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Abstract Recently, the efficient deployment of Wire-
less Sensor Networks (WSNs) has become a leading field
of research in WSN design optimization. Practical sce-
narios related to WSN deployment are often considered
as optimization models with multiple conflicting objec-
tives that are simultaneously enhanced. In the related
literature, it had been shown that moving from mono-
objective to multi-objective resolution of WSN deploy-
ment is beneficial. However, since the deployment of
real-world WSNs encompasses more than three objec-
tives, a multi-objective optimization may harm other
deployment criteria that are conflicting with the al-
ready considered ones. Thus, our aim is to go further,
explore the modeling and the resolution of WSN deploy-
ment in a many-objective (i.e., optimization with more
than three objectives) fashion and especially, exhibit its
added value. In this context, we first propose a many-
objective deployment model involving seven conflicting
objectives, and then we solve it using an adaptation of
the Decomposition-based Evolutionary Algorithm “θ-
DEA”. The developed adaptation is named “WSN-θ-
DEA” and is validated through a detailed experimental
study.
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1 Introduction

Being a key concept in advanced technologies that have
created new opportunities for supporting decision mak-
ing and improving quality of life, Wireless Sensor Net-
works (WSN) have been significantly an area of interest
for industries’ research [38,35,31,43]. The advances in
WSNs have contributed to the expansion and the de-
velopment of multiple technologies such as the Internet
of Things (IoT) and the Industrial Internet of Things
(IIoT). WSN refers to a group of spatially distributed
sensors for monitoring and recording the physical con-
ditions of the environment and organizing the collected
data in a central location [12]. Numerous domains have
benefited from the usage of WSNs, essentially the In-
dustry 4.0, smart cities, health and environmental mon-
itoring and so on.

Based on recent surveys [22,19], several problems re-
lated to WSNs could be modeled as optimization prob-
lems and then efficiently solved using metaheuristic al-
gorithms. It has been shown that these problems are
multi-objective or many-objective by nature as usu-
ally different conflicting criteria should be considered
simultaneously to come up with better solutions. Sev-
eral works have demonstrated the benefits of consid-
ering two or three objectives instead of a single one.
According to the above state-of-the-art survey papers,
there does not exist any work that considers the si-
multaneous optimization of more than three conflict-
ing objectives (seven for our case) for the deployment
task. The optimization of more than three objectives is
called many-objective optimization and is still so far, a
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very challenging research field [30]. The main original-
ity of our research work is to propose for the first time
a many-objective modeling and resolution of the WSN
deployment problem with the aim to show the added-
value that could be obtained by the simultaneous opti-
mization of seven conflicting objectives. From a resolu-
tion viewpoint, a decomposition-based many-objective
evolutionary algorithm, θ-DEA [45] was adapted and
then used to solve the proposed model. To achieve this
target, the existing optimization models of WSN de-
ployment have been reviewed by examining their objec-
tives and constraints. Second, the conflicting relation-
ship among the identified objectives have been studied,
by means of a conflicting matrix, to identify the objec-
tives that can be gathered into the same model. After
that and from a resolution viewpoint, a decomposition-
based many-objective evolutionary algorithm, θ-DEA
[45] was adapted and then used to solve the proposed
model. The research goals of this work are summarized
as follows:

– Proposing a many-objective optimization model
for WSN deployment: For the best of our knowl-
edge, this would be the first work proposing a many-
objective WSN deployment model. The model in-
cludes the optimization of seven conflicting objec-
tives. The resulting adaptation is named “WSN-θ-
DEA”. To achieve this target, the existing optimiza-
tion models of WSN deployment have been reviewed
by examining their objectives and constraints. Then,
the conflicting relationships between the identified
objectives have been studied, by means of a con-
flicting matrix, to identify the objectives that can
be gathered into the same model.

– Adapting an existing decomposition-based many-
objective evolutionary algorithm, θ-DEA [45]:
As traditional Multi-Objective Evolutionary Algo-
rithms (MOEAs) are unable to approximate the Pareto
Front (PF) of models with more than three ob-
jectives, we have chosen θ-DEA as a MaOEA to
solve our framed seven-objective deployment opti-
mization model. The algorithm is chosen according
to its ability to produce an efficient set of optimal
solutions using a decomposition-based strategy.

– Demonstrating the benefits of considering the
many-objective formulation and resolution over
multi-objective and single-objective models:
Results obtained from the optimization of mono-
and multi-objective models, considering a set of ob-
jectives already involved in the many-objective model,
are compared to results provided by “WSN-θ-DEA”.
The comparison demonstrates the out-performance
and the merits of our proposed many-objective mod-
eling and resolution approach.

Investigating the added value of the many-objective
optimization in the WSN deployment context consti-
tutes the principal purpose of our work. Hence, in this
work we have not introduced new objective equations
definitions and we emphasize that the majority of the
objective functions, the constraints are taken from lit-
erature.

This paper is structured as follows. A literature re-
view related to WSN deployment is provided in Section
2. The fundamentals and main concepts for an opti-
mization problem as well as for the θ-DEA algorithm
are presented in Section 3. In Section 4, we present our
proposed many-objective deployment model involving
seven objectives while illustrating the adaptation of θ-
DEA to our proposed model. Sections 5 and 6 illustrate
the experimental setup and the discussion of the ob-
tained results, respectively. The conclusion and future
work are presented in Section 7.

2 Related Works

Despite the existence of very recent optimization tech-
niques such as [2,34,1], in this section, we mainly fo-
cused on optimization techniques that have been pro-
posed to solve the fundamental issue in WSN designing;
which is the deployment problem. This specific problem
is also known as placement, layout, coverage or posi-
tioning problem in WSNs. WSN deployment encom-
passes the determination of positions for sensor nodes
in order to achieve intended coverage, connectivity and
energy efficiency while keeping the number of nodes as
minimum as possible [5]. Being similar to many real-
world design problems related to engineering, the de-
ployment problem is inherently characterized by the
presence of multiple objectives which may or not con-
flict with each other. A wide range of objectives can
be considered when dealing with the deployment of
WSNs such as network cost, coverage, connectivity, en-
ergy consumption, network lifetime, reliability, accu-
racy of measurements, fault tolerance, throughput and
so on [7].

Several works in literature treated the optimization
of WSN deployment as a mono-objective problem. Be-
sides, an important number of practical scenarios re-
lated to WSN deployment are modeled as a multi-objective
formulations where a set of desirable objectives are opti-
mized simultaneously. These objectives are usually con-
flicting with each other and the decision maker has to
choose one of the trade-off solutions. In this sense, we
depicted a number of works that considered the opti-
mization of WSN deployment problem with more than
one objective. As an important part of solving an op-
timization problem, several Multi-Objective Optimiza-
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tion (MOO) techniques have been customized to tackle
the WSN deployment problem and strike trade-offs be-
tween different optimization objectives. Evolutionary
Algorithms (EAs) have been the most frequently used
techniques in WSN deployment optimization. In [39]
a multi-objective evolutionary algorithm has been pro-
posed for solving sensor deployment problem. The pro-
posed approach has been used to optimize simultane-
ously coverage and connectivity. In [28], an evolutionary
multi-objective algorithm has been also used to opti-
mize the deployment of WSN while considering cover-
age, reliability and an average number of hops. Optimal
node redeployment has been investigated in [26] to max-
imize sensing, coverage and lifetime. The optimization
of coverage, energy efficiency and differentiated detec-
tion levels was addressed in [24], where authors have
proposed an evolutionary multi-objective approach in
a 3D area. In [23], a multi-objective genetic algorithm
was used to optimize coverage and network lifetime. A
multi-objective formulation was suggested in [11] for
the optimal deployment of WSN. The proposed ap-
proach obtained a trade-off between energy consump-
tion and detection capability.

Recent works such as [10,9,8,6,21] have been pro-
posed to tackle the WSN deployment problem from an
optimization perspective. In [10], authors proposed an
optimal three-objectives deployment method for prac-
tical heterogeneous WSNs which gives a deep insight
into the trade-off between the reliability and deploy-
ment cost. Specifically, they provide the optimal de-
ployment of sensor nodes to maximize the coverage de-
gree and connection degree, while minimizing the over-
all deployment cost. In [9], a multi-objective optimiza-
tion model named MLPGA is formulated to simulta-
neously satisfy three optimization objectives including
the longest network lifetime, the highest network con-
nectivity, and reliability. Under this model, the princi-
pal component analysis algorithm is adopted to elimi-
nate the various optimization objectives’ dependencies
and rank their importance levels. Considering the NP-
hardness of wireless network scheduling, the genetic al-
gorithm is used to identify the optimal chromosome for
designing a near-optimal clustering network topology.
Similarly, in [8], authors proposed to simultaneously
consider three objectives to be optimized which are se-
curity, lifetime, and coverage. The proposed approach
aims to deploy sensor nodes and relay nodes in an in-
dustrial environment to analyze the multi-path rout-
ing for enhancing security. In [6], a new approach we
called MOONGA (multi-objective wireless network op-
timization using the genetic algorithm) was proposed to
optimizing the problem of node placement. MOONGA
makes it possible to generate an optimal deployment

according to the topology, the environment, the spec-
ifications of different applications and the preferences
of the network designer users. Specifically, MOONGA
considers the simultaneous optimization of five objec-
tives only which are: the coverage, connectivity, life-
time, energy consumption and cost – which are closely
linked to the position of the nodes in the network. Also,
in [41], a non-dominated sorting multi-objective flower
pollination algorithm (NSMOFPA) was proposed with
optimization objectives for coverage rate, node radia-
tion overflow rate and energy consumption rate.

Although they are less frequently used in WSNs,
there are also other MOO techniques that have been
capable of achieving good performance in the WSN de-
ployment optimization context such as swarm intelligence-
based optimization algorithms, artificial neural network,
fuzzy logic, game theory and so on [19]. For instance,
authors in [32] considered a bi-objective energy-latency
model allowing the analysis and the comparison of dif-
ferent algorithms including uniform algorithm and clus-
ter algorithm. In [37], authors developed a multi-objective
particle swarm optimization and fuzzy based algorithm
to handle a model optimizing simultaneously coverage,
connectivity and network lifetime. Another multi-objective
model has been proposed in [27] where authors made
use of the multi-objective artificial ant colony algorithm
and the multi-objective firefly algorithm, and compared
the obtained results by applying each one of these in
addition to other EAs.

State-of-the-art works related to the WSNs opti-
mization prove that the trends are to consider prob-
lems with multiple objectives. This choice was not at
random but rather the advantages offered by the multi-
objective optimization compared to the mono-objective
one revealed that optimization with multiple objectives
is more suited when dealing with a real-world problem
in general. However, these state-of-the-art works either
fail to incorporate several specific application require-
ments into the performance evaluation or suffer from
limited objectives. Since the deployment of real-world
WSNs encompasses more than three objectives, a multi-
objective optimization may harm other deployment cri-
teria which are conflicting with the selected ones. Thus,
our aim is to go further and explore the modeling and
the resolution of WSN deployment in a many-objective
fashion by proposing our WSN-θ-DEA model.

The fundamentals and main concepts for an opti-
mization problem as well as for the θ-DEA algorithm
are presented in the next Section.
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3 Formulation of optimization problem and the
θ-DEA model

The optimization with multiple objectives deals with
problems involving more than one objective function.
Depending on the number of objectives, the process
of optimizing simultaneously a collection of objective
functions can take different names. If only two or three
objective functions are dealt with then we refer to a
Multi-Objective Optimization (MOO) problem. If there
are more than three objective functions then we refer
to a Many-Objective Optimization (MaOO) problem.

3.1 Multi-objective problem general formalization

The general Multi-Objective Problem (MOP) formal-
ization consists of a minimization or a maximization
function under a finite number of constraints that must
be satisfied. The general formalization of a multi-objective
minimization problem can be described as follows [17]:

minimize f(x) = [f1(x), f2(x), . . . , fM (x)]T

subject to gi(x) ≥ 0, j = {1, . . . , P};
gk(x) ≥ 0, k = {1, . . . , Q};

xL
i ≤ xi ≤ xU

i , i = {1, . . . , n}.

(1)

where M is the number of objective functions. In
the case of a MOP, a solution x is a vector of n deci-
sion variables. The first subset of constraints (P con-
straints) corresponds to the inequality constraints, the
second subset of constraints (Q constraints) represents
the equality constraints, and the last subset of con-
straints adjusts the lower and upper bound of each de-
cision variable which are called variable bounds. A fea-
sible solution x should, imperatively, satisfy the (P+Q)
constraints and the N bound constraints. On the other
hand, any solution that does not satisfy the entire set of
constraints is considered as an infeasible solution. Based
on the duality principle, we can convert a minimization
problem into a maximization one by multiplying each
objective function by (-1) and transform the constraints
accordingly. Since the resolution of a MOP yields to a
set of Pareto optimal solutions called non-dominated
solutions, the resolution algorithms make use of the con-
cept of dominance. Hence, in the following, we define
the dominance principle and some related terms [14]:

– Definition 1.1 - (Pareto optimality) A solution
x∗ ∈ Ω is optimal if ∀ x ∈ Ω; where Ω denotes the
feasible search space; and I = {1, . . . ,M}; either
∀m ∈ I, we have fm(x) = fm(x∗) or there is at least
one m ∈ I such that fm(x) > fm(x∗). A solution x∗

is Pareto optimal only if no other solution x exists
which would improve at least one objective while
other objectives values remain the same as values
proposed by x∗.

– Definition 1.2 - (Pareto dominance) A solution
u = (u1, . . . , un) is said to dominance another solu-
tion v = {v1, . . . , vn} if and only if f(u) < f(v).
In other words ∀I ∈ {1, . . . ,M}, we have fm(u) ≤
fm(v) and ∃m ∈ {1, . . . ,M} where fm(u) < fm(v).

– Definition 1.3 - (Pareto optimal set) For a
given MOP f(x), the Pareto optimal set is P ∗ =

x ∈ Ω | ∄x′ ∈ Ω, f(x′) ≤ f(x).
– Definition 1.4 - (Pareto optimal front) For a

given MOP f(x) and its Pareto optimal set P ∗, the
Pareto optimal front is PF ∗ = f(x), x ∈ P ∗

– Definition 1.5 - (Ideal point) The ideal point
ZI = {ZI

1 , . . . , Z
I
M} is the vector composed by the

best objective values over the search space Ω. The
ideal objective vector is expressed by:

ZI
M = minx∈Ωfm(x),m ∈ {1, . . . ,M}

– Definition 1.6 - (Nadir point) The nadir point
ZN = {ZN

1 , . . . , ZN
M} is the vector composed by the

worst objective values over the Pareto optimal set.
The nadir objective vector is expressed by:

ZN
M = maxx∈P∗fm(x),m ∈ {1, . . . ,M}

3.2 θ-DEA : Theta-Decomposition-based Evolutionary
Algorithm

3.2.1 Context

Since the early stage of MOO, different techniques have
been used to deal with the resolution of a MOP. A gen-
eral process of the traditional MOO is characterized by
the aggregation of the set of objective functions into
a single function. The whole trade-off is then discov-
ered by repeating the process several times with dif-
ferent settings’ calibrations. Since the decision maker
is responsible of the choice of the aggregative weights,
the main drawback to this approach is that, weights
are difficult to determine precisely due to insufficient
information or knowledge concerning the optimization
problem. Other methods have also been used such as
the use of penalty functions [40]. Although aggrega-
tive and penalty function-based methods offer advan-
tages, they often have some disadvantages especially
when some critical parameters are chosen by the de-
cision maker. The Multi-Objectives (MO) evolutionary
algorithms propose a more suitable alternative to solve
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a MO problem mainly because of their wide applicabil-
ity and their ease of use. Unlike the above mentioned
methods, the Multi-Objective Evolutionary Algorithms
(MOEAs) are able to approximate the whole Pareto
front in one single run.

According to the dominance criteria, the MOEAs
could be classified into two classes: the non-Pareto-
based EAs such as the Non-dominated Sorting Genetic
Algorithm (NSGA-II) [17], the Strength Pareto Evolu-
tionary Algorithm 2 (SPEA2) [48], and the Indicator
Based Evolutionary Algorithm (IBEA) [47], and the
Pareto-based ones. The main difference between these
two classes is that the Pareto-based EAs are founded
on the dominance principle.

Most of the algorithms that have been widely used
in multi-objective optimization use the Pareto-dominance
relation to compare solutions. However, when the num-
ber of objectives is greater than three, these algorithms
struggle to solve the concerned problems. Thus, although
the above mentioned algorithms are suitable for the res-
olution of problems with small number of objectives,
good results are not guaranteed when dealing with many-
objective problems (i.e., more than three objectives).
One of the most used methods to encounter a MaOP
are the decomposition-based algorithms. Decomposi-
tion is one of the basic strategies used in both of the
multi-objective and many- objective optimizations. A
decomposition-based method decomposes the problem
into N sub-problems to deal with the problems com-
plexity. Among the mos commonly used decomposition-
based algorithms, we name the Multi-Objective Evolu-
tionary Algorithm based on Decomposition (MOEA/D)
[46], the Non-dominated Sorting Genetic Algorithm III
(NSGA-III) [16], and the Theta-Decomposition-based
Evolutionary Algorithm (θ-DEA) [45]. In what follows,
we mainly focus on the description of of θ-DEA as it
presents the key component of our proposed WSN-θ-
DEA solution.

3.2.2 The θ-DEA model

θ-DEA is a new evolutionary algorithm which is based
on a new dominance relation for many-objective opti-
mization and it was proposed in [45]. θ-DEA, the non-
dominated sorting technique is employed to rank so-
lutions in the environmental selection phase, ensuring
both convergence and diversity. The framework of θ-
DEA is presented in Algorithm 1.

First, θ-DEA begins by generating a set of N refer-
ence points which can be denoted as λ = {λ1, . . . , λN}.
For a m-objective problem, λj ; (j ∈ {1,. . . , N}) is a m-
dimensional vector presented by: λj = {λj,1, . . . , λj,m}T ,
where λj,k ≥ 0, k = {1,. . . ,m}, and

∑m
k=1 λj,k = 1. Af-

Algorithm 1 θ-Decomposition-based Evolutionary Al-
gorithm

Generate reference points λ;
Generate randomly the initial population P0;
Initialize the ideal point z∗;
Initialize the Nadir point znad ;
Set the number of iterations t to zero ;
while the termination criterion is not met do

Perform the recombination operators to Pt and create
an offspring population Qt;

Fill Rt with individuals from Qt and Pt

Sort Rt according to the Pareto dominance relation and
fill St with the non-dominated levels ;

Compare solutions within St to z∗ and update the ideal
point

Assisted by z∗ and znad, normalize St

St members are clustered in C clusters according to
reference points λ;

Using the θ-non-dominated sorting,St members are
classified into F ′

1, F ′
2,. . . levels

Initialize an empty population Pt+1

Set i to 1;
while | Pt+1 | + | F ′

i |< N do
Fill Pt+1 slots with F ′

i individuals;
Increment i by 1 ;

Perform a random sort to F ′
i ;

Fill the remaining Pt+1 slots with F ′
i individuals

Increment t by 1 ;

ter that, an initial population P0 is randomly generated.
The ideal point z∗ is also initialized in step 3. Since it
is often very time consuming to compute exact z∗i , it
is indeed estimated by the minimum value found so far
for objective fi, and is updated during the search. In
step 4, the Nadir point znad is assigned to the largest
fitness value in the initial parent population, and it is
also updated in the normalization procedure.

Step 6 is iterated until a stopping criterion is satis-
fied. At each iteration, Qt is generated by performing
the recombination operator to Pt. Same as NSGA-III,
θ-DEA combines the offspring population Qt and Pt

to form a new population Rt. Rt is then sorted ac-
cording to the Pareto dominance relation and mem-
bers of the best non-dominated fronts are sorted in St.⋃τ

i=1 Fi where Fi is the ith Pareto non-dominated front
of Rt and τ satisfies

∑τ−1
i=1 < N . Assisted by z∗ and

znad, the normalization procedure is executed to St for
solving problems having the Pareto front whose objec-
tive values may be disparately scaled. After normal-
ization, members of St are clustered into N clusters
C = {C1, . . . , CN} according to reference points ini-
tially generated, .i.e., the cluster Cj is associated to
reference point λj . After that, the θ-domination sort-
ing, which is the key concept in θ-DEA, is employed
to classify St members into different θ-non-dominated
levels F ′

1, F ′
2, . . .. And finally, Pt+1 slots are
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filled using one level at a time, starting from F1.
In the case where the size of the last accepted level
exceeds the remaining slots in Pt+1, θ-DEA randomly
selects solutions, since θ-dominance has stressed both
convergence and diversity.

The proposed θ-dominance is defined on population
St with the supply of a set of reference points λ. Each
solution in St is associated with a cluster among a set
of clusters C by the clustering operator. Let:

Fj(x) = dj,1(x) + θdj,2(x), j ∈ 1, . . . , N

where θ is a predefined penalty parameter. The dis-
tances dj,1 and dj,2 are both computed in the normal-
ized objective space.

Generally, dj,2 = 0 ensures that f(x) is always in L,
resulting in perfect diversity, and smaller dj,1(x) value
under the condition dj,2 = 0 means better convergence.
Note that there is no competitive relationship between
clusters in θ-dominance, and thus, different θ values can
be used in different clusters. Figure 3 illustrates the
distances dj,1 and dj,2. The computational complexity
of the model was discussed in [45].

4 Many-objective modeling and resolution

4.1 System modeling

Given a square area A(x, y), a set N = {n1, n2, . . . , nN}
of nodes which are randomly deployed to cover the
whole area, and a High Energy Communication Node
(HECN) placed at the center of A, nodes are responsi-
ble for monitoring and periodically reporting an event
of interest to the HECN. We consider a cluster-based ar-
chitecture network which states that a node may either
operate as a Cluster-Head (CH) allowing the commu-
nication with the HECN or it may operate as a sens-
ing node. Two modes of sensing nodes are considered:
Sensors operating in a High-Signal Range (HSR) and
Low-Signal Range (LSR) modes. Let us consider each
sensor is equipped with an initial Energy E and having
a sensing range RS , where RS of the nodes operating
in HSR mode is greater than RS of nodes operating
in LSR mode, and a communication range RC . Each
sensing node must be able to communicate through its
corresponding cluster-head with the HECN. Two nodes
can communicate only if the distance between the two
nodes is less than RC .

Let us suppose that A is divided into G = x×y rect-
angular grids of identical size. All cells within a sensor’s
sensing disk Π(RS)

2 centered at the sensor are con-
sidered to be covered by the sensor. This modeling of
the system is illustrated in Figure 1 and is inspired by

the modeling of systems described in [25] and [20]. To
present a comprehensive definition of the WSN-θ-DEA
model, in what follows, we define the adopted objec-
tives and present the considered assumptions related to
each objective.

Table 1 gives a summary of the used symbols in
the description of the seven-objective WSN deployment
model.

4.2 Adopted objectives

The goal of our work is to investigate, for the first time,
the added value of the seven-objective optimization of
WSN deployment while reproducing some of the exist-
ing objectives and constraints equations given in liter-
ature. Hence, in this work, we have not introduced new
objective equations definitions and we emphasize that
the majority of the objective functions, the constraints
are taken from literature in order to reconcile the ex-
isting works tackling the same optimization problem.

The WSN-θ-DEA model considers seven conflicting
objectives, namely, the number of clusters, the number
of HSR nodes, the number of LSR nodes, the cover-
age, the network connectivity, the energy consumption
and the throughput. In what follows, we provide the
definition and the mathematical expression of each ob-
jective. First, the installation of an additional node in-
creases the overall network cost since each node imposes
a certain cost, including its production, deployment and
maintenance [19]. Hence, the minimization of the num-
ber of nodes generates a significant decrease of the net-
work cost as the deployment of a node is supposed to
be highly expensive. As three types of nodes are con-
sidered in our model, i.e., cluster heads, HSR and LSR
nodes, different costs are assigned to each type of nodes
depending on the operating mode. The placement of a
node operating in CH mode is supposed to be more ex-
pensive than the deployment of a sensor operating in
HSR mode. Meanwhile, the placement of the latter is
supposed to be more expensive than the deployment
of a node operating in LSR mode. The objective of
minimizing the number of nodes is divided into three
sub-objectives since they may be conflicting with each
other. These objectives are the number of clusters, the
number of HSR nodes, and the number of LSR nodes. In
addition, our WSN-θ-DEA model considers the cover-
age, the network connectivity, the energy consumption
and the throughput objectives; all described as follows:

4.2.1 Number of clusters

The minimization of the number of clusters intuitively
leads to the minimization of the number of nodes op-
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Fig. 1 System illustration

erating in CH mode. Given nch the number of clusters
in the network, the number of clusters minimization is
expressed as:

min : nch (2)

4.2.2 Number of HSR nodes

Nodes operating in HSR mode are sensing nodes with
a high signal range covering a greater region than LSR
nodes. Given nhs the number of HSR nodes, the objec-
tive of the minimization of nhs is expressed as:

min : nhs (3)

4.2.3 Number of LSR nodes

Given nls the number of nodes operating in LSR mode,
nls is minimized:

min : nls (4)

4.2.4 Coverage

Since region A is divided into G identical cells, the ob-
jective is to minimize the number of uncovered grids.
Let (xi, yi) be the coordinates of node i. The network
coverage Cv(x) is defined as the percentage of uncov-
ered cells over the total cells of A and it is evaluated as
follows [25]:

min : Cv(x) =

∑x
x′=0

∑y
y′=0 g(x

′, y′)

x× y
(5)

where x×y is the total number of grids of A and g(x′, y′)

is defined by the following expression:

g(x′, y′) =

{
1, if ∀i ∈ {1, . . . , N}, d(xi,yi),(x′,y′) > RS

0, otherwise.

d(xi, yi), (x
′, y′) is the distance separating node i from

node with coordinates (x′, y′).

4.2.5 Network connectivity

Ensuring the connectivity of the network encompasses
two major aspects. First, each cluster-head should not
have more than a maximum predefined number of sens-
ing nodes in its cluster, and second, each sensing node
should be within a cluster and is capable to commu-
nicate with its cluster-head. Therefore, authors in [20]
distinguished two related connectivity parameters:
– Sensor-per-Cluster-head Error (SCE): This param-

eter is used to ensure that each cluster-head does
not exceed the fixed number M of nodes within its
cluster. If nfull is the number of cluster-heads that
have more than M sensors in their clusters and ni

is the number of sensors in cluster i, then [20]:

SCE =

{∑nfull
i=1 ni

nfull , if nfull > 0

0 otherwise.
(6)

– Sensors-Out-of-Range Error (SORE): This param-
eter is considered to ensure that sensing nodes are
affected to clusters and it computes the percentage
of unaffected sensors. If nini is the number of clus-
ters supporting node i (nini ∈ [0, 1]) and n is the
number of sensing nodes, then [20]:

SORE =
n−

∑n
i=1 nini

n
(7)
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Table 1 Nomenclature of the system modeling symbols

Symbol Description

A(x, y)
Square area of x∗y grids to be covered by the
network

N Number of deployed sensors in the area

HECN High energy communication node

CH Node operating in a cluster-head mode

LSR Sensor operating in a low sensing range mode

HSR Sensor operating in a high sensing range mode

E Initial energy for each node

Rc Communication range of a sensor

Rs Sensing range of a sensor

RSH Sensing range of a high sensing range sensor

RSL Sensing range of a low sensing range sensor

nch
Number of cluster-head nodes within the net-
work

nhs
Number of high sensing range nodes within
the network

nls
Number of low sensing range nodes within the
network

M Maximum cluster size

Cv(x) Percentage of uncovered cells of the area

d(xi, yi), (xj , yj) Distance separating nodes i and j

SCE Sensor-per-cluster-head error

SORE Sensors-out-of-range error

nini Number of clusters supporting node i

nfull
Number of clusters exceeding cluster’s maxi-
mum size (M)

OE
Operational energy of nodes within the net-
work

CE
Communication energy of nodes within the
network

Econsumed
Total energy consumed by nodes within the
network

T Throughput of the network

NC
Abbreviation for the number of clusters objec-
tive

NH
Abbreviation for the number of HSR nodes
objective

NL
Abbreviation for the number of LSR nodes ob-
jective

CV Abbreviation for the coverage objective

EC
Abbreviation for the energy consumption ob-
jective

CN Abbreviation for the connectivity objective

TH
Abbreviation for the throughput objective
(1/T )

Accordingly, considering that the SCE and SORE pa-
rameters are of the same importance, the connectivity
objective is expressed as follows:

min : SCE + SORE (8)

4.2.6 Energy consumption

The energy consumption metric is closely related to the
network lifetime. Authors in [20] considered two types
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of energies consumed by an operating sensor, namely
the Operational Energy (OE) and the Communication
Energy (CE). OE is defined as the required energy by
a node to insure its activity. The amount of consumed
OE per node varies depending on the operation mode
of the node. Considering the relevance factors for en-
ergy consumption of the different operation modes, we
assume that during a specific time duration the energy
consumed by a CH node is 10 times more than the en-
ergy consumed by a HSR node and 20 times more than
the energy consumed by a LSR node. Hence, given nch,
nhs and nls the numbers of CH nodes, HSR nodes and
LSR nodes, respectively, the OE is expressed as [20]:

OE = 20× nch

n
+ 2× nhs

n
+

nls

n
(9)

Besides, CE is calculated based on the distances sep-
arating sensing nodes and their corresponding cluster-
heads. It is defined as the energy consumed by the com-
munication between network nodes. The expression of
the CE is given as [20]

CE =

c∑
i=1

ni∑
j=1

µ× dkij (10)

where c is the number of CH, ni is the number of
sensing nodes belonging to the ith cluster, dij is the Eu-
clidean distance between sensor j and its cluster-head,
and µ, k are constants. The minimization objective of
the overall energy consumed by the network can, thus,
be expressed as:

min : Econsumed = OE + CE (11)

4.2.7 Throughput

The general definition of the throughput of a network is
the data size transmitted from a source to a sink node
within a unit time and can be expressed as: T = i

t where
T is the throughput, i is the size of transmitted data
and t is the amount of time. Authors in [42] considered
the optimization of throughput in a single-hop scenario.
Let Ti be the throughput achieved by node i in N , Ti

is expressed then as:

Ti = ii ×
ti∑

j∈N tj
= ii × θi (12)

Intuitively, the throughput is calculated according to
the data rate ii and the time fraction during which node
i occupied the transmission channel θi. We consider
the fairness allocation of the transmission channel time
which is achieved when the fractions of times used by
the nodes are equal [42], i.e., θ1 = θ2 = θ3 = ... = θN .

The size of transmitted data depends on the source
node operation mode. Nodes operating in CH mode
have much important size of data than HSR and LSR
nodes, to relay to the HECN node, as it collects data
from a set of nodes. Furthermore, HSR nodes have a
greater size of data to transmit than LSR nodes since
they cover a bigger area. Let us suppose that an LSR
node recovers 70% of the data size captured by an HSR
node.

In our work, we consider fixed throughput for these
two operating modes: 100 and 70, for HSR and LSR
modes, respectively. Besides, a node operating in CH
mode receives the data from nodes belonging to its clus-
ter. The throughput value of a CH is supposed to be the
sum of throughput values of its cluster members. Given
thj the throughput of node j, the throughput objective
is the following:

max : T = 100× nhs+ 70× nls+

nch∑
i=1

n∑
j=1

thj (13)

where n is the number of sensors within cluster i and:

thj =


100, if sensor j is a HSR node
70, if sensor j is a LSR node
0, Otherwise.

Since the proposed optimization model is expressed as a
minimization problem, all the objective functions should
be formulated as minimization equations. Hence, the
throughput objective should be converted into a mini-
mization one.

min : TH =
1

T
(14)

4.3 Adaptation of θ-DEA

4.3.1 Adopted solution encoding

As a solution of the optimisation of our model provides
a deployment schema of all the nodes within the net-
work, a solution must include all the information about
the N nodes locations and how they are split in clus-
ters. Hence, a candidate solution X consists of N items
corresponding to the N sensor nodes. The ith item of X
has three parts: a part representing the position coordi-
nates (xi, yi) of node i, the second one representing the
operating mode of the sensor, i.e., CH, HSR and LSR
nodes represented respectively by 1, 2 and 3, and a third
part containing the coordinates of the corresponding
cluster-head (if the ith node is already a cluster-head,
or a sensing node that is not supported by any cluster,
the coordinates of the corresponding CH takes (0, 0)).
Figure 2 visualizes the structure of an individual.
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Fig. 2 Solution encoding

4.3.2 Solution evaluation

Being the key concept in θ-DEA, the θ-dominance is
used to evaluate solutions while insuring both conver-
gence and diversity. The proposed θ-dominance is de-
fined on the population with the supply of a set of ref-
erence points.

In our model, the objective values are disparately
scaled and that can present an issue in the optimization
process. θ-DEA incorporates the normalization proce-
dure to settle this issue. The set of ideal points {z∗1 , z∗2 , ..., z∗7}
and Nadir points {zNad

1 , zNad
2 , ..., zNad

7 } found so far are
used for normalization purpose. Each objective is ex-
pressed as:

f̄i(x) =
fi(x)− z∗i
zNad
i − z∗i

(15)

where f̄i(x) is the normalized value of the ith objective
for solution x. Once the objective space is normalized,
where the ideal point is the origin, the clustering op-
erator is performed to the population. Supposing L is
the line passing through the origin with the direction
λj , and u is the projection of f̄(x) on L. Let dj,1(x) be
the distance between the origin and u and dj,2(x) be
the perpendicular distance between f̄(x) and L. These
two distances are illustrated in Figure 3.

In the clustering phase, only dj,2(x) is involved, by
assigning a solution x to cluster Cj (being tied to ref-
erence point λj) with the minimum dj,2(x) value. Once
each member of the population is associated to a cluster
Cj , members of the jth cluster are evaluated by:

Fj(x) = dj,1(x) + θdj,2(x), j ∈ {1, 2, ..., N} (16)

where θ is a predefined penalty parameter. The dis-
tances dj,1 and dj,2 are computed in the normalized ob-
jective space. Having dj,2(x) = 0 generally ensures that
f(x) is always in L, resulting in perfect diversity, and
a smaller dj,1(x) value under the condition dj,2(x) = 0

Fig. 3 Illustration of distances dj,1 and dj,2 [45]

means better convergence. Note that there is no com-
petitive relationship between clusters in θ-dominance,
and thus, different θ values can be used in different
clusters. Figure 3 illustrates the distances dj,1 and dj,2.

4.3.3 Solution variation operators

The selection of solution variation operators is often
delicate in many-objective optimization, since in high-
dimensional objective space, distant solutions may be
selected for recombination and poorer performance so-
lutions will be probably obtained. Originally, θ-DEA
was proposed to solve continuous multi-objective prob-
lems. Thus, it varies the population (set of real-encoded
chromosomes) using the Simulated Binary Crossover
(SBX) and the polynomial mutation operators [15]. Since
in our work, each chromosome is encoded as in integer
vector, both variation operators need to be sophisti-
cally adapted for the following three reasons. First, a
candidate solution proposes a possible deployment of
N nodes. Each node is presented with 5 serial deci-
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sion variables: node’s coordinates (xi, yi), its operat-
ing mode, and the coordinates of its corresponding CH
(xj , yj). Second, the considered decision variables are
adjusted with different lower and upper bounds. Fi-
nally, a sensing node may have reference to its corre-
sponding CH. Hence, we consider a two-point crossover
and a uniform mutation as explained below.

– Two-point crossover: In standard two-point crossover,
two parents and two crossover points are chosen ran-
domly in a way that each parent is divided into
three parts separated at the crossover points’ in-
dexes. Then, each solution of the two offspring so-
lutions takes one part from a parent and two parts
from the other parent. In our case, related decision
variables should be preserved together. To do so,
initial solutions are sorted by clusters, i.e., sensors
are presented cluster by cluster and sensing nodes
which are not affected to a cluster will be residing
in the last positions. Given two parents, for each
solution the possible crossover points are detected.
Possible crossover positions are points which des-
ignate the end of a cluster and the beginning of a
new cluster, the separation between a cluster and
an unaffected sensor, or the separation between two
unaffected sensors. After that, a list of the common
crossover points of the two solutions is extracted and
two random points from the list are chosen. Then,
the crossover is performed.

– Mutation: In this phase, a random node is selected
and one of the two possible actions is performed:
The first one consists in changing the operating mode
of the selected node (Only nodes operating in CH
mode which contains other sensors within their clus-
ters are excluded). The second action consists in the
assignment of an unaffected sensing node to an ex-
isting cluster-head, if possible.

– Repair mechanism: At each phase of the solutions
variation, a repair mechanism is used to ensure off-
spring solutions feasibility, if needed. First, once the
crossover is performed, solutions feasibility is as-
certained, i.e., if there exist redundant locations of
the sensors caused by the crossover, redundancy is
removed by assigning new locations to redundant
nodes. Second, after each mutation action, the solu-
tion is resorted by clusters.

5 Experimental Setup

The main objective of this experimental study is to
prove that considering a many-objective deployment
model offers a much favorable deployment of the WSN
compared to mono- and multi-objective models with

respect to the overall trade-off between the considered
objectives. Accordingly, optimization results of different
models, with different dimensions, are compared to the
results obtained by our proposed model. Thus, for each
couple of models (WSN-θ-DEA and another model), we
look for the answers to the following questions:

– Is the WSN-θ-DEA able to reach optimized objec-
tives values proposed by the confronted model?

– Is the WSN-θ-DEA proposing a better trade-off be-
tween all considered objectives?

In this section, we will present the Benchmark of Data
and explain the considered experimental comparison
protocol.

5.1 System implementation

The model was implemented using a java-based frame-
work for multiple objectives optimization with meta-
heuristics: jMetal 1. jMetal includes a number of clas-
sic and modern multiple objectives optimization algo-
rithms, a rich set of test problems, and a set of well-
known quality indicators to assess the performance of
the algorithms. Compared to other existing libraries,
jMetal framework offers good usability, components con-
figurability, and extendability.

5.2 Data set

To ensure fairness of comparisons, the WSN related
configuration parameters are set to take the same val-
ues for the experiments namely, the number of deployed
nodes N , the area size (total number of grids) x × y,
the communication range RC , the sensing ranges RSH

and RSL, and the maximum cluster size M . Table 2
provides the common WSN system parameters for the
conducted experiments and Figure 4 shows an illustra-
tive example.

Table 2 WSN benchmark description

Parameters Values

Number of nodes (N) 20

Area size (x× y) 100× 100

Communication range (RC) 25

High sensing range (RSH) 20

Low sensing range (RSL) 16

Maximum cluster size (M) 2

1 http://jmetal.sourceforge.net/

http://jmetal.sourceforge.net/
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Fig. 4 Illustrative example of WSN-θ-DEA system parame-
ters

On the other hand, θ-DEA related parameters should
be also set to take the same values for all experiments.
We note that the termination criterion refers to the
number of solution evaluations performed during the
optimization process. Table 3 shows the θ-DEA related
parameter settings.

Table 3 θ-DEA parameters setting

Parameters Values

Termination criterion 150 000 evaluations
θ 5.0

Parent selection Binary tournament
Crossover probability 0.9

Mutation probability 0.1

The population size cannot be arbitrary specified
for θ-DEA since the size is controlled by the positive
integers H1 and H2 which are considered to set the
number of divisions along each objective axis. H1, H2,
and the population size values are reported in Table 4
for each optimization problem size.

Table 4 Number of reference points and population size set-
ting

No. of objectives Divisions Population size
(m) (H1, H2) (S)

2 (249, 0) 250

3 (25, 0) 351

7 (5, 4) 672

5.3 Experimental comparison protocol

Through each experiment, we aim to compare WSN-θ-
DEA and a confronted model considering a subset of
the seven objectives. We recall that the experiments
purpose is to prove that conducting an optimization of
a WSN deployment problem in a many-objective man-
ner is better than mono- and multi-objective manners.
Thus, we selected the three models represented in Table
5 below to put in competition with WSN-θ-DEA. The
experiment results are presented in the next Section.

The comparison of the models effectiveness is based
on the objective values provided by optimal solutions,
i.e., the best solution is the one optimizing the largest
number of objectives. Hence, as only a subset of the
seven objectives are incorporated in these models, the
remaining objective values of an optimal solution (pro-
vided by one of the above models) are calculated based
on the proposed deployment schema supplied by the
solution. The optimization of these models is also con-
ducted by θ-DEA by modifying the reference points
depending on the model size as presented in Table 4.
Once the optimization of the WSN-θ-DEA model is
performed, we consider at each experiment the opti-
mization of a chosen confronted model. The considered
experimental comparison protocol is presented below:

1. Perform the confronted model optimization:
At each experiment, the confronted model is opti-
mized and the obtained Pareto front is illustrated.

2. Select the knee point: In the case where the con-
fronted model is a mono-objective one, the opti-
mal solution is considered. Besides, for the multi-
objective models, the optimal solutions belonging to
the approximated Pareto front are considered. After
that, the knee point is selected. For example, in a
bi-objective space, as defined in [13], the knee point
of the Pareto front corresponds to the farthest solu-
tion from the extreme line L∗. The extreme line is
the line defined by the extreme solutions s∗1 and s∗2
(i.e., solutions having minimal objectives’ values).
Fig. 5 illustrates the knee point for a convex Pareto
front.
Multiple methods for knee point recognition, sup-
porting a high dimensional space, are proposed in
literature [4]. We used a recently proposed trade-
off worth metric defined in [36]. The trade-off worth
metric characterizes two non-dominated objective
vectors and can be defined as the net gain of im-
provement in some objective subset by the accom-
panying deterioration in some other criteria as a re-
sult of substituting an objective vector with another
non-dominated one. The expression of the trade-off
information for a pair of optimal solutions is given
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Table 5 Peer models

Confronted model NC NH NL CV EC CN TH

Coverage model ⋆

EC-TH model ⋆ ⋆

NH-NL-CV model ⋆ ⋆ ⋆

Fig. 5 Illustration of the Knee point for a convex Pareto
front [4]

by [4]:

T (xi, xj) =

∑M
m=1 max[0,

fm(xj)−fm(xi)
fmax
m −fmin

m
]∑M

m=1 max[0,
fm(xi)−fm(xj)
fmax
m −fmin

m
]

(17)

where fm(xi) corresponds to the mth objective value
of solution xi and fmax

m , fmin
m are the maximal and

minimal values of the mth objective in the popula-
tion individuals, respectively. In the above equation,
normalization is performed in order to prevent some
objectives being predominant over others. The nu-
merator and the denominator express, respectively,
the aggregated improvement gained by substituting
xj with xi and the deterioration generated by this
substitution. Based on this equation, the following
expression is used to compute the worth of a solu-
tion xi, in terms of trade-off, relative to the set of
Pareto front solutions S [36]:

µ(xi, S) = min
xj∈S,xi⊀xj ,xj⊀xi

T (xi, xj) (18)

where xj denotes solutions belonging to the set of
non-dominated solutions S. The quantity µ(xi, S)

expresses the least amount of improvement per unit
deterioration by substituting any alternative xj from
S with xi. Solutions residing in convex knee regions
have the highest values in terms of the trade-off met-
ric µ. Based on this, we select the solution having
the highest µ value.

3. Extract the set of nearest WSN-θ-DEA so-
lutions: The set of the closest solutions from the
WSN-θ-DEA front to the knee solution (optimal so-
lution in mono-objective case) are extracted using
the Euclidean distance based on the 1, 2 or 3 ob-
jectives considered in the confronted model. This
approach is explained by the following illustrative
example: Let us consider an optimization problem
minimizing A, B, C and D objectives. The four ob-
jectives’ values are supposed to be between 0 and 10

with 0 is the optimal value and 10 is the worth value
for all the objectives. We suppose a model optimiz-
ing only the first objective A. x1 is supposed to be
the optimal solution involved by the optimization of
this model. The set of solutions x′

i, i = {1, . . . , 5},
illustrated in Table 6, presents the solutions pro-
vided by the optimization of the model considering
the four objectives.

Table 6 Illustrative example of the set of solutions selection

A B C D ED

x1 0 8 6 7

x′
1 0 8 9 8 0

x′
2 1 6 7 5 1

x′
3 1 5 2 5 1

x′
4 6 5 9 7 6

x′
5 8 3 6 7 8

The Euclidean Distance (ED) is computed based
on the A objective. Only solutions x′

1, x′
2 and x′

3

are extracted to form the set of the closest solutions
since they are too close to x1 in terms of A objective.

4. Select the most relevant WSN-θ-DEA solu-
tion(s): Depending on the alternatives proposed by
the set of extracted solutions, one or more relevant
solutions are selected to be compared with the opti-
mal solution provided by the confronted model. We
reconsider the illustrative example presented in the
previous step and the solutions illustrated in Table
6. The aim is to select a close solution to x1 with re-
spect to objective A and with the intention to have
the best trade-off between all the objectives, i.e, the
best solution being as close as possible to solution
x1 and having a better B, C and D objectives’ val-
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ues. Although x′
1 has the same A and B values, it

deteriorates the remaining objectives. x′
2 proposes

a small deterioration in objective A and only the
improvement of B and D objectives. Besides, x′

3 is
considered to be the best close solution found as it
fulfills the two aforementioned conditions: a close
A value and the improvement of all the remaining
objectives.

5. Compare the couple of solutions: The optimal
solution provided by the mono or multi-objective
model is compared to the selected WSN-θ-DEA so-
lution according to the overall objectives’ values pro-
posed by these two solutions.

We note that as the number of clusters, the number
of HSR nodes, and the number of LSR nodes are tied
to the overall network cost and the sum of these objec-
tives refers to the total number of nodes, these three
objectives will be gathered in one objective for com-
parison purposes. Let us consider the overall network
cost objective as one of the compared objectives which
replaces the aforementioned objectives. We recall that
nch, nhs, and nls refer to the number of clusters, the
number of HSR nodes, and the number of LSR nodes,
respectively. The cost objective is:

Cost = 4× nch+ 2× nhs+ 1× nls (19)

According to Equation 19, the deployment of a CH
node is supposed to be two times more expensive than
the deployment of a HSR sensing node and four times
more expensive than a LSR sensing node. In addition, it
is worth mentioning that during the optimization pro-
cess of θ-DEA, the objective space is normalized as de-
scribed in Section 4.3.2. Besides, in the experiments sec-
tion below, the objectives values are reformed according
to the objectives’ equations previously illustrated.

6 Discussion of the Results

In what follows, NC, NH, NL, CV, CN, EC, and TH
refer to the number of clusters, the number of HSR
nodes, the number of LSR nodes, the coverage, the con-
nectivity, the energy consumption and the throughput
objectives, respectively.

6.1 WSN-θ-DEA vs Coverage model

In this experiment, we aim to compare the results of the
optimization of a mono-objective model and WSN-θ-
DEA model. The mono-objective model considers only
the optimization of the coverage objective. The obtained

objectives’ values of the two compared solutions are de-
picted in Table 7 where the best value for each objective
is highlighted in bold.

As can be seen from the table, the solution provided
by WSN-θ-DEA has better values in four over five ob-
jectives with respect to a little deterioration in the cov-
erage objective by 1.20%. The cost objective improve-
ment is explained by the fact that a CH node was re-
placed by a HSR node. Besides, connectivity, through-
put and energy consumption values improvement is a
consequence of a better set of nodes’ locations, i.e., the
nodes in the WSN-θ-DEA solution are closer to the sink
node compared to nodes in the coverage model solution,
resulting in:

– A better connectivity (17.81%): 11 connected sens-
ing nodes, 3 non-connected nodes and one cluster
exceeds the predefined cluster size.

– A better throughput (8.44%): more connected sens-
ing nodes in the WSN-θ-DEA solution.

– A better energy consumption (6.25%): decrease of
the communication energy since nodes are more close
to each other.

6.2 WSN-θ-DEA vs EC-TH model

In this section, we consider a bi-objective model op-
timizing the energy consumption and the throughput
objectives. Figure 6 shows the optimal Pareto front ob-
tained by the optimization of the model using θ-DEA
(We recall that TH = 1

T where T is the throughput
expression as illustrated in Section 4). Objectives val-
ues of the knee point are compared to another solution
obtained by the optimization of WSN-θ-DEA. Results
are depicted in Table 8.

Fig. 6 Optimal Pareto front obtained by one run of the op-
timization of the Energy consumption-Throughput model
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Table 7 Comparative results of WSN-θ-DEA vs Coverage model

Coverage WSN-θ-DEA % difference

Cost (nch, nhs, nls) 52 (7, 11, 2) 50 (6, 12, 2) 3.85%

Coverage 1333 1349 −1.20%

Connectivity 0.0073 0.0060 17.81%

Energy consumption 80.4052 75.3825 6.25%

Throughput (×10−5) 4.5872 4.20 8.44%

Table 8 Comparative results of WSN-θ-DEA vs Energy consumption-Throughput model

EC-TH WSN-θ-DEA % difference

Cost (nch, nhs, nls) 66 (13, 7, 0) 64 (14, 2, 4) 3.03%

Coverage 6583 5815 11.67%

Connectivity 2.76× 10−12 0 Optimal
Energy consumption 36.8351 37.1245 −0.78%

Throughput (×10−5) 7.14 7.41 −3.78%

The comparison of the two obtained solutions ex-
hibits that the WSN-θ-DEA involves a solution suggest-
ing the improvement of three objectives with a small
deterioration in the energy consumption and through-
put objectives. The nodes deployment proposed by the
WSN-θ-DEA solution is less costly as it deploys 4 nodes
operating in LSR mode while the EC-TH solution does
not deploy any LSR nodes. As the two solutions deploy
an important number of CH nodes, the coverage value is
high. Nevertheless, the second solution has the smallest
value with 11.67% since the deployed nodes are farther
from the sink node. In addition, all the sensing nodes
are assigned to clusters and all the clusters’ sizes do not
exceed the predefined size (connectivity value equals to
0).

6.3 WSN-θ-DEA vs NH-NL-CV model

We consider a multi-objective deployment model opti-
mizing the number of HSR nodes, the number of LSR
nodes and the coverage objectives. Fig. 7 shows the op-
timal Pareto front obtained by the optimization of the
model using θ-DEA. We consider the knee point so-
lution provided by the multi-objective model, we look
for a near solution obtained by the WSN-θ-DEA model
and we compare these solutions. In contrast to the pre-
vious experiments, in which only one relevant solution
from the WSN-θ-DEA front was found, in this case the
solutions’ selection phase gives two relevant solutions:
Solution 1 and Solution 2 (see Table 9).

Table 9 shows that WSN-θ-DEA is able to provide
solutions that dominate solutions obtained by another
model. In fact, with respect to the chosen solution, the
WSN-θ-DEA offers two alternatives:

– Improve the coverage with an increased cost: Com-
pared to the NH-NL-CV solution, the 1st solution
obtained by WSN-θ-DEA improves four objectives
including the coverage objective (10.12%) with a lit-
tle deterioration in the cost objective (−2%). The
deployment scheme of this solution is better with
respect to the coverage and throughput objectives
as it deploys an additional HSR node. The nodes are
located in a way that the distances to their corre-
sponding CHs is minimized, involving a better en-
ergy consumption value with 11.82%. In addition,
the connectivity objective is significantly improved
with 33.34%.

– Improve the cost and accept a deterioration in the
coverage objective: This alternative is illustrated by
the 2nd WSN-θ-DEA solution illustrated in Table 9.
Although this solution is also improving connectiv-
ity (50%), energy consumption (29.51%) and through-
put (13.61%) objectives, the nodes are placed more
closer to the sink node resulting in an increased
coverage value. The cost improvement (2%) is ex-
plained by the substitution of a HSR node by a LSR
node.

6.4 Discussion

This section is devoted to discuss the obtained results
with an attempt to summarize the conclusions drawn
along the experiments. Therefore, it is interesting to
note that our proposed many-objective model is very
competitive regarding the overall trade-off between ob-
jectives. Along the experiments, the model is offering
solutions that are too close to solutions obtained by
low-dimensions models. Moreover, WSN-θ-DEA is able
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Fig. 7 Optimal Pareto front obtained by one run of the optimization of the Number of HSR nodes-Number of LSR nodes-
Coverage model

Table 9 Comparative results of WSN-θ-DEA vs Number of HSR nodes-Number of LSR nodes-Coverage model

Cost CV CN EC TH

NH-NL-CV 50(8, 6, 6) 2521 0.012 83.3960 6.54

Solution
1

51(8, 7, 5) 2266 0.008 73.5359 5.59

−2% 10.12% 33.34% 11.82% 14.53%

Solution
2

49(8, 5, 7) 3439 0.006 58.7822 5.65

2% −36.41% 50% 29.51% 13.61%

to provide solutions that are dominating solutions ob-
tained by the confronted models, and it often improves
an objective which is already considered with other
models. In addition, as illustrated in the third experi-
ment, regarding a given solution provided by a multi-
objective model, WSN-θ-DEA shows its capacity to emit
different solutions giving more than one alternative to
the decision maker.

Last but not least, we note that through all the pre-
sented experiments, we considered that all the objec-
tives are of same priority, with identical weights (1/7),
where the sum of weights is equal to 1. Thus, it is very
important to also indicate that by using our model we
can incorporate the decision maker preferences even af-
ter the selection of the model objectives. This says that
the decision maker can handle the many-objective de-
ployment model with a special focus on the most im-
portant objectives by means of different weights attri-
bution while keeping the sum of weights equal to 1. The
assignment of different weights to the objective func-
tions will bias the search process towards the Region
Of Interest (ROI) and will make the algorithm focusing
on solutions that match as possible the decision maker
preferences.

To illustrate this aspect, for instance, we consider
an example where the coverage and energy consump-
tion objectives have a higher weight. We assume that
the number of cluster heads, the number of HSR nodes,
the number of LSR nodes, the coverage, the energy con-
sumption, the connectivity and the throughput objec-
tives have different weights: 0, 1, 0, 1, 0, 1, 0, 25, 0, 1,
0, 25 and 0, 1, respectively. According to this example,
the coverage and energy consumption objectives are pri-
oritized regarding the other ones. Figure 8 illustrates
the knee points obtained by both models with equal
weights (without preferences) and this model highlighted,
respectively, in blue and orange. These Knee points
have been extracted among the generated set of solu-
tions, generated by θ-DEA, using the trade-off worth
metric [36].

Keeping in view that the objectives are disparately
scaled, solutions have been plotted with normalized ob-
jectives values. This figure shows that assigning differ-
ent weights to the objectives offers an enhancement of
objectives with higher weights while accepting a dete-
rioration (or not) for the other objectives with small-
scaled weights.
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Fig. 8 Parallel coordinates plot of knee points for standard and with preferences WSN-θ-DEA optimization

To measure the efficiency of our proposed approach
in terms of latency, we provide a summary of the av-
erage resolution CPU time of each model. Our resolu-
tion experiments were performed on a computer with
Intel®Xeon®Processor CPU E5-2620 v3 and 16 GB
RAM using a Java-based framework: JMetal [18]. Mainly,
the CPU time varies according to the model objec-
tive space: the higher the number of objectives is, the
greater the CPU time of the resolution algorithm is.
Experimental results for each model resolution are sum-
marized in Table 10:
As shown in table 10, the resolution of the proposed
model takes more time than the other models. Oth-
erwise, since the placement of WSN sensors is not a
real-time problem, decision-makers willing to optimize
as many conflicting objectives as possible, would in-
tuitively adopt the many-objective optimization while
accepting longer duration resolution.

According to these interpretations, the most im-
portant conclusion to be drawn is that the WSN de-
ployment optimization in a many-objective fashion is a
promising alternative.

7 Conclusion and future work

In this paper, we presented the optimization of a seven
objectives WSN deployment model while exhibiting the
added value of the many-objective optimization com-
pared to mono- and multi-objective ones. For the best
of our knowledge, this would be the first work proposing
a many-objective WSN deployment model considering
more than three objectives. The θ-DEA algorithm was
chosen to solve the proposed model, mainly due to its
ability to produce an efficient set of optimal solutions
using a decomposition-based strategy. The conducted
experimental study shows that our approach is promis-

ing in the WSN optimization problems field and can
reveal extensive perspectives to investigate. In this sec-
tion, we study the possible threats to validity. We also
give proper perspectives to solve the threat issues.

In our proposed model, we incorporated seven of
the most used deployment objectives in literature. In
fact, a deployment problem encompasses an important
number of objectives and the specialized community
has been proposing additional ones. Thus, assuming
that the WSN-θ-DEA model is versatile, it would be
interesting to incorporate new objectives to it (resolved
using the same algorithm, since θ-DEA could approx-
imate a Pareto Front (PF) with a respectful quality if
the number of objectives does not exceed 15 [45]). Sec-
ond, from a resolution viewpoint, we have made use of
the θ-DEA algorithm as it presents several interesting
advantages in comparison to other methods; specifically
when focusing on its ability in handling models with
more than three objectives. Still, it will be important
to examine the resolution of the WSN-θ-DEA model
using other many-objective algorithms [29], such as,
MOEA/D [46] and NSGA-III [16]. Third, in our experi-
mental study, we accentuated that the decision maker’s
preferences could be handled, namely, by the weighting
of the objectives, allowing additional adjustments in or-
der to take account of special priorities. In this context,
we will attempt to propose other preferences handling
that take into consideration exceptional circumstances,
namely, the fixed positions of certain sensors. Our ap-
proach could work well in such setting by making the
chromosome (solution) in θ-DEA containing some genes
that should be constant (unchangeable) and some other
that should be varied for the optimization purpose.

Concerning WSN architecture, we adopted a cluster-
based architecture which is the well-known specific type
of architectures. However, it will be worthwhile to re-
define the objective functions and assumptions to fit
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Table 10 Resolution CPU time

Model Number of objectives CPU Time (Seconds)

WSN-θ-DEA 7 314

Coverage model 1 58

EC-TH model 2 117

NH-NL-CV model 3 187

other specific deployment architectures. In addition, it
is important to investigate another line of research:
the dynamic WSN deployment. As a static WSN sel-
dom operates as planned, the basic idea propounded by
the dynamic WSN deployment is to approach versatile
WSN and enable post-deployment changes in order to
fix problems and ensure the network survival and op-
eration [33]. Finally, WSNs have been predominantly
used for tracking and monitoring in a vast number of
domains. Applications of WSNs include, but are not
limited to, industry, environmental monitoring, mili-
tary tracking and so on [44]. A regular optimization
of sensors deployment is, thus, required to handle par-
ticular constraints and incidents as in any constrained
system there are certain unavoidable trade-offs [3]. Ac-
cordingly, it would be beneficial to apply the proposed
“WSN-θ-DEA” to real-world setups, as optimal place-
ment of sensors continues to be quite challenging.
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