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Abstract: Influenza virus transcription is catalyzed by the viral RNA-polymerase (FluPol) through
a cap-snatching activity. The snatching of the cap of cellular mRNA by FluPol is preceded by its
binding to the flexible C-terminal domain (CTD) of the RPB1 subunit of RNA-polymerase II (Pol II).
To better understand how FluPol brings the 3′-end of the genomic RNAs in close proximity to the
host-derived primer, we hypothesized that FluPol may recognize additional Pol II subunits/domains
to ensure cap-snatching. Using binary complementation assays between the Pol II and influenza A
FluPol subunits and their structural domains, we revealed an interaction between the N-third domain
of PB2 and RPB4. This interaction was confirmed by a co-immunoprecipitation assay and was found
to occur with the homologous domains of influenza B and C FluPols. The N-half domain of RPB4 was
found to be critical in this interaction. Punctual mutants generated at conserved positions between
influenza A, B, and C FluPols in the N-third domain of PB2 exhibited strong transcriptional activity
defects. These results suggest that FluPol interacts with several domains of Pol II (the CTD to bind Pol
II), initiating host transcription and a second transcription on RPB4 to locate FluPol at the proximity
of the 5′-end of nascent host mRNA.

Keywords: influenza virus; RNA-polymerase; RNA-polymerase II; protein-protein interaction; PPI;
cap snatching; transcription; binary complementation assay

1. Introduction

Influenza A viruses (IAVs) are important viral respiratory pathogens of humans and
are members of the Orthomyxoviridae family. These viruses contain a negative-sense
single-stranded segmented RNA genome (reviewed in [1]). The three largest segments
encode the subunits of the viral RNA-dependent RNA-polymerase (FluPol), including
the two basic proteins PB1 and PB2 and the acidic subunit PA [2]. Unlike what has been
observed for many other RNA viruses, the IAV genome is transcribed and replicated in
the nucleus of infected cells, wherein the FluPol nucleotide polymerization activity carries
out both replication and transcription. During the latter, an additional “cap-snatching”
function is implemented to steal short 5′-capped RNA primers from host mRNAs [3].

In the viral particle, the eight viral RNA genomic segments are packaged together with
numerous copies of the viral nucleoprotein (NP) and of FluPol in viral ribonucleoprotein
complexes (vRNPs). After binding to sialic acid on the cell surface, virions are endocytosed
and fused with the endosomal membrane. vRNPs are then released into the cytoplasm and
transported to the nucleus where they start synthesizing viral mRNAs to produce viral
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proteins. Thus, FluPol transcribes each of the vRNA genome segments, producing positive
sense viral mRNA with a 5′-terminal N7-methyl guanosine (m7G) cap and a 3′-polyA
tail. FluPol which does not possess capping activity binds to m7G on nascent host RNAs
using a cap-binding domain on PB2. Then, it cleaves the host mRNA approximately 10-
to 15 nucleotides downstream of the 5′-cap, using the PA endonuclease. The resulting
short 5′ capped RNA fragment acts as a primer to initiate transcription of the viral genome
segments. Polyadenylation is carried out by a FluPol stuttering at a 5′-proximal poly(U)
polyadenylation signal present on each genomic vRNA [4]. The complete FluPol tran-
scription activity (initiation, elongation, polyadenylation, and FluPol recycling) has been
characterized at near atomic resolution [5,6].

Cap snatching by FluPol requires interaction(s) with the host transcriptional ma-
chinery [7–9]. The host RNA-polymerase II (Pol II), a complex of 12 subunits (RPB1-12),
synthesizes cellular mRNAs (and diverse noncoding RNAs) which are 5′-m7G capped.
Its catalytic center is borne by the two largest subunits (RPB1 and RPB2), while smaller
subunits (RPB3 to RPB12) are arrayed at the periphery [10,11]. RPB1 in mammals has a
large mobile C-terminal domain (CTD) composed of 52 heptad repeats (consensus sequence
Tyr-Ser-Pro-Thr-Ser-Pro-Ser) that recruit factors required for RNA splicing and termination.
Residues of the CTD are subjected to post-translational modifications, the most studied
being the phosphorylation of Ser2 and/or Ser5. The Ser5P CTD is recognized by the nu-
clear machinery involved in early steps of mRNA transcription, but remains detectable
throughout the gene body [12]. FluPol interacts with RPB1 by binding to its CTD, and more
specifically to heptad repeats carrying the Ser5P modification [13]. This interaction has been
structurally defined with CTD mimic Ser5P peptides and FluPols of influenza A, B and
C viruses [14,15]. These studies document a bipartite binding site on the CTD, while the
involved FluPol surfaces appear imperfectly conserved between influenza virus subtypes.

In this study, to better define the molecular mechanisms underlying the FluPol cap-
snatching activity, we explored whether FluPol may interact with Pol II via domains or
subunits other than the CTD of RPB1. We thus used binary complementation assays to
systematically investigate effective interactions between FluPol and Pol II subunits. This
approach allowed for identification and validation of an interaction between the third
N-ter domain of PB2 and RPB4. This interaction was conserved among FluPol virus types,
and mutations in the implicated domain of the viral protein were found to cripple viral
transcription. These results suggest that during viral transcription, FluPol associates with
the regulatory CTD domain of RPB1, while also interacting with RPB4, at a site where
nascent capped RNAs emerge from Pol II. We speculate that this second complementary
anchoring position may participate in the docking of FluPol onto nascent RNAs as a step
preliminary to the “cap-snatching”.

2. Materials and Methods
2.1. Cells and Virus

HEK-293T cells were maintained in Dulbecco’s modified Eagle’s Medium (DMEM)
supplemented with 10% fetal calf serum (FCS), 2 mM L-glutamine, 100 IU/mL penicillin,
100 mg/mL streptomycin at 37 ◦C and 5% CO2. Wild-type (wt) and PB2 mutant viruses
were generated by reverse genetics using the 12-plasmid reverse genetics system kindly
provided by G. Brownlee [16]. Site-directed mutagenesis was carried out on the PB2 gene
by using the QuikChange II site-directed mutagenesis kit (Agilent Technologies France,
Les Ulis, France). The viruses were prepared as previously described [17]. Briefly, a 1-day
coculture of HEK-293T and MDCK cells (seeding of 3 × 105 and 4 × 105 cells, respectively,
in P6 plates) was transfected with a plasmid mixture (0.25 µg per plasmid) using Fugene
HD (Promega France, Charbonnières-les-bains, France) according to the manufacturer’s
recommendations. At 48 h post-transfection, cell supernatants were harvested and used to
inoculate MDCK cells for the production of rescued virus stocks. The FluPol genes of the
recombinant viruses were sequenced to validate the presence of engineered mutations.
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2.2. Protein-Protein Interaction Assays
2.2.1. Split-Luciferase Complementation Assay

A first protein-protein interaction assay was based on the complementation of two
trans-complementing fragments of Gaussia princeps luciferase (Gluc), Luc1 and Luc2, as
described in Cassonnet et al. [18]. Interaction-mediated luciferase activity was measured
in cultured cells transiently expressing a protein fused to Gluc1 and another one fused to
Gluc2. Codon-optimized of human Pol II cDNAs encoding subunits RPB3, RPB4, RPB5,
RPB6, RPB7, RPB8, RPB9, RPB10, RPB11 and RPB12 (all with a HA-tag at their N-terminus)
were cloned in pCI-LL-Luc1 and pCI-LL-Luc2 vectors [19], thus resulting to the in frame
fusion of the HA-tagged Pol II open reading frame subunits with the Luc1/Luc2 moieties. In
these constructs, Pol II subunits are separated from the Luc1/Luc2 moieties by a 10-amino
acid long linker (sequence GGGGSGGGGS). The plasmid encoding the RPB2 subunit under
the control of the CMV promoter (kindly provided by Benoit Coulombe) was used as a
template to insert at the RPB2 3′-end the LL-Luc1/Luc2 moieties. The plasmid pFLAG-Pol-
II WT encoding human RPB1 (Addgene number 35175, deposited by Benjamin Blencowe)
was used to generate two pCI-LL-Luc1/Luc2 derivates encoding 4 repeats (4 × YSPTSPS)
of the CTD tail fused to Luc1 or Luc2. FluPol PA, PB1 and PB2 subunits cDNA cloned in
pCI-LL-Luc1/Luc2 vectors were kindly provided by Nadia Naffakh [19]. Influenza B and
C PB2 cDNAs (which were kindly provided by Wendy Barclay and Sylvie van der Werf,
respectively), were used to subclone in frame their 5′-domains with Luc1 in pCI-LL-Luc2
with the Gibson Assembly Master Mix Kit (New England BioLabs, Ipswich, Massachusetts,
USA). Twenty-six pCI-LL-Luc1/Luc2 derivates encoding cellular proteins irrelevant in
FluPol-Pol II interaction were kindly provided by Caroline Demeret. Point mutations and
deletions in FluPol cDNAs were generated using Q5 Site-Directed Mutagenesis Kit (New
England BioLabs, Ipswich, MA, USA). HEK-293T cells were seeded at a concentration of
105 cells per well in 48-well plates. Twenty-four hours post seeding, cells were transfected
in duplicate/triplicate with the indicated combinations of pCI-derived plasmids by using
polyethylenimine (Polyscience Inc., Le Perray-en-Yvelines, France). In each well, 150 ng of
each pCI-LL-Luc1/Luc2 derivate are co-transfected with 150 ng of an empty pCI vector.
In several assays, the empty pCI vector was replaced by pCI vectors encoding wild-type
FluPol subunits. Twenty-four hours post-transfection, cells were lysed using the Renilla
luciferase assay buffer (Promega France, Charbonnières-les-bains, France) for 30 min at
room temperature. Next, the luciferase enzymatic activity recovered by the assembly of the
Luc1 and Luc2 subunits was measured using Renilla luciferase assay reagent and a Tecan
Infinite 200 PRO luminometer (Renilla luminescence counting program; integration time of
10 s after injection of 50 µL of the reagent). Normalized luminescence ratios (NLRs) were
calculated using pGluc1 and pGluc2 plasmids only encoding Gaussia luciferase moieties
as described previously by Cassonnet et al. [18]. The NLR for a given interacting protein
pair A-B was calculated by dividing the luminescent signal by the sum of the luminescent
measured in control cells as indicated in Figure 1A,B. Significance of NLR signals from the
noise was determined using GraphPad to identify outliers with a threshold of 1%.
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Figure 1. The split-luciferase interaction assay and its validation with Pol II and FluPol subunits. 
(A) Schematic of the principle of split-luciferase complementation assay. If protein A and protein B 

Figure 1. The split-luciferase interaction assay and its validation with Pol II and FluPol subunits.
(A) Schematic of the principle of split-luciferase complementation assay. If protein A and protein
B interact, the activity of luciferase is restored and luminescence will be emitted in presence of
its substrate. (B) The normalized luminescence ratio (NLR) is calculated as described. (C) NLR
values obtained for pairs of Luc1/Luc2-tagged Pol II subunits co-expressed into HEK-293T cells.
Twenty-four hours after transfection of plasmids driving Pol II subunits expression, cells were lysed
and luminescence was measured. Colors indicate reciprocated interactions, orange for RPB2-RPB3
interaction, red for RPB3-RPB10 interaction, blue for RPB4-RPB7 and violet for RPB2-RPB12. The
green color indicates one-way interaction detection, RPB12 with RPB3 and RPB10. (D) Interactions
are represented by a colored dot on a scheme of Pol II and its subunits as defined in (C). (E) NLR
values obtained for pairs of Luc1/Luc2-tagged FluPol subunits plasmids transfected into HEK293T
cells with/without untagged FluPol subunits. Data are mean ± s.d. n = two technical replicates
representative of three independent experiments.
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2.2.2. Bimolecular Fluorescence Complementation (BiFC) Assay

BiFC constructs were based on the complementation of two trans-complementing
fragments of Venus fluorescent protein, Venus1 (amino acids 1 to 155) and Venus2 (amino
acids 156 to 239), as described by Shyu et al. [20]. Interaction-mediated fluorescence is
observed in cultured cells when a protein A fused to Venus1 interacts with a protein B
fused to Venus2. Thus, Pol II and FluPol subunits cDNAs were cloned using adequate
restriction sites in pCI-LL-Venus1 and -Venus2 vectors, thus resulting to the in frame fusion
of the cloned open reading frames followed by a 10-amino acid long linker (sequence
GGGGSGGGGS) with the Venus1/2 moieties. Cells were seeded on coverslips in P12-wells
and transfected 24 h later with combinations of pCI-LL-Venus1/2 derivates (1 µg/plasmid).
Twenty-four hours after transfection, cells were fixed using 4% paraformaldehyde for
10 min and permeabilized for 15 min using 0.1% Triton X-100. Nuclei were stained with
DAPI. The excitation peak used to reveal Venus fluorescence was 515 nm and its emission
was revealed at 528 nm. Images were captured with a confocal microscope and processed
with the ImageJ software.

2.3. Minireplicon and Transcription Assays
2.3.1. Minireplicon Assay

HEK-293T cells were seeded in P96 wells (5 × 104 cells/well) and transfected one day
later with plasmids driving expression of wild-type or mutated forms of the PA, PB1, PB2,
and NP viral proteins with the plasmid pPolI-WSN-NA-firefly luciferase as previously
described [21]. Plasmid pMAX-GFP (Lonza, Walkersville, MD, USA) was used as an
internal control for transfection efficiency and data normalization. As a negative control,
293T cells were transfected with polyethylenimine (PEI) with the same plasmids minus
the PA expression plasmid. Forty-eight hours post-transfection, cells were lysed in 150 µL
PLB buffer (30 mM Tris pH7.9, 10 mM MgCl2, 1% Triton X-100, 20% Glycerol, 1 mM DTT).
Luminescence activity was measured with Luciferase Assay System (Promega) on a Tecan
Infinite M200Pro luminometer according to the manufacturer’s instructions. Replicon
activity was quantified by a ratio between the luminescence and the fluorescence signals.

2.3.2. Transcription Assay

To quantify transcription activity of FluPol mutants, the same procedure than de-
scribed in the minireplicon assay was used, except that the wild-type PA subunit was
replaced by the PA C95A mutant that is deficient for replication [22].

2.4. Co-Immunoprecipitation Assay

HEK-293T cells plated in 6-well plates were transiently transfected with 1 µg of pci-
PB2(36-247)-FLAGtag and/or with 1 µg pci-HAtag-RPB4 using PEI. Twenty-four hours
post-transfection, cells were rinsed and scrapped at 4 ◦C into 1 mL of 50 mM Tris-HCl
pH7.4, 2 mM EDTA, 150 mM NaCl, 1% Triton X-100, 10% glycerol supplemented with
protease inhibitor (Thermo Fisher Scientific, Les Ulis, France). After 1 h, this material was
centrifugated (20 min, 12,000× g at 4 ◦C). Supernatants were collected and incubated under
gentle agitation overnight at 4 ◦C with 80 µL of a 1:1 slurry of sepharose-IgG beads (GE
Healthcare, Chicago, IL, USA) previously coated with anti-FLAG M5 antibody (Sigma-
Aldrich, St. Louis, MO, USA). The beads were washed three times with 1 mL of lysis Buffer
and once with PBS, then treated for 2 min at 100 ◦C in Laemmli’s denaturating buffer
plus 5% 2-mercaptoethanol, and centrifugated. Resulting supernatants were subjected to
SDS-PAGE followed by a western blot (WB) analysis. An anti-HA antibody conjugated
with peroxydase (Roche Diagnostics GmbH, Mannheim, Germany) and an anti-FLAG
antibody conjugated with peroxydase (Sigma-Aldrich, Darmstadt, Germany) were used to
reveal immunoprecipitated products in the WB.
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3. Results
3.1. Novel Interactions between FluPol and Pol II Subunits

To identify novel sites of interactions between FluPol and Pol II subunits, we used
the previously described Gaussia princeps luciferase-based complementation assay [18,23].
In this assay, an interaction between two proteins each fused to either the Luc1 or the
Luc2 segments of the Gaussia luciferase enzyme, results in reconstitution of a functional
luciferase activity, which can be quantified by addition of substrate (Figure 1A). To favor
proper folding of the FluPol and Pol II subunits, the luciferase segments were fused onto
their C terminus. For each sample, the specificity of the interaction over background was
estimated by calculating a normalized luminescent ratio (NLR—Figure 1B).

To validate the assay, we first fused each Pol II subunit (from RPB2 to RPB12) with
either Luc1 or Luc2, then co-expressed the Luc1-fusions with each Luc2-fusion (Figure 1C).
This approach identified strong and reciprocal contacts between RPB2 and RPB3, RPB2
and RPB4, RPB2 and RPB12, RPB3 and RPB10, and RPB4 and RPB7. Interaction signal
was also identified between RPB12 and RPB3 or RPB10, albeit in a non-reciprocal manner.
Finally, RPB8, RPB10, and RPB12 were found to interact with themselves. Confrontation
of these observations with the 3D-structure of Pol II [24] illustrated that the luciferase
complementation assay was very efficient at detecting direct interactions between Pol II
subunits, while it was oblivious to interactions mediated by the Pol II complex, possibly
due to the shortness of the GGGSGGGS linker (summarized by the color code in Figure 1D).

We next used a similar approach to monitor interactions between FluPol subunits
(Figure 1E). In these experiments, co-expressed Luc1/Luc2-tagged forms of PA and PB1
yielded NLR signal both in the presence, and in the absence of untagged PB2. In contrast,
interaction of PB2 with PA or PB1 was detected only when the three FluPol subunits were
co-expressed. As for Pol II, these interactions between FluPol subunits were in agreement
with the known 3D-structures of the viral enzyme and also matched earlier observations
on the sequential assembly of in the cytoplasm and in the nucleus [11,25,26].

Finally, we investigated interactions between FluPol subunits (PA, PB1 or PB2) of the
WSN strain (H1N1) and Pol II subunits including RPB2 to RPB12 (Figure 2A,C), and a
fragment of the RPB1 CTD. As expected from structural analyses [14], the RPB1 CTD was
found to interact with PA alone and with the assembled FluPol (Figure 2B). With other
Pol II subunits, the range of NLR values was 1- to 2-logs of magnitude lower than those
observed for internal Pol II and FluPol interactions (Figure 2C). For each tagged FluPol
subunits, RPB3 and RPB4 (and to a less extent RPB7 and RPB8) yielded the highest NLR
signals when in the presence of an intact FluPol complex. These data were indicative of
proximity interactions between FluPol and Pol II not accounted for by RPB1 CTD (and
might possibly involve RPB3 and RPB4). We noted further that, for the PA bait, the
FluPol-Pol II interaction-signals benefited from co-expressed untagged PB1 but not from
coexpression of untagged PB2. Likewise, NLR signals obtained with tagged PB1 and Pol
II subunits remained unaffected upon co-expression of untagged PA and PB2. Finally,
interactions of the PB2 bait with Pol II subunits were affected by the presence of other
FluPol subunits only for RPB4 and RPB7. These data showed that interactions between
FluPol and Pol II subunits were not strictly dependent on the assembly of FluPol into
an intact complex, and suggested that the assay is amenable to analyze individually the
implication of structurally-defined protein domains of FluPol.
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Figure 2. Split-luciferase assays between FluPol and Pol II subunits. (A) Schematic of FluPol and Pol
II with their subunits and the interaction between the CTD of Pol II with FluPol. Red stars indicate the
YSPTSpPS CTD motif (with the phosphorylated Serine 5). (B) A plasmid encoding a CTD stretch of
RPB1 fused the Luc1 moiety was co-transfected with plasmids encoding PA or PB2 fused to the Luc2
moiety. Plasmids encoding untagged PA, PB1, or PB2 were also added when indicated to produce
complete FluPol. Twenty-four hours post-transfection, cells were lysed and luminescence signal
was measured. (C) Pairs of plasmids encoding a Luc1-FluPol subunit with a Luc2-Pol II subunit
were transfected into HEK 293T along with/without untagged FluPol subunits. NLR signals were
quantified as described in Figure 1B. Data are mean ± s.d. n = two technical replicates representative
of two or three independent assays.

3.2. The N-Terminal Region of PB2 Mediates Interaction with RPB4

FluPol can be subdivided in functional and structural protein domains. It associates an
invariant core comprising the PB1 subunit, stabilized by the PA-linker and the PA-C [amino
acid 197 to the C-terminus] domain from the PA subunit, and the PB2-N [amino acid 1 to
247] from the PB2 subunit. This core is then associated with flexibly-linked peripheral
domains including the PA endonuclease domain and the two-third C-terminal domain of
PB2] [27]. To map the domains of FluPol principally involved in interactions with Pol II,
we generated constructs driving expression of corresponding sub-fragments of PA and PB2.
Most of these domains were shown to acquire their native fold when expressed without
other FluPol components [2]. In complementation assays with the Pol II subunits, the
PA-derived constructs co-expressed with PB1 did not reveal any clear association with
Pol II subunits, all combinations yielding very low NLR signals (Figure 3A). In contrast,
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co-expression of the core-associated PA domains with a full set of Pol II subunits revealed a
strong interaction (NLR score at 85) between PB2-N (residues 1 to 247) and RPB4 which was
not observed with other Pol II subunits (Figure 3B). Furthermore, the PB2-C (residues 247 to
759) construct also yielded high NLR scores (approximately 30) with RPB5 and RPB11.
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To validate the specificity of the PB2-N/RPB4 interaction, we next challenged the PB2-
N construct with a set of proteins unrelated to Pol II. In these experiments, neither PB2-N,
nor a shorter PB2(36–247) construct lacking 35 N-ter residues interacting with PB1 [28],
displayed any interaction with the mock targets (Figure 4A). Together, these results were
indicative of a specific contact between host Pol II subunit RPB4 and the PB2-N domain
while also suggesting auxiliary contacts between RPB5 and RPB11 and the C-terminal
regions of PB2.
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Figure 4. PB2-N domain interacts with the Pol II subunit RPB4. (A) Split-luciferase assays between
PB2-N forms (Luc2-PB2(1−247) and Luc2-PB2(36−247) and Luc1-tagged irrelevant proteins(Apool
for MICOS complex subunit MIC27, UniProtKB ID Q6UXV4; CACNG7 for Voltage-dependent
calcium channel gamma-7 subunit, P62955; CNTN2 for Contactin-2, Q02246; DBH1 for dopamine
beta-hydroxylase, P09172; DPYSL2 for dihydropyrimidinase-related protein 2, Q16555; GSTT1 for
glutathione S-transferase theta-1, P30711; GYPA for glycophorin-A, P02724; NFE2L1 for endoplasmic
reticulum membrane sensor NFE2L1, Q14494 and NXPH1 for Neurexophilin-1 for P58417). Data
are mean ± s.d. n = two technical replicates. (B) Coimmunoprecipitation assay. Plasmids encoding
HA-RPB4 and PB2(36−247)-FLAG were transfected in HEK 293T cells. Twenty-four hours post-
transfection, cells were lysed, PB2(36−247)-FLAG was immunoprecipitated and RPB4 was revealed
by Western Blotting. (C) Split-Venus complementation assay between PB2 and RPB4. HEK 293T
cells were co-transfected with expression plasmids encoding PB2-Venus1 (PB2-V1), RPB4-Venus 2
(RPB4-V2) and/or with plasmids encoding Venus1 (V1) and Venus2 (V2) moieties. Cells were fixed
24 h later, nuclei were marked with DAPI and fluorescence emitted by reconstituted Venus was
measured by confocal microscopy. Bars = 20 µm. (D,E) The interaction between PB2(36−247) and
RPB4 is conserved in influenza types B and C. Plasmids encoding luc2-tagged forms of PB2(36−247)
from influenza B (D) or influenza C (E) viruses were co-expressed with Luc1-tagged Pol II subunits
in HEK 293T cells. Twenty-four hours post transfection, cells were lysed and luminescence was
measured. NLR values were calculated as described in Figure 1. Data are means ± s.d. n = two
technical replicates representative of two independent assays. * indicates outliers with a p < 0.01.
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3.3. The PB2RPB4 Interaction Domain Is Essential for the Virus Life Cycle

We next wished to probe the robustness and the biological relevance of the PB2/RPB4
interaction. Co-immunoprecipitation-western assays with epitope-tagged forms of RPB4
and of the PB2(36−247) construct allowed for further narrowing down the region of PB2
interacting with RPB4 while also demonstrating that the interaction resisted the relatively
stringent conditions characterizing these assays (150 mM NaCl, 1% Triton X-100; Figure 4B).
To further test the interaction under in vivo conditions, we carried out a second binary
complementation assay, with PB2 and RPB4, respectively, tagged with the N- and C-
moieties of the Venus fluorescent protein (Figure 4C). Co-transfection of these constructs
into HEK293T cells resulted in a strong nuclear fluorescence signal, establishing that PB2
can interact with RPB4 under these conditions while also illustrating that this interaction
occurs in the appropriate cellular compartment.

To investigate whether the PB2/RPB4 interaction was confirmed among different
influenza virus types, we also constructed a luciferase complementation assay with the PB2
of influenza B and C viruses. In this assay, the influenza B PB2(36−247) construct interacted
with RPB4 but not with any other Pol II subunit (nor with any of the unrelated target
proteins described above (Figure 4D)). Likewise, the influenza C construct was associated
with RPB4. However, it also yielded a signal with additional Pol II subunits, possibly due
to indirect interactions (Figure 4E). In this assay, this influenza C PB2 domains did not
display any interaction with the non-relevant control proteins.

To further map regions involved in the PB2/RPB4 interaction, we next expressed a
series of truncations of PB2-N. When tested in the split-luciferase system, several discrete
regions of the PB2 amino acids, stretching from amino acid 130 to 247, yielded a signal with
RPB4 (Figure 5). Reciprocally, truncations of RPB4 identified the N-ter moiety of this protein
(amino acids 1−72) as essential for the interaction (Figure 5C). Interestingly, when mapped
on the 3D-structures of FluPol and RPB4 [26,29], the protein regions identified in these two
sets of deletion mutants matched a series of helixes located at the surface on the two proteins
at a position highly compatible with an implication in protein–protein interactions.

Finally, to address the biological function of the PB2 (130−247) region, we engineered
a series of fourteen point-mutants on residues conserved among influenza A, B, and
C viruses (Figure 6A). The activity of these mutants was then assessed in two assays,
respectively measuring either the resultant of both replication and transcription (R+T) or
just transcription (T) (Figure 6B,C). In the latter assay, wild-type PA was replaced by a C95A
mutant, rendering FluPol defective for replication [22]. Both assays relied on a pPol1-WSN-
NA-firefly luciferase plasmid producing a viral RNA (vRNA) in which the coding sequence
of the NA gene was replaced by the firefly luciferase gene. This plasmid was transfected
into HEK-293T cells together with expression vectors for the appropriate PA construct, the
wild-type PB1 and NP constructs, and the various PB2 mutants. The luciferase enzymatic
activity measured in extracts of transfected cells and reflecting either R+T or T activities
dependent on the used PA construct (WT or C95A mutant), revealed that most of the PB2
mutations, with the exception of R144A and E188A, strongly decreased FluPol activity
in both assays. These observations indicate that this region of PB2 and its conserved
residues are critical for viral transcription (Figure 6C). Finally, to definitively establish the
importance of the PB2-N region in the virus cycle, we selected residues 115, 142, and 144 for
alanine substitution. Using plasmid-driven reverse genetics, we successfully recovered
virus mutants for each of these substitutions. While the R144A virus was found to replicate
at high titers (1.2 × 107 pfu/mL in cell culture medium after transfection), the Y115A and
the R142A mutants replicated poorly (6 × 104 pfu/mL), in accordance with the results
obtained in the replication/transcription assays.
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the PB2 domains (residues 108 to 194) of influenza A, B, and C viruses made with ESPript [30].
Strictly conserved residues are white on a red background, and partially conserved residues are
red. (B) Plasmids expressing NP, PB1, PA, and wild type or PB2 mutants were cotransfected in 293T
cells together with the reporter plasmid WSN-NA-firefly luciferase, allowing the quantification of
the polymerase activity. In panel (C), the same procedure than in (B) was used, except that the PA
C95A mutant deficient in replicase activity [15] was used instead of the wt PA subunit. Data are
mean ± n = four technical replicates representative of two independent assays.
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4. Discussion

The interaction between FluPol and the Pol II complex through the CTD of its RPB1
subunit has been well-established both functionally and structurally [9]. The interplay
between the two polymerases has been recognized to allow cap-snatching on nascent host
mRNAs then priming of the viral mRNA synthesis. However, the question concerning
whether the docking of FluPol to the nascent capped RNA relied solely on RBP1 or involved
additional protein-protein interactions had never been elucidated. In this study, we used
in vitro binary complementation assays to screen for auxiliary interactions between FluPol
and Pol II subunits. We found that, in addition to RPB1, FluPol associated with RPB4, one
of the twelve Pol II subunits, which is structurally connected to the core of Pol II via RPB7.
This interaction, which was confirmed in co-immunoprecipitation assays, was mapped
to the N-terminal third of PB2 and was found to be conserved among influenza B and C
subtypes. Together, these observations suggest a critical role for multiple FluPol-Pol II
interactions in the life cycle of IAVs.

The RPB4/RPB7 heterodimer forms a stalk-like protrusion from the Pol II core complex
below a mobile clamp domain, adjacent to the CTD of RPB1 and the RNA exit channel, a po-
sition with potential for interactions with multiple components such as CTD-bound factors
and modifying enzymes and emerging nascent RNAs [31–37]. In fact, the RPB4/RPB7 stalk
has been proposed to act as an additional landing platform for transcription-related factors,
some of which also interact with the CTD [38,39]. It is therefore tempting to speculate
that the binding of FluPol to RPB4 synergizes with the CTD-mediated interaction to target
nascent capped RNAs.

Despite low sequence similarity between the N-terminal third of PB2 among influenza
A, B and C viruses, these homologous domains were all found to interact with the RPB4
subunit. When mutating conserved residues in this domain, twelve of fourteen substitu-
tions deeply impacted the transcription activity of FluPol. This documented the functional
implication of the N-ter PB2 domain in reaching an efficient interaction with the host
transcription machinery. Therefore, we propose a model (Figure 7) in which FluPol first
targets Pol II via its PA-CTD interaction and then binds the RPB4 subunit via PB2 to edge
closer to the RNA exit tunnel of Pol II. This would bring the cap-binding domain of PB2 in
close proximity to nascent mRNAs, thereby allowing the cap-snatching by FluPol to occur.
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What could the time-line of the FluPol-RPB4/RPB7 dimer interaction be? Nascent
transcript capping occurs immediately after the emergence of the 5′-end triphosphate from
the RNA exit tunnel and is concomitant with promoter-proximal pausing of RNA Pol
II bound to NELF and DSIF [40,41]. Shortly after cap completion, the interaction of the
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cap-binding complex (CBC) with a NELF subunit correlates with its targeting to the paused
RNA Pol II complex and increases by 100–200-fold its affinity for the modified 5′ end
of the transcript. Since the CBC has an affinity for the cap structure that is higher than
that of FluPol, we propose that FluPol binding to Pol II via RPB1 CTD and RPB4/RPB7
interferes with CBC recruitment or with its access to nascent 5′-capped Pol II transcripts.
Alternatively, FluPol may inhibit the binding of NELF to Pol II or its association with CBC.
These hypotheses are currently under investigation and will allow for better understanding
of how FluPol efficiently controls capping of viral mRNAs.
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