionary operators
require a specific formalization to deal with the manipulated solutions (i.e.,
the patterns). These are defined as follows: (1) Solution representation: The
GA solutions are formalized as chromosomes which are composed of API
call sequences. These are identified via their identifiers (IDs) and described
by their class labels which indicate their nature (malicious or benign), their
different calling depths, and a set of binary values indicating if an API call
shows or not in the whole API call sequence. (2) Solution variation: For
the GA, as previously explained for the GP, the crossover and the mutation
operators are applied.(3) Solution evaluation: An artificial malicious pattern
(AP ) is evaluated based on the following GA fitness function:

flower(AP ) = Max((#gamp−#dagmp) +

N∑
i=1

fQual(APi)) (3)

where i ∈ [1, n]; n indicates the total number of artificial patterns, and
#gamp refers to the number of artificial malicious patterns and #dagmp
refers to the number of detected artificial malicious patterns. The function
fQual() defined in 4, and its components in Table 1, guarantees the diversity
of the artificial malicious patterns.

fQual(APi) =
Sim1 + Sim2 + Overlap(APi)

3
(4)

A detailed description of the similarity function Sim() can be found in [5].
– Step 2: The GA above mentioned evolutionary operators may cause the ma-

nipulated solutions to be distorted, and hence ambiguous. Technically, a set
of patterns is declared to be ambiguous when they share the same values of
the features (API calls) but do have different label values (malicious/benign).
To handle this ambiguity issue and to guarantee the reliability of the gener-
ated malicious patterns, a rough set component which uses mainly the rough
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Table 1. The different fQual() components.

Similarity used Description

Sim1 = Sim(MS,APi)

Sim(MS, APi) =

∑
MSj∈MSSim(APi,MSj)

|MS| (5)
The similarity between the generated
pattern APi and the malicious

where j ∈ [1, m];m indicates patterns (MS).This measure of
the total number of malicious patterns. similarity needs to be maximized

Sim2 = Sim(BS,APi)

Sim (BS, APi) =

∑
BSk∈BSSim(APi,BSk)

|BS| (6)
The similarity between
the generated pattern APi

where k ∈ [1, p];p indicates and the benign patterns (BS)
the total number of benign patterns. which has to be the lowest.

Overlap(APi)

Overlap (APi) = 1−
∑

APl,i 6=lSim(APi,APl)

|AP | (7)

Measured as the average value
of the individual Sim(APi, APl)
between the generated pattern APi

and all the other generated patterns
APl in the generated data set
SAP . l refers to the total number
of the generated artificial patterns.

set lower approximation concept is plugged to the lower-level. (See Figure 1
and Algorithm 2, lines 4.7-4.8).

Algorithm 2: The Lower-Level Algorithm

Inputs: SMP , SBP , SDR: set of detection rules, G: number of generations,
N : population size

Output: Set of High-quality artificial malicious patterns FAP
1: SAP0 ← Initialization(SBP ,SMP ,N ,G)
2: SAP0 ← Evaluation(SAP0,SBP ,SMP ,SDR)
3: t← 1
4: While (t < G) do
4.1: Qt ← Variation(SAPt−1 )
4.2: Qt ← Evaluation(Qt,SBP ,SMP ,SDR)
4.3: Ut ← Qt ∪ SAPt

4.4: SAPt+1 ← Selection(N ,Ut)
4.5: t← t+1
4.6: SAMP ← FittestSelection(SAPt)
4.7: (RAMP,AAMP )← ReliabilityCheck(SAMP )
4.8: FAP ← LowerApproximation(AAMP ) ∪ RAMP
5: End While
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Detection task based on detection rules Each pattern is labeled as benign
or as malicious by comparing it to the patterns of the SMP and SBP databases.
Then, the obtained patterns are compared to the antecedent of FSDR.

3 Experimental Setup and Results

To evaluate the performance of BLRDetect, we have considered datasets ob-
tained from the Android Malware Data set (AMD set) [2], and from various
portable benign tools such as Google play. We have gathered 3 000 Android apps
where 2 000 are malicious and 1 000 apps are benign files. The Drebin dataset
[1], which contains 123 453 benign applications and 5 560 malware samples, is
used for the evaluation of our approach against the new variants of malware
and 0-day attacks. Different state-of-the-art methods were considered for com-
parisons. These are the classical classifiers named in Table 2, tested using Weka
with the proposed default parameters settings, the two most recent EA-based
methods (AMD [5] and Sen et al. [6]) previously described in Section 1. To
ensure the fairness of comparisons between evolutionary approaches, we set to
0.9 the crossover rate and to 0.5 the mutaion rate. All of the evolutionary ap-
proaches perform 810 000 function evaluations in each run. When running the
experiments, we concluded that the fitness functions become stabilized around
the 40th generation. For these reasons, the algorithms did not suffer from prema-
ture convergence. The metrics used for the evaluation are: true positives (TP),
false positives (FP), true negatives (TN), false negatives (FN), recall (RC), speci-
ficity (SP), accuracy (AC), precision (PR), F1 score (FS), and the Area Under
the Receiver Operating Characteristics (ROC) Curve (AUC). All of the con-
ducted experiments, based on a 10-fold cross validation, are run on an Intel
Xeon Processor CPU E5-2620 v3, with a 16 GB RAM.

We compare the BLRDetect obatined results to a set of state-of-the-art non-
EA based classifiers (Table 2) and two EA-based approaches (Sen et al. [6]
and AMD [5]). Concerning the comparison with non-EA based classifiers, Ta-
ble 2 shows that BLRDetect outperforms all classifiers based on all the used
evaluation metrics. For instance, BLRDetect achieved a precision of 98.09%, an
accuracy of 98.21%, an F1 score of 97.82%, and a specificity of 98.36% in com-
parison to the LDA and J48 classifiers, which achieved the second best results
among the rest of the classifiers, with a pair of precision and accuracy of (98.36%
, 97.82%) for LDA and (97.73%, 96.58%) for J48 and a pair of F1 score and
specificity of (97.32%,97.31%) for LDA and (98.37%,97.13%) for J48. These in-
teresting BLRDetect results are based on its interesting reached values of true
positives (98.09%) and the low false positives (01.91%); which are, indeed, the
best achieved values among the classifiers’ obtained results. These satisfying
results confirm that BLRDetect is powerful in performing its detection task be-
tween the two possible labels (malicious/benign). Furthermore, from Table 2, we
can deduce that, when compared against EA-based methods using the unknown
dataset [1], BLRDetect came first with particularly an accuracy = 96.46%, a

3 https://www.cs.waikato.ac.nz/ml/weka/
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Table 2. Comparison between BLRDetect and other detection techniques.

Classifier/
TP FP TN FN RC SP AC PR FS AUC FPR FNR

approach

BLRDetect 98.09 01.91 98.15 01.65 98.37 98.36 98.21 98.09 97.82 86.83 01.90 01.65
LR 93.81 06.19 96.75 03.25 96.65 93.98 95.28 93.17 95.60 63.69 06.01 03.34
NB 92.30 07.70 28.41 71.59 56.31 78.67 60.35 92,37 93,62 65.06 02.13 09.03
RF 97.41 02.59 95.90 04.10 96.00 98.37 97.16 97.36 97.17 73.04 02.62 04.03
J48 97.18 02.82 93.98 06.02 94.27 97.13 96.58 97.73 98.37 83.90 02.91 05.83

k-NN 89.52 10.48 95.21 04.79 94.92 90.08 92.37 85.74 90.56 57.69 09.91 05.07
LDA 97.29 02.71 98.36 01.64 98.34 97.31 97.82 98.36 97.32 75.96 02.68 01.65

BLRDetect 97.20 02.80 97.99 02.01 98.05 97.77 96.46 96.93 96.41 87.00 02.77 02.02
Sen et al. 97.10 02.80 93.25 06.75 98.24 95.37 95.15 97.13 95.88 82.10 02.91 06.49

AMD 93.80 06.19 90.90 09.10 96.20 92.70 92.28 93.60 92.37 57.69 06.37 08.84

LR: Logistic Regression; LDA: Linear Discriminant Analysis; RF: Random Forest;
J48: Decision Tree; NB: Naive Bayes; k-NN: k-Nearest Neighbours.

specificity = 97.77%, a recall = 98.05%, a precision = 96.93%, and an AUC =
87.00%. As for Sen et al. and AMD, they achieved an accuracy of 95.15% and
92.28% , a precision of 97.13% and 93.60%, and an AUC of 82.10% 57.69%, re-
spectively, which are lower than those obtained by our proposed technique. The
results reported from Table 2 highlights the ability of BLRDetect – thanks to
its set of efficient produced rules which are generated using the most reliable set
of the generated artificial malicious malware; both guaranteed via the use of the
BLOP architecture and the rough set component – to achieve accurate detection
operations against new and unknown variants of malware. To better clarify the
efficiency and benefits of relying on the bilevel architecture within BLRDetect,
we analyse the results in terms of false positive and the false negative rates. The
registered BLRDetect values of those two metrics (Table 2) confirm the useful-
ness of a bilevel architecture to detect efficiently malicious code. The continuous
competition between both levels permitted good solutions generation (detection
rules and artificial malicious patterns) and this had positive impact on the values
of FPR (02.77%) and FNR (02.02%). In comparison to BLRDetect, the regis-
tered FPR/FNR values for both [6] and [5], which rely on a single-layer based
architecture via the use of EAs, are (02.91%/06.49%) and (06.37%/08.84%), re-
spectively. In addition, we can state that the rough-set based module succeeded
to set apart 212 000 ambiguous instances among the generated artificial patterns
SAMP (468 000 instances) and to produce 256 000 reliables instances. This dis-
tinction brings to light the rough set component’s important contribution in
improving the quality of the artificial malicious patterns by the lower-level and
which, consequently, positively affected the false alarms rate.

4 Conclusion

We developed a malware detection technique named BLRDetect which leans on a
bilevel architecture and a rough set module. Within the bilevel architecture, the
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malware generation task (lower-level) and the rules generation task (detection
task, upper-level) are in mutual competition. The lower-level generates “High-
quality” malicious patterns which are generated by a GA and thoroughly checked
by a rough set component that only keeps the most reliable ones, and which are
capable to escape the set of detection rules which are produced by a GP within
the upper-level. These efficient generated detection rules try their best to detect
the set of artificial malicious patterns generated in the lower-level.
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