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In [CMP09] a general formula was given for the multiplication by some special Schubert classes in the quantum cohomology of any homogeneous space. Although this formula is true in the non equivariant setting, the stated equivariant version was wrong. We provide correction for the equivariant formula, thus giving a correct argument for the non equivariant formula. We also give new formulas in the equivariant homology of the affine grassmannian that could lead to non-equivariant Pieri formulas.

Introduction

In [START_REF] Chaput | Affine symmetries of the equivariant quantum cohomology ring of rational homogeneous spaces[END_REF] a general formula was given for the multiplication in the quantum cohomology of any homogeneous space by some special Schubert classes coming from cominuscule weights. Although this formula is true in the non equivariant setting, the stated equivariant version is wrong. We provide correction for the equivariant formula, thus giving a correct argument for the non equivariant formula. We also provide new product formulas in the equivariant homology of the affine grassmannian.

Let G be a semisimple simply connected algebraic group and fix T ⊂ B a maximal torus and a Borel subgroup containing it. Denote by P ∨ and Q ∨ be the coweight and corrot lattices. A dominant coweight λ ∨ ∈ P ∨ is minuscule if λ ∨ , α ∈ {0, 1} for any positive root α. A minuscule dominant coweight is a fundamental coweight. Denote by I m the subset of the set I of vertices of the Dynkin diagram of G parametrising minuscule coweights.

We consider a finite group Z which has several interpretation. Define Z has

Z := P ∨ /Q ∨ .
Representatives for this quotient are for example the opposites of the minuscule fundamental coweights (-̟ ∨ i ) i∈Im . The group Z is also the center of G and if G ad the the adjoint group associated to G, then Z = π 1 (G ad ).

The group Z can be realised as a subgroup of the Weyl group W of G as follows. Let w 0 be the longest element in W . For i ∈ I m define v i ∈ W to be the smallest element in W such that v i ̟ i = w 0 ̟ i . Then the family (v i ) i∈Im forms a finite subgroup of W isomorphic to Z. Finally Z can be realised as a subgroup of the extended affine Weyl group W aff = W ⋉ P ∨ (see Section 2.2 below) by i → τ i := v i t -̟i .

For P ⊂ G a parabolic subgroup, let I P be the set of vertices in the Dynkin diagram such that, for i ∈ I, the simple root α i is a root of P if and only if i ∈ I P .

For w ∈ W , denote by σ P (w) the Schubert class in H 2ℓ(w) (G/P, Z) defined by w. Denote by Q ∨ P the coroot lattice of P and consider η P : Q ∨ → Q ∨ /Q ∨ P the quotient map. We define an action of the Weyl group W of G on the equivariant cohomology H * T (G/P ) using, for w ∈ W , the pull-back in cohomology of the left multiplication by w (see Subsection 6.1). We denote this action by w * . This action is trivial in non-equivariant cohomology and extends to an action on equivariant quantum cohomology QH * T (G/P ). In this paper we obtain the following formula in the quantum equivariant cohomology QH * T (G/P ) for any parabolic subgroup P ⊂ G (see Theorem 6.9).

Theorem 1.1. Let i be a cominuscule node. In QH * T (G/P ) we have σ P (v i ) × v * i (σ P (w)) = q ηP (̟ ∨ i -w -1 (̟ ∨ i )) σ P (v i w). This result corrects our formula in [CMP09, Theorem 1] which was wrong in the equivariant setting (the action v * i on the second factor on the LHS was missing). The error in [START_REF] Chaput | Affine symmetries of the equivariant quantum cohomology ring of rational homogeneous spaces[END_REF] comes from an incorrect description of the ring structure of H T * (ΩK ad ) the equivariant homology of the adjoint affine grassmannian (see Section 5). If ΩK is the affine grassmannian for G, the incorrect claim ([CMP09, Page 12]) was that H T * (ΩK) should be isomorphic to Z ⊗ H T * (ΩK). This is not true as explained in Section 5 (see Remark 5.6). This is corrected in the present paper. Especially, in Proposition 5.2, we prove the S-algebra isomorphism (here S = H * T (pt)):

H T * (ΩK ad ) ≃ S[P ∨ ] ⊗ S[Q ∨ ] H T * (ΩK)
. The incorrect product formula was then used only once in [START_REF] Chaput | Affine symmetries of the equivariant quantum cohomology ring of rational homogeneous spaces[END_REF]Proposition 3.16]. We give a correct version of Proposition 3.16 in [START_REF] Chaput | Affine symmetries of the equivariant quantum cohomology ring of rational homogeneous spaces[END_REF] in Proposition 5.14.

We tried to write this paper as independently from [START_REF] Chaput | Affine symmetries of the equivariant quantum cohomology ring of rational homogeneous spaces[END_REF] as possible and included many preliminary results on the algebra and the module structure of the extended affine Hecke algebra A aff (see Section 3) and on its module structure M which is isomorphic to H T * (ΩK ad ) the homology of the adjoint affine grassmannian. We also added new results. Especially we provide a generalization of a formula in [START_REF] Lam | Schubert polynomials for the affine Grassmannian[END_REF]Proposition 5.4] to coweights for the map j ad : H T * (ΩK ad ) → Z A aff (S) (see Proposition 7.1).

Proposition 1.2. Let µ ∨ ∈ P ∨ be antidominant and set

W µ ∨ = s αi | i ∈ [1, r] and α i , µ ∨ = 0 = {w ∈ W | w(µ ∨ ) = µ ∨ }. Then j ad (ξ t µ ∨ ) = w∈W/W µ ∨ A t w(µ ∨ ) .
Finally, we use this formula to give an explicit formula for the image of the map j :

H T * (ΩK) → Z A aff (S) for the special elements τ i (v i ) = τ i v i τ -1 i (see Proposition 7.4).
Here W - aff denotes the set of minimal representatives of the quotient W aff /W .

Proposition 1.3. We have τ i (v i ) ∈ W - aff and j(ξ τi(vi) ) = w≤Lvi v≤v -1 I τ i (ξ v (v -1 i ))A τi(w)viw -1 A v ,
where ≤ is the Bruhat order and ≤ L the weak left Bruhat order. 

Notations

In this section, we fix notation for affine Kac-Moody Lie algebras, we introduce the finite group Z and define the extended affine Weyl group W aff .

2.1. Affine Lie algebras. We denote by g a simple finite-dimensional Lie algebra of rank r, and by h a Cartan subalgebra. We denote by G the simply-connected group corresponding to g and by G ad the adjoint group. The affine Kac-Moody group corresponding to G will be denoted by G and P ⊂ G is the parabolic subgroup such that G/P is the affine Grassmannian.

The corresponding affine Lie algebra will be denoted by g aff , with Cartan subalgebra h aff . The simple roots are denoted (α i ) i∈[1,r] and the null-root, orthogonal to all the simple roots (α i ) i∈[1,r] , will be denoted by ǫ. Recall that we have the equality ǫ = Θ + α 0 , where Θ is the highest root of g. As in [Kac90, p.82] we will use the decompositions h ∨ aff = h ∨ ⊕ CΛ 0 ⊕ Cǫ and h aff = h ⊕ CK ⊕ Cd. We denote by R aff the set of roots of g aff and by R those of g.

We denote by Q, P, Q ∨ , P ∨ the root, weight, coroot, coweight lattices of g. We also denote by S the symmetric algebra on P . 2.2. Affine Weyl groups. Let W be the Weyl group of g and let W aff = Q ∨ ⋊ W be the affine Weyl group. For λ ∨ ∈ Q ∨ , the corresponding element in W aff will be denoted by t λ ∨ . The reflection associated to a root α will be denoted by s α . The group W aff is a Coxeter group with Coxeter generators s i for 1 ≤ i ≤ r and s 0 = t Θ ∨ s Θ ([Kum02, Prop 13.1.7], see also Lemma 2.7).

Define the extended affine Weyl group W aff := P ∨ ⋊ W ⊃ W aff . The group W aff acts on P ⊕ Zǫ while the group by W aff acts only on

Q ⊕ Zǫ via (1) wt λ ∨ • (µ + nǫ) = w(µ) + (n -µ, λ ∨ )ǫ wt µ ∨ • (λ + nǫ) = w(λ) + (n -λ, µ ∨ )ǫ
where we have λ ∈ Q, λ ∨ ∈ Q ∨ , µ ∈ P, µ ∨ ∈ P ∨ . Note that in general W aff does not act on P ⊕ Zǫ since P, P ∨ ⊂ Z in general.

We may however define an actions of W aff on P ∨ (and therefore on Q ∨ ) by prescribing that translations do not act: we simply set wt λ ∨ (µ ∨ ) = w(µ ∨ ) for w ∈ W and λ ∨ , µ ∨ ∈ P ∨ . Notation 2.1. Since an element in Q ∨ is also an element in Q ∨ ⊕Zδ, we will denote by w • λ ∨ the result of the action of w ∈ W aff on λ ∨ as an element in Q ∨ ⊕ Zδ and by w(λ ∨ ) the element in Q ∨ .

Recall the definition of the fundamental alcove

A • = {λ ∈ h ∨ R | λ, α ∨ i ≥ 0 for all i ∈ [1,
r] and λ, Θ ∨ ≤ 1}. The stabiliser of A • in W aff will be denoted by Z; it is a subgroup of W aff isomorphic to P ∨ /Q ∨ [LS10, §10.1]. In loc. cit., the authors also prove the following result.

Lemma 2.2. Let τ ∈ Z. The conjugation by τ is an automorphism of the Coxeter group W aff . In fact, there exists an automorphism f τ of the affine Dynkin diagram such that ∀i ∈ I ∪ {0} , τ s αi τ -1 = s τ •αi = s α fτ (i) . In particular, we have τ

• ǫ = ǫ. Notation 2.3. For x ∈ W aff , set τ ( x) := τ xτ -1 ∈ W aff . We have ℓ(τ ( x)) = ℓ( x).
Lemma 2.4. An element τ in Z permutes the positive real roots.

Proof. According to Lemma 2.2, we have τ • ( n j α j + nδ) = n j α fτ (j) + nδ. Since a real root α + nδ is positive if and only if n > 0 or n = 0 and α > 0, τ indeed permutes positive roots.

As explained in [START_REF] Chaput | Affine symmetries of the equivariant quantum cohomology ring of rational homogeneous spaces[END_REF], W aff is not a Coxeter group, but we have a well defined length function.

Definition 2.5. Every element x ∈ W aff can be uniquely written as τ x with τ ∈ Z and x ∈ W aff

(1) Define the length function by ℓ(x) := ℓ( x).

(2) Define a partial order on W aff by τ x ≤ σ y ⇐⇒ τ = σ and x ≤ y.

Covering relations in W aff for the above partial order are defined by x ⋖ y if x ≤ y and ℓ(x) = ℓ(y) -1.

Remark 2.6. The length of x ∈ W aff is also the number of inversions, namely the cardinal of the set I(x) = {α ∈ R aff | α > 0, α is real and x(α) < 0}. Indeed, for x = τ x, by Lemma 2.4, we have I(x) = I( x).

2.3.

Translations. We will need the following lemma.

Lemma 2.7. Let α ∈ R. We have

t α ∨ = s ǫ-α s α . Proof. Set K ⊥ = {µ ∈ h ∨ aff | µ, K = 0}
. By [Kac90, p.87], it is enough to compute s ǫ-α s α (µ) for µ ∈ K ⊥ . We have

s ǫ-α s α (µ) = µ -µ, (ǫ -α) ∨ (ǫ -α) -µ, α ∨ α + µ, α ∨ α, (ǫ -α) ∨ (ǫ -α).
Now, for any β ∈ R aff , we have by [Kac90, §2.3.5 and §6.2.3]:

µ, (ǫ + β) ∨ = 2(ǫ + β, µ) (ǫ + β, ǫ + β) = 2(β, µ) (β, β) = µ, β ∨ .
Therefore,

s ǫ-α s α (µ) = µ + µ, α ∨ (ǫ -α) -µ, α ∨ α -2 µ, α ∨ (ǫ -α) = µ -µ, α ∨ ǫ = t α ∨ (µ) ,
where the last equality follows from the definition of t α ∨ in [Kac90, §6.5.5].

Corollary 2.8. For α ∈ R, k ∈ Z and µ ∨ ∈ P ∨ , we have s α+kǫ (µ ∨ ) = s α (µ ∨ ).

Proof. We have

s α+ǫ (µ ∨ ) = s α+ǫ t -α (µ ∨ ) = s α+ǫ s α+ǫ s -α (µ ∨ ) = s -α (µ ∨ ) = s α (µ ∨ ).
The result follows by induction.

extended nil-Hecke ring

The goal of this section is to extend the notion of the nil-Hecke ring defined by Kostant and Kumar [START_REF] Kostant | The nil Hecke ring and cohomology of G/P for a Kac-Moody group G[END_REF]. This ring was used in [START_REF] Lam | Quantum cohomology of G/P and homology of affine Grassmannian[END_REF] to compare the quantum cohomology of G/P and the homology of affine Grassmannians ΩK. We need a refined version of this nil-Hecke ring that enables dealing with ΩK ad the adjoint affine grassmannian (see Section 5).

3.1. Definition. We extend several classical object in particular the affine nil-Hecke algebra. Our reference for these classical objects is Kumar's book [START_REF] Kumar | Kac-Moody groups, their flag varieties and representation theory[END_REF].

Definition 3.1. Recall that the ring Q aff is (2) Q aff = w∈W aff Frac(S) δ w
We define the following extended version:

(3)

Q aff = w∈ W aff Frac(S) δ w
In both cases, the ring structure is defined by the equations δ u δ v = δ uv and δ u s = u(s)δ u , for u, v ∈ W aff resp. u, v ∈ W aff , and s ∈ S.

Definition 3.2. As in [START_REF] Kumar | Kac-Moody groups, their flag varieties and representation theory[END_REF], we consider particular elements in Q aff .

(1) For i ∈ I, set A i = 1 αi (δ e -δ si ). For i = 0, set A 0 = -1 Θ (δ e -δ s0 ) (note that this is coherent with the forthcoming Definition 3.6).

(2) For w ∈ W aff and for w = s i1 • • • s i ℓ a reduced expression. We set:

A w = A i1 • • • A i ℓ .
By [Kum02, Theorem 11.1.2], the right hand side does not depend on the chosen reduced expression.

Recall that for x ∈ W aff , there is a unique decomposition x = τ x with τ ∈ Z and x ∈ W aff .

Definition 3.3. Let x = τ x ∈ W aff , we set A w = δ τ A x .
Definition 3.4. As in [START_REF] Kostant | The nil Hecke ring and cohomology of G/P for a Kac-Moody group G[END_REF], the (extended) nil-Hecke ring is generated over S by the elements A w .

(1) The nil-Hecke ring is

A aff = w∈W aff S • A w ⊂ Q aff .
(2) The extended nil-Hecke ring is

A aff = w∈ W aff S • A w ⊂ Q aff .
Remark 3.5. We will see below that both are indeed subrings of Q aff .

3.2. Definition and properties of A α . It will be helpful to generalize the definition of A i in the following way.

Definition 3.6. For a real root α = γ + kǫ with γ ∈ R, set A α = 1 γ (δ e -δ sα ). These elements satisfy the following properties.

Proposition 3.7. Let w ∈ W aff , α ∈ R aff a real root and λ ∈ Q. Then we have:

(1)

δ w A α δ w -1 = A w(α) . (2) A α λ = s α (λ)A α + λ, α ∨ 1.
Proof. Let w = ut µ ∨ , α = γ + kǫ, λ ∈ P be as in the proposition. Then,

δ w A α δ w -1 = δ w 1 γ (δ e -δ sα )δ w -1 = 1 u(γ) δ w (δ e -δ sα )δ w -1 = 1 u(γ) (δ e -δ wsαw -1 ) = 1 u(γ) (δ e -δ s w(α) ) = A w(α) .
For the second point, we use [LS10, §6.1] and the above conjugation relation. Let w ∈ W aff and i ∈ I ∪ {0} be such that α = w(α i ). We have

A α λ = δ w A i δ w -1 λ = δ w A i w -1 (λ)δ w -1 = δ w (s i w -1 (λ)A i + w -1 (λ), α ∨ i )δ w -1 = ws i w -1 (λ)δ w A i δ w -1 + λ, w(α i ) ∨ = s α (λ)A α + λ, α ∨ .
Remark 3.8. The second formula in the above proposition generalizes the usual relation satisfied by the elements A i (see for example [LS10, §6.1]).

Corollary 3.9. For any real root α, we have A α ∈ A aff .

Corollary 3.10. The (extended) nil Hecke rings A aff and A aff are subrings of Q aff .

Proof. The second formula above shows that for s, s ′ ∈ S and u, v ∈ W aff , the product sA u s ′ A v lies in A aff therefore A aff is a ring. The first formula proves that for τ, σ ∈ Z and for u, v ∈ W aff , we have

δ τ A u δ σ A v = δ τ δ σ A σ -1 (u) A v ∈ A aff proving that A aff is a ring.

Module and ring structures of A aff

In this section we present three different descriptions of A aff and describe its S-module structure and its ring structure in each case.

4.1. S-module structure of A aff . Recall that we have an injection of W aff in the group of invertibles of A aff , given by w → δ w : in fact δ si = 1 -α i A i ∈ A aff thus δ w ∈ A aff for all w ∈ W aff . Therefore the subgroup Q ∨ ⊂ W aff also injects in A aff , and since A aff is a ring we have an injection of the Laurent polynomial algebra

Z[Q ∨ ] inside A aff . Thus A aff is Z[Q ∨ ]-module via left mutliplication. The natural Z-module basis of Z[Q ∨ ] will be denoted by (h λ ∨ ) λ ∨ ∈Q ∨ .
We now introduce two new algebraic models of A aff .

Definition 4.1. Let ϕ 1 , ϕ 2 be the following morphisms of Z-modules:

ϕ 1 : Z[P ∨ ] ⊗ Z[Q ∨ ] A aff → Q aff h λ ∨ ⊗ A w → δ t λ ∨ A w , ϕ 2 : Z[Z] ⊗ Z A aff → Q aff τ ⊗ A w → δ τ A w .
Note that A aff has a structure of S-bimodule, thus also the two tensor products in this definition. Both maps ϕ 1 and ϕ 2 are S-linear on the right, moreover ϕ 1 is also S-linear on the left whereas ϕ 2 is not.

Proposition 4.2. With the above notations,

Im(ϕ 1 ) = Im(ϕ 2 ) = A aff . Moreover, if J ⊂ A aff is a left ideal, then ϕ 1 (Z[P ∨ ] ⊗ Z[Q ∨ ] J) = ϕ 2 (Z[Z] ⊗ Z J).
Proof. Observe that ϕ 1 is well-defined:

ϕ 1 (h λ ∨ ⊗ 1) = ϕ 1 (1 ⊗ δ t λ ∨ ) = δ t λ ∨ for λ ∨ ∈ Q ∨ . We now prove that ϕ 1 (Z[P ∨ ] ⊗ J) ⊂ ϕ 2 (Z[Z] ⊗ J). Let λ ∨ ∈ P ∨ : there exists τ ∈ Z and w ∈ W aff such that t λ ∨ = τ w. Then for a ∈ J, we have ϕ 1 (h λ ∨ ⊗ a) = δ t λ ∨ a = δ τ δ w a ∈ ϕ 2 (Z[Z] ⊗ J) since δ w a ∈ J. The reverse inclusion ϕ 2 (Z[Z] ⊗ J) ⊂ ϕ 1 (Z[P ∨ ] ⊗ J)
follows similarly from the fact that any element in Z can be written as a product t λ ∨ u for some λ ∨ ∈ P ∨ and u ∈ W . Finally, the equality Im(ϕ 2 ) = A aff follows from the definition of A aff (Definition 3.4).

4.2.

Ring structure of A aff . We give the description of the ring structure of A aff according to the given three equivalent definitions of this module.

Proposition 4.3. Let x, y ∈ W aff , then we have

A x A y = A xy if ℓ(xy) = ℓ(x) + ℓ(y) 0 otherwise .
Proof. Write x = σ x and y = τ y with σ, τ ∈ Z and x, y ∈ W aff . Recall that for u, v ∈ W aff , we have:

A u A v = A uv if ℓ(uv) = ℓ(u) + ℓ(v) 0 otherwise .
By Lemma 2.2, we have

A x A y = δ σ A x δ τ A y = δ σ δ τ A τ -1 ( x) A y = δ στ A τ -1 ( x) y if ℓ(τ -1 ( x) y) = ℓ(τ -1 ( x)) + ℓ( y) 0 otherwise But ℓ(τ -1 ( x) y) = ℓ(xy) since xy = σ xτ y = στ τ -1 ( x) y, and ℓ(τ -1 ( x)) + ℓ( y) = ℓ( x) + ℓ( y) = ℓ(x) + ℓ(y).
The result follows.

We now express the product in

A aff = ϕ 1 (Z[P ∨ ] ⊗ Z[Q ∨ ] A aff )
. Note that we need to compute the product (δ t λ ∨ A u )(δ t µ ∨ A v ). We therefore need to "move" δ t µ ∨ to the left of A u . The following proposition gives formulas for this.

Proposition 4.4. Let λ ∨ ∈ P ∨ and let α = γ + kǫ ∈ R aff . Then:

(1)

A α δ t λ ∨ = δ sα(t λ ∨ ) A α + 1 γ (δ t λ ∨ -δ t sα(λ ∨ ) ). (2) δ t λ ∨ -δ t sα(λ ∨ ) = δ t λ ∨ (1 -δ t -α,λ ∨ α ∨ ), (3) 1 -δ t nα ∨ = (1 + δ t α ∨ + • • • + δ t (n-1)α ∨ )(1 -δ t α ∨ ) for n ∈ N, (4) 1 -δ t -α ∨ = γ(A α -γA α A ǫ-α + A ǫ-α ).
Proof. (1) From the equality s α t λ ∨ = t sα(λ ∨ ) s α , we get δ sα δ t λ ∨ = δ t sα(λ ∨ ) δ sα in A aff . By definition of A α (Definition 3.6), this relation implies

(1 -γA α )δ t λ ∨ = δ t sα(λ ∨ ) (1 -γA α ) . Thus we get γA α δ t λ ∨ = γδ t sα(λ ∨ ) A α + δ t λ ∨ -δ t sα(λ ∨ ) .
(2) and (3) are easy consequences of the product formulas in Q aff . (4) By Lemma 2.7, we have

1 -δ t -α ∨ = 1 -δ sαsǫ-α = 1 -(1 -γA α )(1 + γA ǫ-α ) = γA α -γA ǫ-α + γA α γA ǫ-α = γA α -γA ǫ-α + γ (s α (γ)A α + α ∨ , γ ) A ǫ-α = γA α + γA ǫ-α -γ 2 A α A ǫ-α ,
where we used Proposition 3.7 on the fourth line.

The ring structure in 

A aff = ϕ 2 (Z[Z] ⊗ Z A aff ) is
ϕ 2 (σ ⊗ a) • ϕ 2 (τ ⊗ b) = ϕ 2 (στ ⊗ τ -1 (a)b) .
Proof. This follows from the fact that in A aff , we have δ σ aδ τ b = δ σ δ τ τ -1 (a)b .

In the next proposition, we give an explicit formula for the commuting relation of the elements A x and λ ∈ P , generalizing [KK86, Proposition 4.3.b]: Proposition 4.6. Let x ∈ W aff and let λ ∈ P . We have:

A x λ = x(λ) A x + α: xsα⋖x λ, α ∨ A xsα ,
where the sum runs over positive real roots α such that xs α ⋖ x.

Proof. Let x = τ x ∈ W aff with τ ∈ Z and x ∈ W aff . Let λ ∈ P . According to Definition 3.3, we have A x = δ τ A x . Using [KK86, Proposition 4.3.b], we get (sums always run over positive real roots):

A x λ = δ τ A x λ = δ τ x(λ)A x + δ τ α: xsα⋖ x λ, α ∨ A xsα = τ x(λ)δ τ A x + α: xsα⋖ x λ, α ∨ δ τ A xsα = x(λ) A x + α: xsα⋖ x λ, α ∨ A xsα .
Since, by Definition 3.3, the relation xs α ⋖ x holds if and only if the relation xs α ⋖ x holds, we get the result.

4.3.

Module over A aff . We now define a natural module over A aff which will be identified in the next section with the homology of the adjoint affine Grassmmannian ΩK ad . Definition 4.7. Let W - aff resp. W - aff be the set of minimal length representatives of the quotient W aff /W resp. W aff /W . By [LS10, Lemma 3.3], W - aff is the set of elements w = ut λ ∨ such that λ ∨ ≤ 0 and ∀i ∈ I, λ ∨ , α i = 0 =⇒ u(α i ) > 0 .

We generalize the characterization of W - aff as follows:

Lemma 4.8. We have ut λ ∨ ∈ W - aff if and only if λ ∨ ≤ 0 and for all i in I it holds λ ∨ , α i = 0 =⇒ u(α i ) > 0 .

Proof. Recall that we have a length formula in W aff similar to the one in W aff :

ℓ(ut λ ∨ ) = α∈R + | λ ∨ , α + χ(u(α) < 0)| , where χ(P) = 1 if P is true and χ(P) = 0 if P is false. This is proved in [CMP09, Corollary 3.13]. It follows that ℓ(ut λ ∨ s i ) -ℓ(ut λ ∨ ) = | λ ∨ , -α i + χ(u(α i ) > 0)| -| λ ∨ , α i + χ(u(α i ) < 0)| .
This is non-negative for all i in I if and only if for all i, λ ∨ , α i ≤ 0, and λ ∨ , α i = 0 implies u(α i ) > 0. Definition 4.9. For each w ∈ W - aff , we define a variable ξ w and we set

M = w∈W - aff S • ξ w .
Recall [LS10, §6.2] that we may define a left A aff -module structure on M via:

A w • ξ u = ξ wu if ℓ(wu) = ℓ(w) + ℓ(u) and wu ∈ W - aff , 0 otherwise .
As left A aff -module, we have an isomorphism

M ≃ A aff /J, where J = w ∈W - aff S • A w .
Using Proposition 4.2, we define similarly a left ideal in A aff .

Definition 4.10.

Let J = ϕ 1 (Z[P ∨ ] ⊗ Z[Q ∨ ] J) = ϕ 2 (Z[Z] ⊗ Z J) = w ∈ W - aff A w .
Definition 4.11. We introduce the following three modules.

• Let M 1 be the S-module

Z[P ∨ ] ⊗ Z[Q ∨ ] M . • Let M 2 = Z[Z] ⊗ Z M
. This is an A aff -module with the action given by (σ ⊗ a)

• (τ ⊗ ξ) = στ ⊗ τ -1 (a) • ξ, for σ ⊗ a ∈ Z[Z] ⊗ Z A aff = A aff . • Let M 3 = w∈ W - aff S • ξ w .
This is an A aff -module with the action given by

A w • ξ u = ξ wu if ℓ(wu) = ℓ(w) + ℓ(u) and wu ∈ W - aff , 0 otherwise , for A w ∈ A aff = w∈ W aff S • A w .
Proposition 4.12. With the above definitions,

(1) Moding out by J, the morphism ϕ 1 induces an S-module isomorphism M 1 → A aff / J. (2) Moding out by J, the morphism ϕ 2 induces an A aff -module isomorphism M 2 → A aff / J (which is not S-linear if we give M 2 the tensor product Smodule structure).

(3) The left A aff -modules A aff / J and M 3 are isomorphic.

Proof. This proposition follows easily from Propositions 4.3 and 4.5.

Remark 4.13. The A aff -module structure induced on M 1 by the isomorphism in Proposition 4.12.(1) can also be described via Proposition 4.4.

Definition 4.14. The A aff -module defined by one of the above equivalent definitions will be denoted by M .

Homology of the adjoint affine Grassmannian ΩK ad

In this section, we recall the adjoint affine Grassmannian ΩK ad , we prove that the A aff -module M is isomorphic to the homology of ΩK ad , we define a ring structure on this module and study the compatibility of these two structures. 

u,v = ξ u (v) = ξ u , v and D = (d u,v ) u,v∈W . If (f w ) w∈W is the basis of S W given by f u , v = f u (v) = δ u,v , then we have (ξ u ) u = D(f u ) u . Given the identification [Kum02, 11.1.4(2)], we also have f u , δ v = δ u,v .
The dual of H * T (G/B) is H T * (G/B) and identifies as an S-module with the Ssubalgebra A of A aff generated by (A w ) w∈W :

(4) 

H T * (G/B) ≃ w∈W S • A w Note that (A w ) w∈W is the dual basis to (ξ w ) w∈W i.e. ξ u , A v = ξ u (A v ) = δ u,v (see [Kum02,
A u = v c u,v δ v with C = (c u,v
) u,v∈W a matrix with coefficients in S, in particular, we have

(A v ) v = C(δ v ) v .
We have the following relation between the matrices C and D.

Fact 5.1 (See [Kum02, 11.1.7.(a)]). We have D -1 = C T . Thus,

δ v = w≤v ξ w (v)A w .
Proof. In fact, from the identity

(A v ) v = C(δ v ) v , we deduce that (δ v ) v = C -1 (A v ) v = D T (A v ). Since D T v,w = ξ w (v)
and the matrix D is triangular, we get the result. Note also that an explicit formula for the coefficients ξ w (v) is known: see [Kum02, Proposition 11.1.11]. 5.2. Affine Grassmannian and the Pontryagin ring structure. Let G be the simply-connected almost simple group associated to g, and let G ad be the adjoint quotient of this group. Let K resp. K ad be a maximal compact subgroup in G resp. G ad . Let ΩK resp. ΩK ad be the group of loops l with values in K resp. K ad such that l(0) is the unit element in K resp. K ad . By a loop we mean a map l : S 1 → K (ad) that extends to a meromorphic map D • → G (ad) , where D • denotes the pointed disk. Moding out a loop by the center of K yields an inclusion ΩK ⊂ ΩK ad . The action of T ∩ K on ΩK resp. ΩK ad is given by conjugation.

This implies that the equivariant homology of ΩK and ΩK ad have a natural structure of an algebra, given by the Pontryagin product which is also (T ∩ K)equivariantly homotopy equivalent to the point-wise product of loops. In this section, we will recall an algebraic model for H T ∩K * (ΩK) and give one for H T ∩K * (ΩK ad ). In particular we will describe the ring structure as well as an A aff -module structure on H T ∩K * (ΩK ad ) extending the ring structure and the A aff -module structure on H T ∩K * (ΩK). 5.3. Geometry of fixed points in ΩK ad . Since K → K ad is the universal cover of K ad , the connected components of ΩK ad are isomorphic to ΩK and are indexed by π 1 (G ad ) = π 1 (K ad ) = Z. We now describe the T -fixed points in ΩK ad . We have, in the loop space picture

(ΩK ad ) T = { ψ t λ ∨ : S 1 → K ad | λ ∨ ∈ P ∨ },
where ψ t λ ∨ (t) = exp(2iπtλ ∨ ) is the loop induced by the one-parameter subgroup λ ∨ of T ad (the maximal torus of K ad ). For λ ∨ ∈ P ∨ , let [λ ∨ ] be its class in P ∨ /Q ∨ = π 1 (K ad ) and denote by ΩK ad [λ ∨ ] be the connected component of ΩK ad containing ψ t λ ∨ . We have

ΩK ad = [λ ∨ ]∈P ∨ /Q ∨ ΩK ad [λ ∨ ] .
Let m λ ∨ : ΩK → ΩK ad [λ ∨ ] be the left multiplication by ψ t λ ∨ . Since T and ψ t λ ∨ commute, this is a T -equivariant isomorphism. Thus, H T * (ΩK ad [λ ∨ ] ) ≃ H T * (ΩK).

5.4.

Reminder on H T * (ΩK). Recall from [START_REF] Kostant | The nil Hecke ring and cohomology of G/P for a Kac-Moody group G[END_REF] that ΩK has a cellular decomposition whose cells are indexed by W - aff . This implies that, as S-module, we have

H T * (ΩK) = w∈W - aff S • ξ w ≃ M.
Furthermore, according to [Lam08, (3.1) and (3.2)], A aff acts on H T * (G/P) by

A v • ξ w = ξ vw if ℓ(vw) = ℓ(v) + ℓ(w) and vw ∈ W - aff 0 otherwise
and A aff acts on H * T (G/P) by

A v • ξ w = ξ vw if ℓ(vw) = ℓ(w) -ℓ(w)
and vw ∈ W - aff 0 otherwise 5.5. S-algebra structure on H T * (ΩK ad ). We use the T ∩K-equivariant homology of the T ∩K-space ΩK ad , where T ∩K acts on ΩK ad via T ∩K → (T ∩K) ad → G ad . The inclusion T ∩ K → T induces an isomorphism in equivariant cohomology H * T (pt) → H * T ∩K (pt). Note that we have H T ∩K (ΩK) ≃ H T ∩K (G/P) ≃ H T (G/P), where G/P is the affine Grassmannian. Abusing notations slightly, we will denote in the following H T ∩K (ΩK) simply by H T (ΩK), and similarly for H T (ΩK ad ). The T -equivariant cohomology of the point is the symmetric algebra on P , namely S, see [Br98, p.5], so that the homology H T * (ΩK ad ) will be an S-module and even an S-algebra. We are not considering T ad -equivariant homology.

Proposition 5.2. As S-algebras, we have:

H T * (ΩK ad ) ≃ S[P ∨ ] ⊗ S[Q ∨ ] H T * (ΩK). Proof.
We have the following inclusions that are compatible with pointwise multiplication and T -equivariant inducing S-algebra morphisms

ΩK T / / ΩK (ΩK ad ) T / / ΩK ad , H T * (ΩK T ) / / H T * (ΩK)
Proof. As already explained in the proof of Proposition 5.2, we have

δ t λ ∨ • ψ t µ ∨ = ψ t λ ∨ +µ ∨ . We need to check that δ w • ψ t µ ∨ = ψ t w(µ ∨ ) . But our identification of H T * (ΩK ad ) with M identifies ψ t µ ∨ with h µ ∨ ⊗ 1. Recall that 1 = [δ] ∈ A aff / J, so that h µ ∨ ⊗ 1 = [δ t µ ∨ ] and δ w • ψ t µ ∨ = δ w • [δ t µ ∨ ] = [δ w δ t µ ∨ ] = [δ w δ t µ ∨ δ w -1 ] since δ w -1 ∈ J. We get δ w • ψ t µ ∨ = [δ w δ t µ ∨ δ w -1 ] = [δ tw (µ ∨ ) ] = ψ tw(µ ∨ )
proving the result. 5.6. Compatibility between the ring and the A aff -module structure. The above description of H T * (ΩK ad ) as ring and as A aff -module is not enough for our purposes: we need to be able to multiply two classes of the form σ ⊗ ξ x and τ ⊗ ξ y , see also Remark 5.6. To this end, we recall the definition and properties of j ad given in [CMP09, §3.3].

Proposition 5.8. There is an S-algebra isomorphism j ad : H T * (ΩK ad ) → Z A aff (S). It satisfies:

(1) j ad (ξ)

• ξ ′ = ξξ ′ for ξ, ξ ′ ∈ H T * (ΩK ad ) ; (2) j ad ( ψ t λ ∨ ) = δ t λ ∨ for λ ∨ ∈ P ∨ .
For w ∈ W - aff , j ad ( ξ w ) is characterized by the two following properties:

(a) j ad ( ξ w ) is congruent to A w modulo x∈W \{e} A aff • A x ; (b) j ad ( ξ w ) belongs to Z A aff (S).
The map j ad has the following equivariance property:

Proposition 5.9. Let u ∈ W, λ ∨ ∈ P ∨ , ξ ∈ H T * (ΩK ad ). Then (1) j ad (ut λ ∨ • ξ) = δ t u(λ ∨ ) δ u j ad ( ξ)δ u -1 = δ ut λ ∨ j ad ( ξ)δ u -1 ; (2) δ t λ ∨ j ad ( ξ) = j ad ( ξ)δ t λ ∨ .
Proof. (1) Let s ∈ S be a scalar, we have:

• j ad (ut λ ∨ • s ξ) = j ad (u(s)ut λ ∨ • ξ) = u(s)j ad (ut λ ∨ • ξ) ; • δ t u(λ ∨ ) δ u j ad (s ξ)δ u -1 = δ t u(λ ∨ ) δ u sj ad ( ξ)δ u -1 = u(s)δ t u(λ ∨ ) δ u j ad ( ξ)δ u -1 .
Thus, by semi-linearity, it is enough to prove the result for ξ = ψ t µ ∨ . For ξ = ψ t µ ∨ , we have j ad (ut

λ ∨ • ψ t µ ∨ ) = j ad (u • ψ t λ ∨ +µ ∨ ) = j ad ( ψ t u(λ ∨ )+u(µ ∨ ) ) = δ t u(λ ∨ )+u(µ ∨ ) .
We also have

δ t u(λ ∨ ) δ u j ad ( ψ t µ ∨ )δ u -1 = δ t u(λ ∨ ) δ u δ t µ ∨ δ u -1 = δ t u(λ ∨ )+u(µ ∨ ) .
Thus the result is proved.

(2) Both terms are S-linear so we only need to check this for ξ = ψ t µ ∨ but we

have δ t λ ∨ j ad ( ψ t µ ∨ ) = δ t λ ∨ δ t µ ∨ = δ t µ ∨ δ t λ ∨ = j ad ( ψ t µ ∨ )δ t λ ∨ .
In particular, the previous Proposition allows computing j ad in terms of j:

Example 5.10.

Let τ i = v i t -̟i ∈ Z and let ξ ∈ H T * (ΩK). Then j ad (τ i • ξ) = δ τi j(ξ) δ v -1 i .
We deduce a formula allowing reducing products in the homology of ΩK ad to products in the homology of ΩK:

Corollary 5.11. Let σ = ut λ ∨ , τ = vt µ ∨ be elements in Z. Let ξ, ξ ′ ∈ H T * (ΩK ad ). Then (σ • ξ) × (τ • ξ ′ ) = στ • (ψ σ,τ × (v -1 * ξ) × (u -1 * ξ ′ )) , where ψ σ,τ = ψ u -1 (µ ∨ )-µ ∨ = ψ v -1 (λ ∨ )-λ ∨ . Proof. Since Z is abelian, στ = τ σ. We have στ = ut λ ∨ vt µ ∨ = uvt v -1 (λ ∨ )+µ ∨ and τ σ = vt µ ∨ ut λ ∨ = vut u -1 (µ ∨ )+λ ∨ . We get v -1 (λ ∨ ) + λ ∨ = u -1 (µ ∨ ) + µ ∨ so u -1 (µ ∨ ) -µ ∨ = v -1 (λ ∨ ) -λ ∨ ,
so that ψ σ,τ is well defined. We also get uv = vu.

Using Proposition 5.9, we compute:

(σ • ξ) × (τ • ξ ′ ) = j ad (σ • ξ) • (τ • ξ ′ ) = δ u δ t λ ∨ j ad ( ξ)δ u -1 δ v δ t µ ∨ • ξ ′ = δ u δ t λ ∨ j ad ( ξ)δ v δ u -1 δ t µ ∨ • ξ ′ = δ u δ t λ ∨ δ v j ad (v -1 • ξ)δ t u -1 (µ ∨ ) δ u -1 • ξ ′ = δ u δ t λ ∨ δ v δ t u -1 (µ ∨ ) j ad (v -1 • ξ)δ u -1 • ξ ′ = δ u δ t λ ∨ δ v δ t µ ∨ δ t u -1 (µ ∨ )-µ ∨ j ad (v -1 • ξ)δ u -1 • ξ ′ = στ • (ψ σ,τ × (v -1 * ξ) × (u -1 * ξ ′ )) .
Remark 5.12. In [CMP09, p.12], it is claimed that H T * (ΩK ad ) is the tensor product ring Z[Z] ⊗ Z H T * (ΩK). As explained in Remark 5.6, this is not true. However as the next corollary shows, this is true in the non equivariant homology.

Corollary 5.13. In non equivariant homology, let ξ, ξ ′ ∈ H * (ΩK ad ) and σ, τ ∈ Z, then

(σ • ξ) × (τ • ξ ′ ) = στ • ( ξ × ξ ′ ) .
Proof. Indeed, push-forwards u -1 * and v -1 * are trivial in non equivariant homology. Moreover, the equivariant classes ψ λ ∨ restrict to the class of a point in H * (ΩK ad ), which is the unit in H * (ΩK ad ). 5.7. Translations modulo P . We use [LS10, Lemma 10.1] and [CMP09, Corollary 3.15] as a definition:

(5)

(W P ) aff = ut ν ∨ | ∀γ ∈ R + P , ν ∨ , γ = 0 if u(γ) > 0 -1 if u(γ) < 0 (6) ( W P ) aff = ut ν ∨ ∈ W aff ∀γ ∈ R + P , ν ∨ , γ = 0 if u(γ) > 0 -1 if u(γ) < 0 .
Following [LS10, §10.2 and 10.3], we also define

(W P ) aff = {wt λ ∨ | w ∈ W P , λ ∨ ∈ Q ∨ P }.
Recall, from [CMP09, Section 3.4] that any element w ∈ W aff can be uniquely factorized as w 1 w 2 with w 1 ∈ ( W P ) aff and w 2 ∈ (W P ) aff and ℓ(w) = ℓ(w 1 ) + ℓ(w 2 ). We denote w 1 = π P (w). Thus ( W P ) aff is a set of representatives for the quotient W aff /(W P ) aff which will be relevant for Peterson's isomorphism (7).

Following [LS10, Section 10.4] and [CMP09, Section 3.4], define the ideals J P ⊂ M and J P ⊂ M as follows:

J P = x∈W - aff \(W P ) aff Sξ x and J P = x∈ W - aff \( W P ) aff S ξ x .
The following result corrects [CMP09, Proposition 3.16] which used the wrong product structure, see Remark 5.6. Proposition 5.14. Let x ∈ W - aff ∩ ( W P ) aff and let ν ∨ ∈ P ∨ -. Then xπ P (t ν ∨ ) ∈ W - aff ∩ ( W P ) aff . Let us write as usual x = σ x and π

P (t ν ∨ ) = τ π P (t ν ∨ ) with σ = ut λ ∨ , τ = vt µ ∨ . Then (v -1 * ξ x ) × (u -1 * ξ πP (t ν ∨ ) ) = ψ -1 σ,τ ξ xπP (t ν ∨ ) modulo J P .
Proof. The proof follows the arguments in [START_REF] Chaput | Affine symmetries of the equivariant quantum cohomology ring of rational homogeneous spaces[END_REF]. In particular, we get

(σ • ξ x ) × (τ • ξ πP (t ν ∨ ) ) = στ • ξ xπP (t ν ∨ ) modulo J P .
Using the correct product formula given in Corollary 5.11, the left hand side is

στ • (ψ σ,τ (v -1 * ξ x ) × (u -1 * ξ πP (t ν ∨ ) )) .
This proves the result since

J P ∩ M = J P (as σ x ∈ W - aff ⇔ x ∈ W - aff ).
In particular, the case P = B yields:

Corollary 5.15. Let x ∈ W - aff and let ν ∨ ∈ P ∨ -. Then xt ν ∨ ∈ W - aff . Let us write as usual x = σ x and t ν ∨ = τ t ν ∨ with σ = ut λ ∨ , τ = vt µ ∨ . Then (v -1 * ξ x ) × (u -1 * ξ t ν ∨ ) = ψ -1 σ,τ ξ xt ν ∨ .

Affine symmetries

In this section, we correct [CMP09, Section 3.5], see Remark 5.6 using the correct product formula given in Corollary 5.11 and Proposition 5.14. In particular we prove that the formulas given in [START_REF] Chaput | Affine symmetries of the equivariant quantum cohomology ring of rational homogeneous spaces[END_REF] are correct in the non equivariant setting. 6.1. Peterson's isomorphism. Proposition 5.14 is our needed result in the equivariant homology of the affine Grassmannian. Translating this formula in the quantum cohomology of G/P , we prove our main theorem. We use Peterson's isomorphism proved in [START_REF] Lam | Quantum cohomology of G/P and homology of affine Grassmannian[END_REF] to relate H T * (ΩK) and QH * T (G/P ). Let η P : Q ∨ → Q ∨ P be the projection on the coroot subspace generated by simple roots α i with α i ∈ R P . Peterson's isomorphism is the map (7)

ψ P : H T * (ΩK) P → Z[Q ∨ P ] ⊗ Z H * T (G/P ) ξ wπP (t λ ∨ ) ξ -1 πP (t µ ∨ ) → q ηP (λ ∨ -µ ∨ ) σ P (w)
where w ∈ W P and λ

∨ , µ ∨ ∈ Q ∨ -with Q ∨ -the set of antidominant elements in Q ∨ .
Remark 6.1. In the above statement we have: (1) The space H T * (ΩK) P is a quotient and a localization of H T * (ΩK) defined in [CMP09, §2.2]. The family {σ P (w), w ∈ W/W P } is the Schubert base of H * T (G/P ), and the element in

Z[Q ∨ P ] corresponding to ν ∨ ∈ Q ∨ P is denoted by q ν ∨ . We have for ν ∨ ∈ Q ∨ -the formula deg(q ν ∨ ) = α∈R + \R + P ν ∨ , α = -ℓ(t ν ∨ ).
(2) This isomorphism is graded. In fact, for very negative coweights λ ∨ , µ ∨ , the element ξ wπP (t λ ∨ ) ξ -1 πP (t µ ∨ ) has homological degree ℓ(π P (t λ ∨ )) -ℓ(w)ℓ(π P (t µ ∨ )), by [LS10, Lemma 3.3]. On the other hand, in quantum cohomology, the element q ηP (λ ∨ -µ ∨ ) σ P (w) has degree -ℓ(π P (t λ ∨ ))+ℓ(π P (t µ ∨ ))+ ℓ(w).

A Weyl group action on QH *

T (G/P ). In this subsection, we define an action of the Weyl group on H * T (G/P ) and on QH * T (G/P ) by left translation. We will prove the compatibility of this action with Peterson's isomorphism in the next subsection. Since this action is different from the action defined in Kumar [START_REF] Kumar | Kac-Moody groups, their flag varieties and representation theory[END_REF]11.3.4] we define it carefully. We start with the action on G/B and then deal with the general situation for G/P .

We define an algebraic and a geometric action of the Weyl group W on H * T (G/B). We then prove that these actions coincide.

Let n ∈ G be in the normalizer of T and let w be the corresponding element of the Weyl group. Define the left action L n : G/B → G/B by left multiplication: (2) For n in the normalizer of T , we have a commutative diagram:

L n • [x] = [n -1 x]. This action is T -equivariant if we consider the w-twisted action of T on G/B given by t • [x] = [w(t)x]. It therefore induces a w-semilinear map H * T (G/B) → H * T (G/B), denoted L * n : L * n (sξ) = w(s)L * n (ξ) for s ∈ S and ξ ∈ H * T (G/B).
G/B G/B G/P G/P L B n L P n
Here we made a difference between the action of n on G/B and G/P using superscripts. It follows that for ξ ∈ H * T (G/P ), we have

w * ξ = (L B n ) * ξ = (L P n ) * ξ ∈ H *
T (G/P ).

(3) For g ∈ G, we can consider the action of left translation L * g on non equivariant cohomology H * (G/B). By the same argument as in (1), this action is trivial. In particular, for g = n in N , we obtain that the action L * n on non equivariant cohomology is trivial.

Recall that W can be embedded in

A aff via v → δ v . Definition 6.3. Let w ∈ W . Consider H * T (G/B) as the dual of H T * (G/B) ⊂ A aff and set (w • f )(x) = f (δ w -1 x) for x ∈ H T * (G/B) = A. Proposition 6.4. For f ∈ H * T (G/B
) and w ∈ W , we have w • f = w * f . Proof. Using Frac(S)-linearity, we only need to compare these actions on the elements ξ v . We have (w

• ξ v )(δ u ) = ξ v (δ w -1 δ u ) = ξ v (δ w -1 u ) = δ v,w -1 u = ξ v (w -1 u) = (w * ξ v )(u), proving the result.
opposite signs, the last equivalences occur if and only if β ′ ∈ R P . This in turn is equivalent to β ∈ R P by (2).

For the last equivalence, note that by definition, we have (s α w ∈ W P ⇔ s α w(R + P ) ⊂ R + ). Since w ∈ W P , we have w(R + P ) ⊂ R + . Since the inversion sets of w and s α w only differ by β (or its opposite, depending on the sign of β) we get the last equivalence.

(5) Note that we have the equivalence (ℓ(s α w) < ℓ(w) ⇔ β < 0). We therefore need to prove that the left hand side of the equivalence is equivalent to β ∈ R P and β < 0. Note that since w ∈ W P , this is equivalent to β < 0.

First assume that s α x ∈ W - aff ∩ (W P ) aff and ℓ(s α x) > ℓ(x). By [LS10, Lemma

3.3], since vt µ ∨ , s α vt µ ∨ ∈ W af f m, we have ℓ(s α x) = ℓ(t µ ∨ ) -ℓ(s α v) and ℓ(x) = ℓ(t µ ∨ ) -ℓ(v).
In particular, we have ℓ(s α v) < ℓ(v), thus β ′ < 0. Since s α x ∈ (W P ) aff , we also have β ∈ R P thus β ′ ∈ R P . Now, since u ∈ W P , this implies β < 0.

Conversely, assume β < 0. By the above arguments, this implies β ∈ R P and thus s α x ∈ (W P ) aff . This also implies β ′ ∈ R P and since u ∈ W P and β ′ = u -1 (β), we get β ′ < 0. Since vt µ ∈ W - aff , -β ′ > 0 and v(-β ′ ) = -α < 0, we must have µ ∨ , β ′ = 0 and by (3), this implies s α x ∈ W - aff . We have the following equivariance property of ψ P . Proposition 6.8. For ξ ∈ H T * (ΩK) P , we have ψ P (u * ξ) = u * ξ. Proof. We may assume that u = s i , with α i a simple root. Then

u * ξ wπP (t λ ∨ ) = δ u • ξ wπP (t λ ∨ ) = (1 -α i A i ) • ξ wπP (t λ ∨
) . If ℓ(s i wπ P (t λ ∨ )) > ℓ(wπ P (t λ ∨ )) and s i wπ P (t λ ∨ ) ∈ (W P ) aff ∩ W - aff , then this is equal to ξ wπP (t λ ∨ ) -α i ξ siwπP (t λ ∨ ) . Otherwise, this is equal to ξ wπP (t λ ∨ ) .

The action s i * σ P (w) is computed in Corollary 6.5. If ℓ(s i w) < ℓ(w) and s i w ∈ W P , then this is equal to σ P (w) -α i σ P (s i w). Otherwise, this is equal to σ P (w).

Let β = w -1 (α i ). The condition s i w ∈ W P and ℓ(s i w) < ℓ(w) is equivalent to the condition ℓ(s i wπ P (t λ ∨ )) > ℓ(wπ P (t λ ∨ )) and s i wπ P (t λ ∨ ) ∈ (W P ) aff ∩ W - aff by Lemma 6.7.(5). This proves the result. 6.4. The result. We now prove our main result. For i a cominuscule node, i.e. such that ̟ ∨ i is a minuscule coweight, we let v i be the smallest element in W such that v i (̟

∨ i ) = w 0 (̟ ∨ i ) (w 0 is the longest element in W ). The coweight v i (̟ ∨ i ) = w 0 (̟ ∨ i ) is the opposite of a fundamental coweight: there exists f (i) ∈ I such that v i (̟ ∨ i ) = -̟ ∨ f (i) . Actually we have α f (i) = -w 0 (α i ) and v f (i) = v -1 i .
Theorem 6.9. Let i be a cominuscule node. In QH * T (G/P ) we have σ

P (v i ) × v * i (σ P (w)) = q ηP (̟ ∨ i -w -1 (̟ ∨ i )) σ P (v i w) .
Proof. Let w ∈ W P , we have π P (w) = w. Let ̟ ∨ i be the minuscule coweight associated to i and let µ ∨ and ν ∨ be in Q ∨ and dominant enough. As in [CMP09, §3.5], we get

π P (t -̟ ∨ i -µ ) = τ i π P (v f (i) )π P (t -(̟ ∨ i +̟ ∨ f (i) +µ) and π P (wt -ν t -̟ ∨ i -µ ) = τ i π P (v f (i) w)π P (t -(̟ ∨ i +w -1 (̟ ∨ f (i) )+µ+ν)
. For µ and ν dominant enough, the elements wt -ν , t -̟ ∨ i -µ and wt -ν t -̟ ∨ i -µ are in W - aff and their image by π P are in ( W P ) aff ∩ W - aff . We may therefore apply Proposition 5.14 to the elements wt -ν and t -̟ ∨ i -µ to get:

(v f (i) ) * ξ wπP (t -ν ∨ ) × ξ πP (v f (i) )πP (t -(̟ ∨ i +̟ ∨ f (i) +µ ∨ ) ) ≡ ξ πP (v f (i) w)πP (t -(̟ ∨ i +w -1 (̟ ∨ f (i) +µ ∨ +ν ∨ )) )
, where ≡ means equality in H T * (ΩK) P or equivalently equality modulo J P . Applying Peterson's map (7), we get thanks to Proposition 6.8 the corresponding formula in the quantum cohomology ring:

v * f (i) σ P (w)q -ηP (ν ∨ ) * ×σ P (v f (i) )q -ηP ((̟ ∨ i +̟ ∨ f (i) +µ ∨ )) = σ P (v f (i) w)q -ηP ((̟ ∨ i +w -1 (̟ ∨ f (i) )+µ ∨ +ν ∨ )) , hence finally: v * f (i) σ P (w) * σ P (v f (i) ) = q ηP (̟ ∨ f (i) -w -1 (̟ ∨ f (i) )) σ P (v f (i) w
). This concludes the proof of the theorem. Corollary 6.10. Let i be such that ̟ ∨ i is a minuscule coweight. In QH * (G/P ), we have

σ P (v i ) × σ P (w) = q ηP (̟ ∨ i -w -1 (̟ ∨ i )) σ P (v i w
) . Example 6.11. Let G be of type A 1 , so that G/B = P 1 . Let s be the non trivial element of W and α the simple root. We have

σ B (s) * (σ B (s) -α) = q .
Proof. Let i be the unique node of the Dynkin diagram of G. Then v i = s. To apply Theorem 6.9, we also set w = s. Let x resp. y be the B-stable resp. B -stable point in P 1 . The class σ B (s) is the T -equivariant class of x, and v * i σ B (s) is the T -equivariant class of y. Since [x] -[y] = α, we have v * i σ B (s) = σ B (s) -α. Denoting h = σ B (s), the theorem yields h × (h -α) = q, as claimed. Note that h 2 = q + αh is also predicted eg by [Mi07, Theorem 1].

Pieri formulas

We now give another application of Proposition 5.8 to prove a formula for j(ξ τi(vi) ), see Proposition 7.4. This gives the multiplication in H T * (ΩK) by the class ξ τi(vi) . We hope in subsequent work to deduce Pieri formulas for the nonequivariant multiplication by classes generating H * (ΩK) in all classical types. We first provide a generalization of [Lam08, Proposition 5.4] to coweights. For

µ ∨ ∈ P ∨ , set W µ ∨ = s αi | i ∈ [1, r] and α i , µ ∨ = 0 = {w ∈ W | w(µ ∨ ) = µ ∨ }. Proposition 7.1. Let µ ∨ ∈ P ∨ be antidominant. Then j ad (ξ t µ ∨ ) = w∈W/W µ ∨ A t w(µ ∨ ) .
Proof. We follow the idea of proof given in [Lam08, Proposition 5.4]. Using Lemma 4.8, we see that for w ∈ W/W µ ∨ non trivial, t w(µ ∨ ) ∈ W - aff , so that A t w(µ ∨ ) belongs to the ideal x∈W \{e} A aff • A x of Proposition 5.8. Thus, using Proposition 5.8, we only need to prove that w∈W/W µ ∨ A t w(µ ∨ ) ∈ Z A aff (S).

To prove that c := w∈W/W µ ∨ A t w(µ ∨ ) centralizes S, or equivalently commutes with any λ in P , we use Proposition 4.6 to compute A t ν ∨ λ. In this formula, the term t ν ∨ (λ) is equal to λ by (1) in §2.2. Let P be the set of pairs (ν ∨ , β) where ν ∨ ∈ W • µ ∨ , β is a positive real root, and t ν ∨ s β ⋖ t ν ∨ . We have:

(8) cλ -λc = (ν ∨ ,β)∈P λ, β ∨ A t ν ∨ s β ,
so our concern now is to prove that this sum vanishes. We consider the map ι : P → P defined by ι(ν ∨ , β) = (s β (ν ∨ ), -t ν ∨ (β)). Let (ν ∨ , β) ∈ P. We have

t ν ∨ s β = t ν ∨ s β t -ν ∨ t ν ∨ = s t ν ∨ (β) t ν ∨ = t s t ν ∨ (β) (ν ∨ ) s t ν ∨ (β) = t s β (ν ∨ ) s -t ν ∨ (β) ,
where the last equality follows from (1) and Lemma 2.8. By the length formula in [CMP09, Corollary 3.13], ℓ(t s β (ν ∨ ) ) = ℓ(t ν ∨ ) and by definition of P, ℓ(t ν ∨ s β ) = ℓ(t β ∨ ) -1. Thus, ℓ(t s β (ν ∨ ) s -t ν ∨ (β) ) = ℓ(t s β (ν ∨ ) ) -1. Moreover, by [BB05, Proposition 4.4.6], t ν ∨ (β) < 0, which implies t s β (ν ∨ ) s -t ν ∨ (β) ⋖ t s β (ν ∨ ) and -t ν ∨ (β) > 0, so (s β (ν ∨ ), -t ν ∨ (β)) ∈ P as claimed.

We also observe that λ, -t ν ∨ (β) ∨ = λ, -β ∨ = -λ, β ∨ . Finally,

-t s β (ν ∨ ) (-t ν ∨ (β)) = t s β (ν ∨ ) t ν ∨ (β) = s β t ν ∨ s β t ν ∨ (β) .
One can check that this root is equal to β, so that ι is an involution and the terms in (8) cancel pairwise.

We now prove some preliminary lemmas.

Lemma 7.2. Let i ∈ I aff . We have j ad ( ξ w0(̟ ∨ i ) ) = δ τ -1 i w≤Lvi A τi(w)viw -1 .

Proof. Since w 0 (̟ ∨ i ) ≤ 0 we may apply Proposition 7.1 and get j ad (ξ w0(̟ ∨ i ) ) = µ ∨ ∈W •w0(̟ ∨ i )

A t µ ∨ .

Thus, 

j ad (ξ w0(̟ ∨ i ) ) = µ ∨ ∈W •̟ ∨ i A t µ ∨ = w≤Lvi A wt ̟ ∨ i w -1 = w≤Lvi A wτ -1 i viw -1 = w≤Lvi A τ -1 i τi(w)viw -1 = δ τ -1
j(ξ τi(vi) ) = w≤Lvi v≤v -1 i τ i (ξ v (v -1 i ))A τi(w)viw -1 A v .
Proof. We first prove that τ i (v i ) ∈ W - aff . We know that τ i (α i ) = α 0 . Since v i ∈ W Pi , we have for 1 ≤ j ≤ n with j = i, ℓ(v i s j ) > ℓ(v i ). Since v i ∈ W , ℓ(v i s 0 ) > ℓ(v i ). Applying τ i , we deduce that for all k > 0, ℓ(τ i (v i )s k ) > ℓ(τ i (v i )). Thus, τ i (v i ) ∈ W - aff . Moreover, we know that τ i = v i t -̟ ∨ i . Therefore, v i = τ i t ̟ ∨ i = t w0(̟ ∨ i ) τ i , so that t w0(̟ ∨ i ) = v i τ -1 i = τ -1 i τ i (v i ). By Proposition 5.9, we deduce that j ad (ξ t w 0 (̟ ∨ i

) ) = δ τ -1 i j(ξ τi(vi) )δ vi . By Lemma 7.2, we deduce that δ τ -1 i j(ξ τi(vi) )δ vi = δ τ -1 i w≤Lvi A τi(w)viw -1 . Therefore, using Fact 5.1 and then Lemma 7.3, we find

j(ξ τi(vi) ) = w≤Lvi A τi(w)viw -1 δ v -1 i = w≤Lvi A τi(w)viw -1 v≤v -1 i ξ v (v -1 i )A v = w≤Lvi v≤v -1 i τ i (ξ v (v -1 i ))A τi(w)viw -1 A v .
Remark 7.5. Let x ∈ W - aff . In the non equivariant homology, we thus have

ξ τi(vi) • ξ x = ξ τi(w)viw -1 x ,
where the sum is over w ≤ L v i such that ℓ(τ i (w)v i w -1 x) = ℓ(v i ) + ℓ(x) and τ i (w)v i w -1 x ∈ W - aff . By Corollary 5.15, we know that there is only one Schubert class in the product ξ τi(vi) • ξ x , from which we deduce that there is exactly one w ≤ L v i such that ℓ(τ i (w)v i w -1 x) = ℓ(v i ) + ℓ(x) and τ i (w)v i w -1 x ∈ W - aff .

Example 7.6. Let us assume we are in type A 3 and let us write for short A 210 instead of A s2s1s0 and similarly for ξ 210 and δ 210 . Let i = 1 so that v i = s 3 s 2 s 1 and τ i (v i ) = s 2 s 1 s 0 . First we observe that

δ τ -1 i = δ 123 = (1 -α 1 A 1 )(1 -α 2 A 2 )(1 -α 3 A 3 ) = 1 -α 1 A 1 -(α 1 + α 2 )A 2 -(α 1 + α 2 + α 3 )A 3
+ α 1 (α 1 + α 2 )A 12 + α 1 (α 1 + α 2 + α 3 )A 13 + (α 1 + α 2 )(α 1 + α 2 + α 3 )A 23 -α 1 (α 1 + α 2 )(α 1 + α 2 + α 3 )A 123 .

Since τ i (α 1 ) = -θ = -(α 1 + α 2 + α 3 ), τ i (α 2 ) = α 1 and τ i (α 3 ) = α 2 , we get: 

j

  easy to describe: Proposition 4.5. Let σ, τ ∈ Z and let a, b ∈ A aff . Then:

5. 1 .

 1 Cohomology of the finite-dimensional flag manifold G/B. Recall, see for example [Kum02, Chapter 11], that H * T (G/B) has an S-basis (ξ w ) w∈W = (σ B (w)) w∈W indexed by the Weyl group. The pull-back along the map (G/B) T → G/B induces an inclusion H * T (G/B) → H * T ((G/B) T ) = S W . Viewing ξ w as a function on W , Kumar [Kum02, 11.1.6.(3)] sets d

  Fact 6.2. The above action L * n satisfies the following properties: (1) L * n depends on w and not on n itself; it will be denoted by w * in the sequel. (2) Via the inclusion H * T (G/P ) ⊂ H * T (G/B) given by pulling back the projection G/B → G/P , we have w * H * T (G/P ) ⊂ H * T (G/P ). (3) The induced action of w * on the non equivariant cohomology H * (G/B) is trivial. Proof. (1) Let N denote the normalizer of T . The map N ×G/B → G/B, (n, [x]) → L n • [x] is continuous and therefore for ξ ∈ H * T (G/B), the map N → L * n ξ is locally constant.

i

  w≤Lvi A τi(w)viw -1 . Lemma 7.3. Let s ∈ S and i ∈ I aff . We have  w≤Lvi A τi(w)viw -1   s = τ i (s) Let i ∈ I aff . Since j ad (ξ w0(̟ ∨ i ) ) = δ τ -1 i w≤Lvi A τi(w)viw -1 , we deduce that δ τ -1 i w≤Lvi A τi(w)viw -1 ∈ Z A aff (S) .Let s ∈ S, we have:δ τ -1 i ( w≤Lvi A τi(w)viw -1 ) s = sδ τ -1 i w≤Lvi A τi(w)viw -1 = δ τ -1 i τ i (s) w≤Lvi A τi(w)viw -1 ,which proves the lemma.Proposition 7.4. Let i ∈ I aff , let as above v i the maximal element in W Pi and τ i the automorphism of the affine Dynkin diagram defined by i. Then τ i (v i ) ∈ W - aff and we have:

  11.1.5], were A u is denoted by x u ). Over F = Frac(S) we also have the basis (δ w ) w∈W for H T * (G/B). Kumar, in [Kum02, 11.1.2.(e)], describes the base change:

  (ξ 210 ) = A 210 + A 321 + A 032 + A 103 + α 3 (A 2103 + A 3213 + A 0323 ) + (α 2 + α 3 )(A 2102 + A 3212 A 1032 ) + (α 1 + α 2 + α 3 )(A 2101 + A 0321 + A 1031 ) + α 3 (α 2 + α 3 )(A 21023 + A 32123 + A 10323 ) + α 3 (α 1 + α 2 + α 3 )(A 21031 + A 03231 ) + (α 2 + α 3 )(α 1 + α 2 + α 3 )(A 21012 + A 03212 + A 10312 ) + α 3 (α 2 + α 3 )(α 1 + α 2 + α 3 )(A 210123 + A 032123 + A 103123 ) .

Corollary 6.5. Let α be a simple root and w ∈ W P . We have (s α ) * σ P (w) = σ P (w) if s α w > w; σ P (w) -ασ P (s α w) if s α w < w.

Proof. We compute ((s α ) * σ P (w))(A u ) = σ P (w)(δ sα A u ) = σ P (w)((1 -αA α )A u ) = σ P (w)(A u ) -ασ P (w)(A α A u ). Now we have

This in turn gives the result. Remark 6.6.

(1) Note that, for α simple, the two conditions w ∈ W P and s α w < w imply the inclusion s α w ∈ W P since the inversion set of s α w is contained in the inversion set of w. In particular, in the second case of the above formula, the class σ P (s α w) is well defined.

(2) This formula also shows that the action w * is trivial in the non equivariant setting (indeed, in that case wet set α = 0).

The action w * is extended to QH * T (G/P ) by linearity on quantum parameters.

Compatibility of Peterson's isomorphism.

In this subsection we prove that Peterson's isomorphism is compatible with the actions u * in homology and u * in cohomology. We start with a useful lemma.

Lemma 6.7. Let w ∈ W P and let λ ∨ ∈ Q ∨ -be such that x = wπ

Let α be a simple root and let β = w -1 (α), β ′ = v -1 (α).

(1) We have w

(5) We have the equivalence:

and for γ > 0, we have the implication ( µ ∨ , γ = 0 ⇒ v(γ) > 0). The condition s α vt µ ∈ W - aff is thus equivalent to ( µ ∨ , γ = 0 ⇒ s α v(γ) > 0) for γ > 0. But since for γ = β ′ , the roots v(γ) and s α v(γ) have opposite signs, the condition s α vt µ ∨ ∈ W - aff is equivalent to µ ∨ , β ′ = 0.

(4) We have vt µ ∨ ∈ (W P ) aff therefore, for γ ∈ R + P , we have the equivalences ( µ ∨ , γ = 0 ⇔ v(γ) > 0) and ( µ ∨ , γ = -1 ⇔ v(γ) < 0). The condition s α vt µ ∈ (W P ) aff is equivalent to having the equivalences ( µ ∨ , γ = 0 ⇔ s α v(γ) > 0) and ( µ ∨ , γ = -1 ⇔ s α v(γ) < 0). Since for γ = β ′ , the roots v(γ) and s α v(γ) have