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ABSTRACT Cystic fibrosis (CF) is a human genetic disease caused by mutations in 
the cystic fibrosis transmembrane conductance regulator gene that encodes a chlor­
ide channel. The most severe clinical manifestation is associated with chronic pulmo­
nary infections by pathogenic and opportunistic microbes. Drosophila melanogaster 
has become the invertebrate model of choice for modeling microbial infections and 
studying the induced innate immune response. Here, we review its contribution to 
the understanding of infections with six major pathogens associated with CF (Staphylo­
coccus aureus, Pseudomonas aeruginosa, Burkholderia cepacia, Mycobacterium abscessus, 
Streptococcus pneumoniae, and Aspergillus fumigatus) together with the perspectives 
opened by the recent availability of two CF models in this model organism.

KEYWORDS Drosophila, cystic fibrosis, CFTR, ENaC, Staphylococcus aureus, Pseudomo­
nas aeruginosa, Mycobacterium abscessus

BACTERIAL INFECTIONS IN CYSTIC FIBROSIS

C ystic fibrosis (CF) is a human genetic disease with a recessive autosomal trans­
mission. It is the most common genetic disease among Caucasians and affects 

approximately 7.97/100,000 persons in the USA and 7.37/100,000 in the European 
Union (1). Although the pulmonary form is the most severe clinical manifestation, other 
exocrine organs may also be affected (e.g., the pancreas and intestine). The disease is 
caused by loss-of-function mutations in the cystic fibrosis transmembrane conductance 
regulator (cftr) gene (2–4), which encodes a member of the adenosine triphosphate 
(ATP)-binding cassette (ABC) protein superfamily (3). CFTR is an ATP-gated ion channel 
that conducts chloride ions across epithelial cell membranes (5, 6), as well as glutathione 
thiocyanates and bicarbonates.

In addition to modulating the chloride transport, it regulates the activity of other ion 
channels such as the trimeric epithelial sodium channel (ENaC), which consists of the 
subunits α, β, and γ. How CFTR negatively regulates ENaC is still controversial. According 
to König and collaborators, this regulation occurs indirectly through the accumulation of 
intracellular chlorine (7). However, conflicting results have shown that inhibition of ENaC 
by CFTR is independent of the direction and extent of chloride transport (8). Studies have 
shown that CFTR inhibits ENaC through a direct physical interaction (9) or by regulating 
ENaC subunit quantities (10).

In any case, CFTR dysfunction leads to an excessive activity of the trimeric ENaC 
channel, causing uncontrolled sodium and excessive water entry into the epithelial cells 
following the osmotic gradient. This leads to dehydration of the intraluminal surface and 
an increase in the thickness of the mucus bordering the epithelium (11). In the lungs, 
the accumulation of thick viscous secretions causes obstruction and inflammation of the 
airways. These prevent the proper functioning of the mucociliary barrier, which is the 
primary protective barrier against many pathogens (12). In addition, this mucus has poor 
antibacterial activity owing to its reduction in acidity. Indeed, CFTR dysfunction prevents 
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the exit of bicarbonate ions. This modified mucus constitutes the ideal environment 
for the accumulation, proliferation, and persistence of pathogenic and/or opportunistic 
microorganisms.

Chronic and recurrent infections and persistent inflammation cause airway damage 
that can lead to bronchiectasis and thus, a decline in respiratory function (13). The 
ensuing respiratory failure is the cause of more than 90% of the recorded deaths (14). 
According to the 2021 report of the French Cystic Fibrosis Registry, these infections are 
mainly due to Staphylococcus aureus (60.6%), Pseudomonas aeruginosa (34%), Aspergillus 
fumigatus (21.6%), Haemophilus influenzae (10.1%), Stenotrophomonas maltophilia (9.3%), 
Achromobacter xylosoxidans (6.4%), Streptococcus pneumoniae (1.7%), non-tuberculous 
mycobacteria (NTM; 3.7%), and Burkholderia cepacia (2%). The prevalence of these 
pathogens varies according to the geography. For comparison, in the USA, S. aureus, 
P. aeruginosa, and NTM have approximately 63%, 24%, and 9.6%, respectively, of the 
overall prevalence according to the 2021 report of the Cystic Fibrosis Foundation (CFF). 
The dynamics of the prevalence of the isolated pathogens also changes with time. 
For example, the respective trends in the prevalence of S. aureus and P. aeruginosa 
have taken opposite trajectories over time in the USA. While the former is becoming 
increasingly prevalent (29% in 1991 vs. 63% in 2021), the latter is less prevalent over time 
(61% in 1991 vs. 24% in 2021). The same trend is observed in Europe (15).

DROSOPHILA, AN ESTABLISHED ORGANISM MODEL FOR THE STUDY OF 
PATHOGENS

Drosophila melanogaster is a century-old organism model that is used in various aspects 
of life sciences such as genetics, developmental biology, cellular biology, neurobiology, 
and immunity. The constant development and availability of different genetic tools 
have facilitated its genetic manipulation, making Drosophila central to the study of 
responses to infection and host-pathogen interactions in the last three decades. In 
their own natural environment, fruit flies face a panel of viruses, bacteria, fungi, and 
parasites [e.g., wasp (16)]. In the laboratory, Drosophila is used as an experimental host 
to study infection with its natural pathogens as well as human ones. Indeed, Drosophila 
has become an attractive and emergent model for studying host response, virulence 
factors, and pathophysiology of pathogens associated with human infectious diseases, 
such as those caused by Zika Virus, Mycobacterium marinum, Listeria monocytogenes, and 
Candida albicans (17–21).

Drosophila is a dipteran with three larval stages and a complete metamorphosis. 
In laboratory, third instar larvae and adults are usually infected either orally, locally by 
wounding or systemically by injecting the microorganism.

Drosophila lacks an adaptive immune response but has innate immunity involving 
conserved signaling pathways. In both mammals and flies, the JNK, JAK-STAT, and 
NFκB signaling pathways are critical for immune response regulation (22). To note, the 
response mediated by Toll-like receptors was discovered in this organism (23). Droso­
phila pattern recognition receptors (PRRs) recognize the pathogen-associated molecular 
patterns (PAMPs) of microbes, such as peptidoglycan (PGN) or lipoteichoic acid (LTA) 
(24). They induce an adequate immune response involving both cellular and humoral 
response (25).

The cellular response is based on blood cells (hemocytes) which are equivalent to 
mammalian monocytes and macrophages. Until recently, three morphologically distinct 
types of hemocytes have been identified: plasmatocytes, crystal cells [involved in 
wound healing, reactive oxygen species (ROS) production, and hypoxic response], and 
lamellocytes (involved in response to wasp parasitization) (26). The most abundant 
hemocytes are plasmatocytes that respond to wound signals and control the coagula­
tion response. They also phagocytose and encapsulate invading pathogens and clear 
apoptotic bodies (27). However, this simplistic classification of hemocytes into three 
subtypes has been reviewed thanks to recent studies based on single-cell sequencing 
on either larval (28–31), adult (32), or pupal (33) hemocytes. Collectively, these studies 
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have identified at least eight distinct specialized hemocyte subpopulations waiting to be 
functionally characterized.

The existence of an inducible humoral response in fruit flies was first reported in 1972 
(34). This response is mainly based on the production of antimicrobial peptides (AMPs), 
primarily by the fat body, which is functionally homologous to mammalian adipocytes 
and liver. AMPs can also be produced locally by epithelial cells or hemocytes. Two 
conserved NFκB signaling pathways, Toll and Immune deficiency (Imd), mediate AMP 
production. The former is implicated in response to both bacteria with Lys-type PGN 
(mainly Gram-positive) and fungal infections, while the second is involved in responses 
to infection by bacteria with DAP-type PGN (mainly Gram-negative) (22, 23, 35, 36). In 
addition to AMPs production, humoral response also includes the generation of ROS by 
DUOX proteins locally at the epithelial level (37, 38).

LESSONS FROM DROSOPHILA INFECTIONS WITH SOME CF MAJOR PATHO­
GENS

Drosophila is commonly used to study infections with a single pathogen associated 
with CF or co-infection. Here, we review the contributions of this model organism 
to the identification of host receptors, in vivo validation of virulence factors, and to 
the screening of effective drugs. We will follow the prevalence of these pathogens as 
reported by the French Cystic Fibrosis Registry in 2021, and the number of relevant 
publications. An overview is provided by Table 1.

Stenotrophomonas maltophilia and Achromobacter xylosoxidans were excluded for 
the following reasons. Stenotrophomonas maltophilia has been isolated at the surface 
and in the gut of wild female Drosophila captured in Puerto Rico (39). Its intestinal 
presence was confirmed in laboratory strains (40). Achromobacter xylosoxidans, has been 
reported to be pathogenic for Drosophila, as its injection in adult males leads to rapid 
dose-dependent death (41).

Staphylococcus aureus

Infections with the Gram-positive bacterium Staphylococcus aureus (S. aureus) are among 
the most prevalent in CF patients. Injection of live S. aureus into Drosophila leads to an 
important transcriptional response and a systemic infection resulting in a reduction in 
fly life expectancy (42, 43). Phagocytosis plays a major role in the response to S. aureus 
infection as flies devoid of plasmatocytes succumb more rapidly (44, 45). Drosophila 
Schneider 2 (S2) cells were used as a surrogate for hemocytes. Indeed, this widely used 
cell line, derived from late embryos, is phagocytic. Genetic screening of S2 cells identified 
Eater and Croquemort, as S. aureus scavenger receptors (44). This was confirmed in 
adult hemocytes (44) and mammalian macrophages (46). Croquemort is the first CD36 
family member to be described as being involved in bacterial recognition. Eater does 
not recognize LTA, a cell wall polymer found in Gram-positive bacteria. Indeed, the ltaS 
mutant strain (deficient in LTA synthesis) was phagocytosed less by wild-type hemo­
cytes than the wild-type S. aureus strain. Moreover, the ltaS mutant strain was equally 
phagocytosed by wild-type and Eater-lacking larval hemocytes (47). However, this was 
not the case for hemocytes lacking the receptor Draper, whose extracellular region binds 
LTA, strongly suggesting that this cell wall component is its ligand, contrary to Eater (47).

The integrin βυ is also involved in S. aureus recognition by the hemocytes but through 
peptidoglycan. Indeed, a mutant bacterial strain that produces reduced levels of PGN, 
due to defective UDP-N-acetylenolpyruvylglucosamine reductase, was less efficiently 
phagocytosed by integrin βυ-deficient hemocytes (48).

PGN recognition proteins (PGRPs), such as PGRP-SA and PGRP-SC1a, are also 
important for the recognition and phagocytosis of S. aureus (49). However, wall teichoic 
acids (WTAs), which are covalently linked to PGN, mitigate S. aureus recognition by 
these Drosophila immune receptors. Indeed, infection with strains with defective WTA 
production led to a reduction of S. aureus virulence. This loss of pathogenicity is due 
to increased PGN binding and detection by PGRP-A (50). Complementary to inducing a 
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cellular response, S. aureus PGRP-SA-mediated recognition systemically activates the Toll 
pathway leading to AMPs production (e.g., Drosomycin, Defensin, and Metchnikowin) 
(51). Although Imd-related AMPs are not induced, this pathway is required for effective 
clearance of the infection (52).

Moreover, fly infections have been used to validate known virulence factors, such 
as hemolysin α (53), as well as to identify new ones. An example is the production of 
D-alanylated teichoic acid, which reduces PGN recognition by host receptors and thus 
interferes with the host humoral response to S. aureus infection (51).

Drosophila infections have confirmed that methicillin-resistant S. aureus (MRSA) 
isolates, notably the USA300 and PFGE strains, were less virulent than non-MRSA isolates 
(54). Correlations with clinical observations were found for the community-associated 
MRSA strains USA300, USA400, and CMRSA2. Indeed, the latter are more virulent than 
the hospital-associated strain CMRSA6 (53). Recently, a model of oral USA300 infection in 
Drosophila larvae showed that bacterial catalase neutralizes a DUOX-mediated oxidative 
response that promotes AMPs production through Toll pathway activation (55).

To identify drugs effective against these MRSAs, a panel of antibacterial peptides was 
screened in vivo. Two antibiotics, nisin and NAI-107, have been shown to have the ability 
to rescue adult flies from fatal infections with the USA300 strain. NAI-107 presented an 
efficacy equivalent to that of vancomycin, a widely applied antibiotic for the treatment of 
serious MRSA infections (56).

The antimicrobial activity of plumbagin, a phytochemical, was also validated with the 
Drosophila systemic infection model, whether with S. aureus alone or in co-infection with 
C. albicans, as is often observed in the urinary tract in humans. Plumbagin (5-hydroxy-2-
methyl-1,4-naphthoquinone) has been identified in vitro as a potent antimicrobial agent 
against S. aureus and C. albicans (57).

Pseudomonas aeruginosa

Drosophila is susceptible to both oral and systemic infections by the Gram-negative 
bacterium P. aeruginosa. This leads to the invasion of host tissues, then their degradation 
and ultimately death through the bacterial spread in the hemolymph (34, 58–60).

P. aeruginosa infections induce systemic AMP production mediated by both the Toll 
and Imd pathways (60, 61), a local epithelial Imd-dependent one and a cellular response 
(59). More recently, a novel and evolutionarily conserved defense mechanism has been 
reported (62). P. aeruginosa infection induces the overexpression of the iron transferrin 
1-encoding gene in the fat body. The consequence is sequestration of iron from the 
hemolymph and its relocation to the fat body. The importance of the competition for 
iron between P. aeruginosa and its host is further supported by the reduced pathogenic­
ity of a siderophore-defective strain of P. aeruginosa in Drosophila (62).

Fruit flies have been used to screen P. aeruginosa mutants and thus to validate 
(63) and identify new virulence factors (e.g., relA) (64). Similarly, the contribution of 
certain virulence factors has been characterized in vivo in fruit flies. Examples include 
the oxylipins involved in biofilm formation and virulence (65), glutathione biosynthe­
sis genes gshA and gshB (66), transcriptional regulators PA1226 and PA1413, which 
modulate the virulence (67), reactive chlorine species resistance factor RcsA (68), glucose 
transport regulator GltB (69), and the nitrite reductase NirA (70). The essential role 
of the P. aeruginosa respiratory chain in virulence and pathogenicity has also been 
demonstrated in Drosophila. Indeed, a PA4427-PA4431 operon mutant strain, defective 
for respiratory chain complex III (cytobc1), induces less mortality in Drosophila than the 
PAO1 reference strain (71).

Many pathogenic Gram-negative bacteria, including P. aeruginosa, possess a type III 
secretion system (T3SS), which injects virulence factors into their host (72). The presence 
and activation of T3SS are required in P. aeruginosa to induce fly death (73). The exotoxin 
ExoS, whose injection into the host cell cytoplasm is mediated by T3SS, interferes with 
bacterial phagocytosis by hemocytes (74). ExoS is known to target host Rho GTPases 
and the contribution of different fly Rho GTPases to P. aeruginosa infection resistance 
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has been assessed in vivo, revealing that Rac2 is the main target of ExoS to prevent 
engulfment (75). ExoS can also induce apoptosis at least in Drosophila S2 cells (76), 
similar to Exotoxin A (77).

P. aeruginosa uses quorum sensing (QS) to regulate and adapt its gene expression. 
During infection, the QS signaling molecule N-3-oxododecanoyl homoserine lactone 
(3OC12-HSL) is essential for the bacterial virulence in flies. Drosophila lacks Paraoxona­
ses (PONs) which are able to degrade 3OC12-HSL in vitro. Transgenic expression of 
human PON1 protects flies against P. aeruginosa infection lethality by interfering with 
3OC12-HSL-dependent QS (78). The QS transcription factor RhIR interferes with the host’s 
cellular immune response during the early stages of infection (59). P. aeruginosa can also 
inhibit the host response by suppressing AMP production (61).

Chronic P. aeruginosa infection in patients with CF is associated with the formation 
of mucoid micro-colonies called biofilms. These are observed in the Drosophila crop, the 
functional equivalent of the mammalian stomach, after oral infection. Bacteria recovered 
from this in vivo biofilm present an increased antibiotic resistance and less virulence than 
the planktonic bacteria (79). Transcriptional regulator PA3898 controls biofilm formation 
and virulence in Drosophila (80). Furthermore, oral infection with P. aeruginosa leads 
to midgut hyperplasia. This is due to activation of the stress response JNK pathway in 
enterocytes, leading to their apoptosis and indirectly to the overproliferation of intestinal 
stem cells (81).

Fruit flies can help to find alternative effective therapeutic strategies against P. 
aeruginosa infections, in addition to antibiotics. Indeed, the in vivo antibacterial efficacy 
of P. aeruginosa-targeting lytic phages, such as MPK1 and MPK6, has been assessed and 
proven in Drosophila (82, 83). Moreover, Baicalin, has been validated in vivo in Drosophila 
(84). This extract from the Chinese herb Scutellariae radix has been proposed as an 
alternative anti-P. aeruginosa compound targeting bacterial T3SS.

Aspergillus fumigatus

Immuno-compromised patients as well as those living with CF are prone to invasive 
aspergillosis. In order to examine the conserved Toll pathway associated with the 
response to fungal infection in Drosophila, including A. fumigatus (85), the virulence of 
different strains of the cosmopolitan filamentous fungus A. fumigatus was assessed using 
Toll-deficient flies (86). Infections were induced by injecting, feeding, or rolling flies with 
conidia (87). Concordance with results obtained in mammalian models was observed 
with either the hypovirulent strain ∆alb1 (88) or other A. fumigatus mutant strains 
defective in siderophore biosynthesis, starvation stress response (89), or Glicotoxin 
production (90).

Toll-deficient Drosophila have also been used to assess the in vivo efficacy of orally 
absorbed antifungal agents such as voriconazole and posaconazole, which are com­
monly used as prophylaxis and treatment for the fungus (88, 91). An in vitro pre-exposure 
of A. fumigatus to these molecules was performed before Drosophila infection with A. 
fumigatus. This pre-treatment of A. fumigatus did not affect the fungal virulence or the 
efficacy of the same molecules to clear the infection in vivo (88, 91). Synergistic effects 
have been observed when voriconazole was combined with terbinafine (87, 91, 92).

In vivo toxicity of volatile organic compounds (VOCs) produced by filamentous 
fungi (e.g., alcohols, aldehydes, thiols, esters) has been explored in flies. Exposition 
of Drosophila larvae to VOCs emitted by living fungi delayed metamorphosis toward 
the pupae stage and subsequently to the adult stage. In addition, this exposure was 
detrimental to both larval and adult survival (93–95). This toxigenic effect suggests that 
VOCs may contribute to the fungal pathogenesis, at least in flies.

Burkholderia cepacia complex

Drosophila is an established model for studying systemic infections caused by species of 
opportunistic Gram-negative bacteria belonging to the Burkholderia cepacia complex 
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(Bcc). It has been used to characterize the virulence of different strains (96), the 
phenotype of some mutants (97–99), and also to identify virulence factors of strains 
isolated from CF patients (100).

In response to B. cepacia infection, fruit flies produce AMPs, such as Drosomycin and 
Diptericin, via both the Toll and Imd pathways (101). We recently demonstrated that the 
induced AMPs are crucial for Drosophila survival against B. cepacia infection (102).

Drosophila mutants for the period gene, whose circadian rhythm is altered, are more 
tolerant to Bcc infection (101). This study also revealed that both glucose and amino-acid 
intake improved host tolerance to infection and that the TOR pathway mediates both 
resistance and tolerance to Bcc infections (101).

Mycobacterium abscessus and the NTM

Drosophila is also a validated model for studying mycobacterial infections. As recently 
reviewed, most studies have focused on the pathogenic slow-growing Mycobacterium 
marinum to model tuberculosis (103). The most frequently isolated NTM in patients with 
CF are species of M. abscessus and M. avium complexes, M. fortuitum being rarely found 
(104, 105). In a study including French patients, M. abscessus accounted for more than 
half of the NTM isolated (104). This bacterium causes the most deleterious pulmonary 
infections in patients with CF (106). M. abscessus belongs to the group of fast-growing 
mycobacteria which are predominantly saprophytic. It is considered the most patho­
genic species within this group (107).

After systemic injection, M. abscessus can proliferate within Drosophila, leading to 
severe tissue damage and, ultimately, death (108). It is recognized by PGRP-SA and 
activates the production of Drosomycin, a Toll-mediated AMP (108). Recently, we 
confirmed and extended this observation. Indeed, M. abscessus injection induced the 
expression of AMPs encoding genes, either Toll- or Imd-regulated and showed that these 
AMPs did not seem to play a major role for Drosophila survival during M. abscessus 
infection, as indicated by the similar survivals of wild-type and AMP-deficient flies (102). 
We therefore hypothesized and demonstrated that the intracellular localization of M. 
abscessus protects it from AMPs, particularly Defensin, which we have shown to have 
a direct bactericidal action against extracellular M. abscessus (109). Indeed, after its 
injection, M. abscessus is rapidly internalized by Drosophila plasmatocytes in which it 
grows (102), as observed during fly infection with M. marinum (18).

Fly infections have been used to validate mutants for genes encoding known 
virulence factors, such as the ∆0855 and ∆4532 c strains, both defective for intracellular 
growth (110, 111), as well as to identify some new genes such as MAB_0471, MAB_0472, 
and MAB_3317c (112).

Drosophila have also highlighted M. abscessus resistance to host innate cytotoxic 
responses. Indeed, thanacytes, a newly described hemocyte subpopulation identified by 
single-cell sequencing (29), induce caspase-dependent apoptosis in M. abscessus-infec­
ted plasmatocytes through the action of two serine proteases, encoded by CG30088 
and CG30090. However, M. abscessus resists this lysis and spreads systemically, leading 
to bacteremia and subsequent death of infected flies. The resistance of M. abscessus 
to cytotoxic lysis of phagocytes was validated in a mammalian model after contact 
of infected murine primary macrophages with autologous natural killer cells. This 
propensity of M. abscessus to resist the host cytotoxic innate response, typical of strict 
pathogenic mycobacteria such as M. tuberculosis, could partially explain its superior 
pathogenicity among fast-growing mycobacteria.

M. abscessus is also multi-resistant to antibiotics, including most of the anti-tubercu­
losis drugs (113), making it difficult to treat its infections in patients with CF (114). 
Drosophila have been used to test the effectiveness of antibiotics against M. abscessus in 
vivo. Tigecycline treatment was the most efficient and its potency was increased when 
combined with linezolid (115).
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Streptococcus pneumoniae

Injection of the Gram-positive bacterium S. pneumoniae in Drosophila causes lethal 
infections. Fly exposure to sublethal doses primes resistance to subsequent infections by 
S. pneumoniae (116). Phagocytosis by plasmatocytes is crucial for resistance to strepto­
coccal infections (116–118). It is activated by Eiger, a Drosophila homolog of humans 
TNFα (119). Hemocyte activation requires increased consumption of energy, which is 
obtained by a systemic metabolic switch involving the release of glucose from glycogen. 
This is mediated by adenosine signaling and is modulated by adenosine deaminase 
ADGF-A to prevent the loss of energy reserves during chronic infection (118). Interest­
ingly, this effect of adenosine has also been observed in a mice lung streptococcal 
infection model in which it regulates pulmonary neutrophil recruitment (120).

The Drosophila response to a systemic infection with S. pneumoniae is not limited to 
the immune cellular response because it also includes the production of AMPs, mediated 
by both Toll and Imd pathways (118).

S. pneumoniae infections have been used to assess whether interactions between 
circadian rhythm and immunity exist in flies, as observed in mammals (121). Infected 
wild-type flies lose circadian regulation of locomotor activity, whereas mutant flies for 
timeless or period, which encode components of the central circadian clock, were more 
sensitive than wild-type flies to S. pneumoniae infection (122).

CO-INFECTION MODELS

Most patients with CF are prone to polymicrobial infections. Drosophila has been used 
to study such interactions between pathogens as well as those with the host microbiota. 
Indeed, flies were orally infected with a combination of P. aeruginosa and strains isolated 
from the oral flora of patients with CF to compare bacterial virulence genes and host 
AMP gene expression with mono-infections. Thus, it was observed that co-infection with 
Streptococcus sp. and P. aeruginosa increased the production of the flagellar filament 
protein fliC in P. aeruginosa, most likely to increase its motility (123). Upon co-infection 
with Gram-positive bacteria, P. aeruginosa also presents an increased virulence, due to 
the production of antimicrobials and toxins that kill the other bacteria as well as the host 
cells. The latter is induced by the detection by P. aeruginosa of Gram-positive bacteria 
PGN (124).

Conversely, Streptococcus parasanguinis, a Gram-positive colonizer of the airway of 
patient with CF, hijacks P. aeruginosa exopolysaccharide alginate production to form a 
biofilm that limits P. aeruginosa growth. This biofilm contains streptococcal adhesins, 
which are also key factors for fly colonization and mortality (125). Nitrite reductase 
production is crucial for P. aeruginosa virulence (126).

A more recent model of co-infection with two common pathogens found in patients 
with CF was based on the co-injection with S. aureus and P. aeruginosa in adult Drosophila 
(127).

MODELING CF IN DROSOPHILA

Two CF-like models have been proposed in Drosophila. The first consists of mutant 
flies for the bereft gene which encodes miR-263a, a microRNA negatively regulating 
the quantity of transcripts encoding the α and β subunits of ENaC (ppk4 and ppk28, 
respectively). Thus, these flies are a model of ENaC hyperactivity. Indeed, phenotypes 
in their midgut are similar to those observed in epithelia of patients with CF. It was 
observed that there was excessive sodium entry within enterocytes, the most abundant 
intestinal cells, leading to an incoming flow of water following the osmotic gradient and 
to a dehydration of the intraluminal area bordering the epithelium (128).

These phenotypes are also observed in the second gastro-intestinal Drosophila CF, 
which has been more recently reported (129). It is a CFTR mutant model obtained by 
depleting in enterocytes the transcripts of CG5789/Cftr. This gene encodes the Drosophila 
structural and functional equivalent of human CTFR. Indeed, the expression of human 
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CFTR in this CF model rescued gastro-intestinal phenotypes. Partial suppression of these 
phenotypes was also observed upon overexpression of miR-263a, suggesting that ENaC 
may act downstream of CFTR, as in humans (129).

Both models exhibit increased levels of antimicrobial peptides due to the activation 
of the Imd pathway in response to increased bacterial accumulation in the midgut. 
Moreover, they are more susceptible to oral infections with Pseudomonas aeruginosa 
(128, 129). Here again, human CFTR expression rescued this phenotype in flies depleted 
of Cftr transcripts, establishing a new model to study CF pathophysiology, particularly in 
respect to the susceptibility to pathogen infections (129).

It would be interesting to determine the susceptibility of both models to other major 
pathogens found in CF. To note, ENaC has been proposed to be involved in airway liquid 
clearance (130). One may wonder whether the CF phenotypes observed in miR-263a 
mutant flies are only restricted to the midgut and whether this model is more susceptible 
to systemic infections.

CONCLUDING REMARKS

The recent use of certain CFTR modulators has brought relief to many CF patients; but 
unfortunately, not to all. The development of relevant models is crucial for understand­
ing CF pathophysiology and consequently for searching for effective molecules that can 
be beneficial in all kinds of cftr mutations leading to CF. Drosophila can meet this need, 
all the more so as CFTR and ENaC channels are present and their deregulation leads to 
a CF phenotype. As we have shown in this review, fruit flies have already allowed the 
identification of many virulence factors of the most common pathogens in patients with 
CF, as well as numerous host factors required to counter these infections. Drosophila 
use should make it possible to study and understand host resistance factors that are 
modulated in the context of CF. In the long term, treatments based on the modulation 
of the evolutionarily conserved susceptibility and predisposition factors could reduce 
CF-associated infections.
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