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Abstract 13 

Cystic fibrosis (CF) is a human genetic disease caused by mutations in the cystic fibrosis 14 

transmembrane conductance regulator gene that encodes a chloride channel. The most 15 

severe clinical manifestation is associated with chronic pulmonary infections by pathogenic 16 

and opportunistic microbes. Drosophila melanogaster has become the invertebrate model of 17 

choice for modelling microbial infections and studying the induced innate immune response. 18 

Here, we review its contribution to the understanding of infections with six major pathogens 19 

associated with CF (Staphylococcus aureus, Pseudomonas aeruginosa, Burkholderia 20 

cepacia, Mycobacterium abscessus, Streptococcus pneumoniae, and Aspergillus fumigatus) 21 

together with the perspectives opened by the recent availability of two CF models in this 22 

model organism. 23 

Keywords: Drosophila, cystic fibrosis, CFTR, ENaC, Staphylococcus aureus, Pseudomonas 24 

aeruginosa, Mycobacterium abscessus 25 
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1. Bacterial infections in Cystic fibrosis 27 

Cystic fibrosis (CF) is a human genetic disease with a recessive autosomal transmission. It is 28 

the most common genetic disease among Caucasians and affects approximately 29 

7,97/100.000 persons in the USA and 7,37/100.000 in the European Union (1). Although the 30 

pulmonary form is the most severe clinical manifestation, other exocrine organs may also be 31 

affected (e.g., the pancreas and intestine). The disease is caused by loss-of-function 32 

mutations in the cystic fibrosis transmembrane conductance regulator (cftr) gene (2–4), 33 

which encodes a member of the ATP-binding cassette (ABC) protein superfamily (3). CFTR 34 

is an ATP-gated ion channel that conducts chloride ions across epithelial cell membranes (5, 35 

6), as well as glutathione thiocyanates and bicarbonates.  36 

In addition to modulating the chloride transport, it regulates the activity of other ion channels 37 

such as the trimeric epithelial sodium channel (ENaC), which consists of the sub-units α, β 38 

and γ. How CFTR negatively regulates ENaC is still controversial. According to Konïg and 39 

collaborators, this regulation occurs indirectly through the accumulation of intracellular 40 

chlorine (7). However, conflicting results have shown that inhibition of ENaC by CFTR is 41 

independent of the direction and extent of chloride transport (8). Studies have shown that 42 

CFTR inhibits ENaC through a direct physical interaction (9) or by regulating ENaC subunit 43 

quantities (10).  44 

In any case, CFTR dysfunction leads to an excessive activity of the trimeric ENaC channel, 45 

causing uncontrolled sodium and excessive water entry into the epithelial cells following the 46 

osmotic gradient. This leads to dehydration of the intraluminal surface and an increase in the 47 

thickness of the mucus bordering the epithelium (11). In the lungs, the accumulation of thick 48 

viscous secretions causes aobstruction and inflammation of the airways. These prevent the 49 

proper functioning of the mucociliary barrier, which is the primary protective barrier against 50 

many pathogens (12). In addition, this mucus has poor antibacterial activity owing to its 51 

reduction in acidity. Indeed, CFTR dysfunction prevents the exit of bicarbonate ions. This 52 

modified mucus constitutes the ideal environment for the accumulation, proliferation and 53 

persistence of pathogenic and/or opportunistic microorganisms.  54 
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Chronic and recurrent infections and persistent inflammation cause airway damage that can 55 

lead to bronchiectasis and thus, a decline in respiratory function (13). The ensuing 56 

respiratory failure is the cause of more than 90% of the recorded deaths (14). According to 57 

the 2021 report of the French Cystic Fibrosis Registry, these infections are mainly due to 58 

Staphylococcus aureus (60.6%), Pseudomonas aeruginosa (34%), Aspergillus fumigatus 59 

(21.6%), Haemophilus influenzae (10.1%), Stenotrophomonas maltophilia (9.3%), 60 

Achromobacter xylosoxidans (6.4%), Streptococcus pneumoniae (1.7%), non-tuberculous 61 

mycobacteria (3,7%) and Burkholderia cepacia (2%). The prevalence of these pathogens 62 

vary according to the geography. For comparison, in the USA, S. aureus, P. aeruginosa and 63 

non-tuberculous mycobacteria have approximately 63%, 24% and 9.6% respectively of the 64 

overall prevalence according to the 2021 report of the Cystic Fibrosis Foundation (CFF). The 65 

dynamics of the prevalence of the isolated pathogens also changes with time. For example, 66 

the respective trends in the prevalence of S. aureus and P. aeruginosa have taken opposite 67 

trajectories over time in the USA. While the former is becoming increasingly prevalent (29% 68 

in 1991 vs. 63% in 2021), the latter is less prevalent over time (61% in 1991 vs. 24% in 69 

2021). The same trend is observed in Europe (15).  70 

2. Drosophila, an established organism model for the study of pathogens  71 

Drosophila melanogaster is a century-old organism model that is used in various aspects of 72 

life sciences such as genetics, developmental biology, cellular biology, neurobiology, and 73 

immunity. The constant development and availability of different genetic tools have facilitated 74 

its genetic manipulation, making Drosophila central to the study of responses to infection and 75 

host-pathogen interactions in the last three decades. In their own natural environment, fruit 76 

flies face a panel of viruses, bacteria, fungi, and parasites (e.g., wasp (16)). In the laboratory, 77 

Drosophila is used as an experimental host to study infection with its natural pathogens as 78 

well as human ones. Indeed, Drosophila has become an attractive and emergent model for 79 

studying host response, virulence factors and pathophysiology of pathogens associated with 80 

human infectious diseases, such as those caused by Zika Virus, Mycobacterium marinum, 81 

Listeria monocytogenes, and Candida albicans (17–21). 82 
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Drosophila is a dipteran with three larval stages and a complete metamorphosis. In 83 

laboratory, third instar larvae and adults are usually infected either orally, locally by wounding 84 

or systemically by injecting the microorganism. 85 

Drosophila lacks an adaptive immune response but has innate immunity involving conserved 86 

signaling pathways. In both mammals and flies, the JNK, JAK-STAT and NFκB signaling 87 

pathways are critical for immune response regulation (22). To note, the response mediated 88 

by Toll-like receptors was discovered in this organism (23). Drosophila pattern recognition 89 

receptors (PRRs) recognize the pathogen-associated molecular patterns (PAMPs) of 90 

microbes, such as peptidoglycan (PGN), or lipoteichoic acid (LTA) (24). They induce an 91 

adequate immune response involving both cellular and humoral response (25). 92 

The cellular response is based on blood cells (hemocytes) which are equivalent to 93 

mammalian monocytes and macrophages. Until recently, three morphologically distinct types 94 

of hemocytes have been identified: plasmatocytes, crystal cells (involved in wound healing, 95 

reactive oxygen species production and hypoxic response) and lamellocytes (involved in 96 

response to wasp parasitization) (26). The most abundant hemocytes are plasmatocytes that 97 

respond to wound signals and control the coagulation response. They also phagocytose and 98 

encapsulate invading pathogens and clear apoptotic bodies (27). However, this simplistic 99 

classification of hemocytes into three subtypes has been reviewed thanks to recent studies 100 

based on single-cell sequencing on either larval (28–31), adult (32) or pupal (33) hemocytes. 101 

Collectively, these studies have identified at least eight distinct specialized hemocyte 102 

subpopulations waiting to be functionally characterized. 103 

The existence of an inducible humoral response in fruit flies was first reported in 1972 (34). 104 

This response is mainly based on the production of antimicrobial peptides (AMPs), primarily 105 

by the fat body, which is functionally homologous to mammalian adipocytes and liver. AMPs 106 

can also be produced locally by epithelial cells or hemocytes. Two conserved NFκB 107 

signalling pathways, Toll and Immune deficiency (Imd), mediate AMP production. The former 108 

is implicated in response to both bacteria with Lys-type PGN (mainly Gram-positive) and 109 

fungal infections, while the second is involved in responses to infection by bacteria with DAP-110 
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type PGN (mainly Gram-negative) (22, 23, 35, 36). In addition to AMPs production, humoral 111 

response also includes the generation of reactive oxygen species (ROS) by DUOX proteins 112 

locally at the epithelial level (37, 38).  113 

3. Lessons from Drosophila infections with some CF major pathogens 114 

Drosophila is commonly used to study infections with a single pathogen associated with CF 115 

or co-infection. Here, we review the contributions of this model organism to the identification 116 

of host receptors, in vivo validation of virulence factors, and to the screening of effective 117 

drugs. We will follow the prevalence of these pathogens as reported by the French Cystic 118 

Fibrosis Registry in 2021, and the number of relevant publications. An overview is provided 119 

by the Table 1. 120 

Stenotrophomonas maltophilia and Achromobacter xylosoxidans were excluded for the 121 

following reasons. Stenotrophomonas maltophilia has been isolated at the surface and in the 122 

gut of wild female Drosophila captured in Puerto Rico (39). Its intestinal presence was 123 

confirmed in laboratory strains (40). Achromobacter xylosoxidans, has been reported to be 124 

pathogenic for Drosophila, as its injection in adult males leads to rapid dose-dependent 125 

death (41).  126 

Staphylococcus aureus 127 

Infections with the Gram-positive bacterium Staphylococcus aureus (S. aureus) are among 128 

the most prevalent in CF patients. Injection of live S. aureus into Drosophila leads to an 129 

important transcriptional response and a systemic infection resulting in a reduction in fly life 130 

expectancy (42, 43). Phagocytosis plays a major role in the response to S. aureus infection 131 

as flies devoid of plasmatocytes succumb more rapidly (44, 45). Drosophila Schneider 2 (S2) 132 

cells were used as a surrogate for hemocytes. Indeed, this widely used cell line, derived from 133 

late embryos, is phagocytic. Genetic screening of S2 cells identified Eater and Croquemort, 134 

as S. aureus scavenger receptors (44). This was confirmed in adult hemocytes (44) and 135 

mammalian macrophages (46). Croquemort is the first CD36 family member to be described 136 

as being involved in bacterial recognition. Eater does not recognize lipoteichoic acid (LTA), a 137 
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cell wall polymer found in Gram-positive bacteria. Indeed, the ltaS mutant strain (deficient in 138 

LTA synthesis) was phagocytosed less by wild-type hemocytes than the wild-type S. aureus 139 

strain. Moreover, the ltaS mutant strain was  equally phagocytosed by wild-type and Eater-140 

lacking larval hemocytes (47). However, this was not the case for hemocytes lacking the 141 

receptor Draper, whose extracellular region binds LTA, strongly suggesting that this cell wall 142 

component is its ligand, contrary to Eater (47). 143 

The integrin βυ is also involved in S. aureus recognition by the hemocytes but through 144 

peptidoglycan. Indeed, a mutant bacterial strain that produces reduced levels of PGN, due to 145 

defective UDP-N-acetylenolpyruvylglucosaminereductase, was less efficiently phagocytosed 146 

by integrin βυ-deficient hemocytes (48).  147 

PGN Recognition Proteins (PGRP), such as PGRP-SA and PGRP-SC1a, are also important 148 

for the recognition and phagocytosis of S. aureus (49). However, wall teichoic acids (WTA), 149 

which are covalently linked to PGN, mitigate S. aureus recognition by these Drosophila 150 

immune receptors. Indeed, infection with strains with defective WTA production led to a 151 

reduction of S. aureus virulence. This loss of pathogenicity is due to increased PGN binding 152 

and detection by PGRP-A (50). Complementary to inducing a cellular response, S. aureus 153 

PGRP-SA-mediated recognition systemically activates the Toll pathway leading to AMPs 154 

production (e.g., Drosomycin, Defensin and Metchnikowin) (51). Although Imd-related AMPs 155 

are not induced, this pathway is required for effective clearance of the infection (52).  156 

Moreover, fly infections have been used to validate known virulence factors, such as 157 

hemolysin α (53), as well as to identify new ones. An example is the production of D-158 

alanylated teichoic acid, which reduces PGN recognition by host receptors and thus 159 

interferes with the host humoral response to S. aureus infection (51).  160 

Drosophila infections have confirmed that Methycillin-Resistant S. aureus (MRSA) isolates, 161 

notably the USA300 and PFGE strains, were less virulent than non-MRSA isolates (54). 162 

Correlations with clinical observations were found for the community-associated MRSA 163 

strains USA300, USA400 and CMRSA2. Indeed, the latter are more virulent than the 164 
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hospital-associated strain CMRSA6 (53). Recently, a model of oral USA300 infection in 165 

Drosophila larvae showed that bacterial catalase neutralizes a DUOX-mediated oxidative 166 

response that promotes AMPs production through Toll pathway activation (55). 167 

To identify drugs effective against these MRSAs, a panel of antibacterial peptides was 168 

screened in vivo. Two antibiotics, nisin and NAI-107, have been shown to have the ability to 169 

rescue adult flies from fatal infections with the USA300 strain. NAI-107 presented an efficacy 170 

equivalent to that of vancomycin, a widely applied antibiotic for the treatment of serious 171 

MRSA infections (56). 172 

The antimicrobial activity of plumbagin, a phytochemical, was also validated with the 173 

Drosophila systemic infection model, whether with S. aureus alone or in co-infection with C. 174 

albicans, as is often observed in the urinary tract in humans. Plumbagin (5-hydroxy-2-methyl-175 

1,4-naphthoquinone) has been identified in vitro as a potent antimicrobial agent against S. 176 

aureus and C. albicans (57). 177 

Pseudomonas aeruginosa  178 

Drosophila is susceptible to both oral and systemic infections by the Gram-negative 179 

bacterium P. aeruginosa. This leads to the invasion of host tissues, then their degradation 180 

and ultimately death through the bacterial spread in the hemolymph (34, 58–60). 181 

P. aeruginosa infections induce systemic AMP production mediated by both the Toll and Imd 182 

pathways (60, 61), a local epithelial Imd-dependent one and a cellular response (59). More 183 

recently, a novel and evolutionarily conserved defence mechanism has been reported (62). 184 

P. aeruginosa infection induces the overexpression of the iron transferrin 1-encoding gene in 185 

the fat body. The consequence is sequestration of iron from the hemolymph and its 186 

relocation to the fat body. The importance of the competition for iron between P. aeruginosa 187 

and its host is further supported by the reduced pathogenicity of a siderophore-defective 188 

strain of P. aeruginosa in Drosophila (62). 189 

Fruit flies have been used to screen P. aeruginosa mutants and thus to validate (63) and 190 

identify new virulence factors (e.g., relA) (64). Similarly, the contribution of certain virulence 191 
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factors has been characterized in vivo in fruit flies. Examples include the oxylipins involved in 192 

biofilm formation and virulence (65), glutathione biosynthesis genes gshA and gshB (66), 193 

transcriptional regulators PA1226 and PA1413, which modulate the virulence (67), reactive 194 

chlorine species resistance factor RcsA (68), glucose transport regulator GltB (69) and the 195 

nitrite reductase NirA (70). The essential role of the P. aeruginosa respiratory chain in 196 

virulence and pathogenicity has also been demonstrated in Drosophila. Indeed, a PA4427-197 

PA4431 operon mutant strain, defective for respiratory chain complex III (cytobc1), induces 198 

less mortality in Drosophila than the PAO1 reference strain (71). 199 

Many pathogenic Gram-negative bacteria, including P. aeruginosa, possess a type III 200 

secretion system (T3SS), which injects virulence factors into their host (72). The presence 201 

and activation of T3SS are required in P. aeruginosa to induce fly death (73). The exotoxin 202 

ExoS, whose injection into the host cell cytoplasm is mediated by T3SS, interferes with 203 

bacterial phagocytosis by hemocytes (74). ExoS is known to target host Rho GTPases and 204 

the contribution of different fly Rho GTPases to P. aeruginosa infection resistance has been 205 

assessed in vivo, revealing that Rac2 is the main target of ExoS to prevent engulfment (75). 206 

ExoS can also induce apoptosis at least in Drosophila S2 cells (76), similar to Exotoxin A 207 

(77). 208 

P. aeruginosa uses quorum sensing (QS) to regulate and adapt its gene expression. During 209 

infection, the QS signaling molecule N-3-oxododecanoyl homoserine lactone (3OC12-HSL) 210 

is essential for the bacterial virulence in flies. Drosophila lacks Paraoxonases (PONs) which 211 

are able to degrade 3OC12-HSL in vitro. Transgenic expression of human PON1 protects 212 

flies against P. aeruginosa infection lethality by interfering with 3OC12-HSL-dependent QS 213 

(78). The QS transcription factor RhIR interferes with the host’s cellular immune response 214 

during the early stages of infection (59). P. aeruginosa can also inhibit the host response by 215 

suppressing AMP production (61). 216 

Chronic P. aeruginosa infection in patients with CF is associated with the formation of 217 

mucoid micro-colonies called biofilms. These are observed in the Drosophila crop, the 218 

functional equivalent of the mammalian stomach, after oral infection. Bacteria recovered from 219 
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this in vivo biofilm present an increased antibiotic resistance and less virulence than the 220 

planktonic bacteria (79). Transcriptional regulator PA3898 controls biofilm formation and 221 

virulence in Drosophila (80). Furthermore, oral infection with P. aeruginosa leads to midgut 222 

hyperplasia. This is due to activation of the stress response JNK pathway in enterocytes, 223 

leading to their apoptosis and indirectly to the overproliferation of intestinal stem cells (81).  224 

Fruit flies can help to find alternative effective therapeutic strategies against P. aeruginosa 225 

infections, in addition to antibiotics. Indeed, the in vivo antibacterial efficacy of P. aeruginosa-226 

targeting lytic phages, such as MPK1 and MPK6, has been assessed and proven in 227 

Drosophila (Heo et al., 2009; Lindberg et al., 2014; Jang et al., 2019). Moreover, Baicalin, 228 

has been validated in vivo in Drosophila (84). This extract from the Chinese herb Scutellariae 229 

radix has been proposed as an alternative anti-P. aeruginosa compound targeting bacterial 230 

T3SS. 231 

Aspergillus fumigatus  232 

Immuno-compromised patients as well as those living with CF are prone to invasive 233 

aspergillosis. In order to examine the conserved Toll pathway associated with the response 234 

to fungal infection in Drosophila, including A. fumigatus (85) and the virulence of different 235 

strains of the cosmopolitan filamentous fungus A. fumigatus was assessed using Toll-236 

deficient flies (86). Infections were induced by injecting, feeding or rolling flies with conidia 237 

(87). Concordance with results obtained in mammalian models was observed with either the 238 

hypovirulent strain ∆alb1 (88) or other A. fumigatus mutant strains defective in siderophore 239 

biosynthesis, starvation stress response (89), or Glicotoxin production (90). 240 

Toll-deficient Drosophila have also been used to assess the in vivo efficacy of orally 241 

absorbed antifungal agents such as voriconazole and posaconazole, which are commonly 242 

used as prophylaxis and treatment for the fungus (88, 91). An in vitro pre-exposure of A. 243 

fumigatus to these molecules was performed before  Drosophila infection did not affect the 244 

fungal virulence or the efficacy of these molecules to clear the infection in vivo (88, 91). 245 
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Synergistic effects have been observed when voriconazole was combined with terbinafine 246 

(87, 91, 92). 247 

In vivo toxicity of volatile organic compounds (VOCs) produced by filamentous fungi (e.g., 248 

alcohols, aldehydes, thiols, esters…) has been explored in flies. Exposition of Drosophila 249 

larvae to VOCs emitted by living fungi delayed metamorphosis towards the pupae stage and 250 

subsequently to the adult stage. In addition, this exposure was detrimental to both larval and 251 

adult survival (Inamdar et al., 2014; Zhao et al., 2017; Al-Maliki et al., 2017). This toxigenic 252 

effect suggests that VOCs may contribute to the fungal pathogenesis, at least in flies. 253 

Burkholderia cepacia complex 254 

Drosophila is an established model for studying systemic infections caused by species of 255 

opportunistic Gram-negative bacteria belonging to the Burkholderia cepacia complex (Bcc). It 256 

has been used to characterize the virulence of different strains (96), the phenotype of some 257 

mutants (97–99) and also to identify virulence factors of strains isolated from CF patients 258 

(100).  259 

In response to B. cepacia infection, fruit flies produce AMPs, such as Drosomycin and 260 

Diptericin, via both the Toll and Imd pathways (101). We recently demonstrated that the 261 

induced AMPs are crucial for Drosophila survival against B. cepacia infection (102). 262 

Drosophila mutants for the period gene, whose circadian rhythm is altered, are more tolerant 263 

to Bcc infection (101). This study also revealed that both glucose and amino-acid intake 264 

improved host tolerance to infection and that the TOR pathway mediates both resistance and 265 

tolerance to Bcc infections (101).  266 

Mycobacterium abscessus and the non-tuberculous mycobacteria  267 

Drosophila is also a validated model for studying mycobacterial infections. As recently 268 

reviewed, most studies have focused on the pathogenic slow-growing 269 

Mycobacterium marinum to model tuberculosis (103). The most frequently isolated non-270 

tuberculous mycobacteria (NTM) in patients with CF are species of M. abscessus and M. 271 
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avium complexes, M. fortuitum being rarely found (104, 105). In a study including French 272 

patients, M. abscessus accounted for more than half of the NTMs isolated (104). This 273 

bacterium causes the most deleterious pulmonary infections in patients with CF (106). M. 274 

abscessus belongs the group of fast-growing mycobacterium which are predominantly 275 

saprophytic. It is considered the most pathogenic species within this group (107).  276 

After systemic injection, M. abscessus can proliferate within Drosophila, leading to severe 277 

tissue damage and, ultimately, death (Oh et al., 2013). It is recognized by PGRP-SA and 278 

activates the production of Drosomycin, a Toll-mediated AMP (108). Recently, we confirmed 279 

and extended this observation. Indeed, M. abscessus injection induced the expression of 280 

AMPs encoding genes, either Toll or Imd-regulated and showed that these AMPs did not 281 

seem to play a major role for Drosophila survival during M. abscessus infection, as indicated 282 

by the similar survivals of wild-type and AMP-deficient flies (102). We therefore hypothesized 283 

and demonstrated that the intracellular localization of M. abscessus protects it from AMPs, 284 

particularly Defensin, which we have shown to have a direct bactericidal action against 285 

extracellular M. abscessus (109). Indeed, after its injection, M. abscessus is rapidly 286 

internalized by Drosophila plasmatocytes in which it grows (102), as observed during fly 287 

infection with M. marinum (18). 288 

Fly infections have been used to validate mutants for genes encoding known virulence 289 

factors, such as the ∆0855 and ∆4532c strains, both defective for intracellular growth (110, 290 

111), as well as to identify some new genes such as MAB_0471, MAB_0472 and 291 

MAB_3317c (112). 292 

Drosophila have also highlighted M. abscessus resistance to host innate cytotoxic 293 

responses. Indeed, thanacytes, a newly described hemocyte subpopulation identified by 294 

single-cell sequencing (29), induce caspase-dependent apoptosis in M. abscessus-infected 295 

plasmatocytes through the action of two serine proteases, encoded by CG30088 and 296 

CG30090. However, M. abscessus resists this lysis and spreads systemically, leading to 297 

bacteremia and subsequent death of infected flies. The resistance of M. abscessus to 298 

cytotoxic lysis of phagocytes was validated in a mammalian model after contact of infected 299 
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murine primary macrophages with autologous natural killer cells. This propensity of 300 

M. abscessus to resist the host cytotoxic innate response, typical of strict pathogenic 301 

mycobacteria such as M. tuberculosis, could partially explain its superior pathogenicity 302 

among fast-growing mycobacteria. 303 

M. abscessus is also multi-resistant to antibiotics, including most of the anti-tuberculosis 304 

drugs (113), making it difficult to treat its infections in patients with CF (114). Drosophila have 305 

been used to test the effectiveness of antibiotics against M. abscessus in vivo. Tigecycline 306 

treatment was the most efficient and its potency was increased when combined with linezolid 307 

(115). 308 

Streptococcus pneumoniae 309 

Injection of the Gram-positive bacterium S. pneumoniae in Drosophila causes lethal 310 

infections. Fly exposure to sublethal doses primes resistance to subsequent infections by S. 311 

pneumoniae (116). Phagocytosis by plasmatocytes is crucial for resistance to streptococcal 312 

infections (116–118). It is activated by Eiger, a Drosophila homolog of humans TNFα, (119). 313 

Hemocyte activation requires increased consumption of energy, which is obtained by a 314 

systemic metabolic switch involving the release of glucose from glycogen. This is mediated 315 

by adenosine signalling and is modulated by adenosine deaminase ADGF-A to prevent the 316 

loss of energy reserves during chronic infection (118). Interestingly, this effect of adenosine 317 

has also been observed in a mice lung streptococcal infection model in which it regulates 318 

pulmonary neutrophil recruitment (120). 319 

The Drosophila response to a systemic infection with S. pneumoniae is not limited to the 320 

immune cellular response because it also includes the production of AMPs, mediated by both 321 

Toll and Imd pathways (118). 322 

S. pneumoniae infections have been used to assess whether interactions between circadian 323 

rhythm and immunity exist in flies, as observed in mammals (121). Infected wild-type flies 324 

lose circadian regulation of locomotor activity, whereas mutant flies for timeless or period, 325 
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which encode components of the central circadian clock, were more sensitive than wild-type 326 

flies to S. pneumoniae infection (122). 327 

4. Coinfection models 328 

Most patients with CF are prone to polymicrobial infections. Drosophila has been used to 329 

study such interactions between pathogens as well as those with the host microbiome. 330 

Indeed, flies were orally infected with a combination of P. aeruginosa and strains isolated 331 

from the oral flora of patients with CF to compare bacterial virulence genes and host AMP 332 

gene expression with mono-infections. Thus, it was observed that coinfection with 333 

Streptococcus sp. and P. aeruginosa increased the production of the flagellar filament 334 

protein fliC in P. aeruginosa, most likely to increase its motility (123). Upon co-infection with 335 

Gram-positive bacteria, P. aeruginosa also presents an increased virulence, due to the 336 

production of antimicrobials and toxins that kill the other bacteria as well as the host cells. 337 

The latter is induced by the detection by P. aeruginosa of Gram-positive bacteria PGN (124).  338 

Conversely, Streptococcus parasanguinis, a Gram-positive colonizer of the airway of patient 339 

with CF, hijacks P. aeruginosa exopolysaccharide alginate production to form a biofilm that 340 

limits P. aeruginosa growth. This biofilm contains streptococcal adhesins, which are also key 341 

factors for fly colonization and mortality (125). Nitrite reductase production is crucial for P. 342 

aeruginosa virulence (126). 343 

A more recent model of co-infection with two common pathogens found in patients with CF 344 

was based on the co-injection with S. aureus and P. aeruginosa in adult Drosophila (127). 345 

5. Modelling CF in Drosophila 346 

Two CF-like models have been proposed in Drosophila. The first consists of mutant flies for 347 

the bereft gene which encodes miR-263a, a microRNA which negatively regulates the 348 

quantity of transcripts encoding the α and β subunits of ENaC (ppk4 and ppk28 respectively). 349 

Thus these flies are a model of ENaC hyperactivity model. Indeed, phenotypes in their 350 

midgut are similar to those observed in epithelia of patients with CF. It was observed that 351 
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there was excessive sodium entry within enterocytes, the most abundant intestinal cells, 352 

leading to an incoming flow of water following the osmotic gradient and to a dehydration of 353 

the intraluminal area bordering the epithelium (128).  354 

These phenotypes are also observed in the second gastro-intestinal Drosophila CF, which 355 

has been more recently reported model (129). It is a CFTR mutant model obtained by 356 

depleting in enterocytes of the transcripts of CG5789/Cftr. This gene encodes the Drosophila 357 

structural and functional equivalent of human CTFR. Indeed, the expression of human CFTR 358 

in this CF model rescued gastro-intestinal phenotypes. Partial suppression of these 359 

phenotypes as also observed upon overexpression of miR-263a, suggesting that ENaC may 360 

act downstream of CFTR, as in humans (129). 361 

Both models exhibit increased levels of antimicrobial peptides due to the activation of the Imd 362 

pathway in response to increased bacterial accumulation in the midgut. Moreover, they are 363 

more susceptible to oral infections with Pseudomonas aeruginosa (128, 129). Here again, 364 

human CFTR expression rescued this phenotype in flies depleted of Cftr transcripts, 365 

establishing a new model to study CF pathophysiology, particularly in respect to the 366 

susceptibility to pathogen infections (129).  367 

However, such phenotypic rescue experiments have not been reported in miR-263a mutant 368 

flies. Thus, whether hyper-susceptibility to bacterial infections is due to increased levels of 369 

ENaC of remains to be determined. Similarly, even if it is likely, it would be interesting to 370 

determine the susceptibility to other major pathogens found in CF. To note, ENaC has been 371 

proposed to be involved in airway liquid clearance (130). One may wonder whether the CF 372 

phenotypes observed in miR-263a mutant flies are only restricted to the midgut and whether 373 

this model is more susceptible to systemic infections. 374 

6. Concluding remarks 375 

The recent use of certain CFTR modulators has brought relief to many CF patients; but 376 

unfortunately, not to all. The development of relevant models is crucial for understanding CF 377 

pathophysiology and consequently for searching for effective molecules that can be 378 
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beneficial in all kinds of cftr mutations leading to CF. Drosophila can meet this need, all the 379 

more so as CFTR and ENaC channels are present and their deregulation leads to a CF 380 

phenotype. As we have shown in this review, fruit flies have already allowed the identification 381 

of many virulence factors of the most common pathogens in patients with CF, as well as 382 

numerous host factors required to counter these infections. Drosophila use should make it 383 

possible to study and understand host resistance factors that are modulated in the context of 384 

CF. In the long term, treatments based on the modulation of the evolutionarily conserved 385 

susceptibility and predisposition factors could reduce CF-associated infections. 386 

  387 
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Table 1: Modeling the infections by major CF pathogens in Drosophila  791 

 792 

Pathogen 

Host immune response 

Host manipulation  
by the pathogen 

In vivo validated 
antimicrobial 

Cellular response 
Humoral 
response Other 

response(s) 
Phagocytosis 

ROS 
production 

Toll IMD 

S. aureus 

 
 

Receptors: 
Croquemort, 

Draper, 
Eater 

 

 
 

  ? 

- Neutralization of host oxidative 
and antimicrobial responses by 
catalase 
 
- Reduction of PGN detection and 
humoral response by producing 
D-alanylated teichoic acid 

- Nisin 

- NAI-107 

- Plumbagin 

P. aeruginosa 

 

 
Receptors:  

? 

?   

- Activation of 
JNK pathway 
in enterocytes 

during oral 
infection 

- Nutritional 
immunity: iron 
sequestration 

from the 
hemolymph 

and relocation 
to the fat body

- Prevention of phagocytosis by 
hemocytes by RhIR and the 
exotoxin ExoS 
 
- Induction of apoptosis of S2 cells 
by ExoS and Exotoxin A 
 
- Suppression of AMP production 

- Lytic phage MPK1 

- Lytic phage MPK6 

- Baicalin 

B. cepacia 
? 

Receptors:  

? 

?   
Activation of 
TOR pathway 
for tolerance 

and resistance 

? ? 

M. abscessus 
 

Receptors:  

? 

?   

Granzyme-
mediated 
cytotoxic 

response by 
thanacytes

? 
- Tigecycline 

- Linezolid 

S. pneumoniae 
 

Receptors:  

? 
?   

Activation of 
adenosine 

signaling for 
metabolic 

switch

- Loss of circadian regulation of 
locomotor activity 

? 

 

A. fumigatus 

? 
Receptors:  

? 

?   ? ? 
- Voriconazole 

- Posaconazole 

- Terbinafine 
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