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AFFINE SYMMETRIES IN QUANTUM COHOMOLOGY:
CORRECTIONS AND NEW RESULTS

P.-E. CHAPUT AND N. PERRIN

ABsTRACT. In [CMPQ9] a general formula was given for the multiplication by
some special Schubert classes in the quantum cohomology of any homogeneous
space. Although this formula is true in the non equivariant setting, the stated
equivariant version was wrong. We provide correction for the equivariant for-
mula, thus giving a correct argument for the non equivariant formula. We also
give new formulas in the equivariant homology of the affine grassmannian that
could lead to non-equivariant Pieri formulas.

1. INTRODUCTION

In [CMPQ9] a general formula was given for the multiplication in the quantum
cohomology of any homogeneous space by some special Schubert classes coming
from cominuscule weights. Although this formula is true in the non equivariant
setting, the stated equivariant version is wrong. We provide correction for the
equivariant formula, thus giving a correct argument for the non equivariant formula.
We also provide new product formulas in the equivariant homology of the affine
grassmannian.

Let G be a semisimple simply connected algebraic group and fix 7" C B a maximal
torus and a Borel subgroup containing it. Denote by PV and QV be the coweight
and corrot lattices. A dominant coweight AY € P is minuscule if (\V,a) € {0,1}
for any positive root . A minuscule dominant coweight is a fundamental coweight.
Denote by I,, the subset of the set I of vertices of the Dynkin diagram of G
parametrising minuscule coweights.

We consider a finite group Z which has several interpretation. Define Z has

Z:=P"/Q".
Representatives for this quotient are for example the opposites of the minuscule
fundamental coweights (=} );cr,,. The group Z is also the center of G and if G*¢
the the adjoint group associated to G, then Z = 71 (G24).

The group Z can be realised as a subgroup of the Weyl group W of G as follows.
Let wg be the longest element in W. For i € I,,, define v; € W to be the smallest
element in W such that v;oo; = wow;. Then the family (v;);er,, forms a finite
subgroup of W isomorphic to Z. Finally Z can be realised as a subgroup of the
extended affine Weyl group W = W x PV (see Section below) by i — 7; :=

’Uit,wi .

For P C G a parabolic subgroup, let Ip be the set of vertices in the Dynkin
diagram such that, for ¢ € I, the simple root «; is a root of P if and only if i € Ip.

Date: June 18, 2020.
2000 Mathematics Subject Classification. 14M15, 14N35.

1


http://arxiv.org/abs/2012.04938v1

2 P.-E. CHAPUT, N. PERRIN

For w € W, denote by o (w) the Schubert class in H*(")(G/P,Z) defined by
w. Denote by Q} the coroot lattice of P and consider np : Q¥ — QV/QY the
quotient map. We define an action of the Weyl group W of G on the equivariant
cohomology H}.(G/P) using, for w € W, the pull-back in cohomology of the left
multiplication by w (see Subsection [6I]). We denote this action by w*. This action
is trivial in non-equivariant cohomology and extends to an action on equivariant
quantum cohomology QH7(G/P). In this paper we obtain the following formula
in the quantum equivariant cohomology QHY.(G/P) for any parabolic subgroup
P C G (see Theorem [6.9).

Theorem 1.1. Let i be a cominuscule node. In QHY(G/P) we have
UP(’Ui) X U?(UP(w)) = qnp(w;/,wfl(w;/))op(’uiw).

This result corrects our formula in [CMP09, Theorem 1] which was wrong in the
equivariant setting (the action v} on the second factor on the LHS was missing).
The error in [CMP09] comes from an incorrect description of the ring structure
of HI'(QK?d) the equivariant homology of the adjoint affine grassmannian (see
Section ). If QK is the affine grassmannian for G, the incorrect claim ([CMP09,
Page 12]) was that HI (QK) should be isomorphic to Z ® HI (2K). This is not
true as explained in Section [ (see Remark [5.6)). This is corrected in the present
paper. Especially, in Proposition (2] we prove the S-algebra isomorphism (here
S = Hr(pt)):

H (QK™) ~ S[P¥] ®g1qv) HY (QK).
The incorrect product formula was then used only once in [CMPQ09, Proposition
3.16]. We give a correct version of Proposition 3.16 in [CMPQ9] in Proposition
b.I4

We tried to write this paper as independently from [CMPQ09] as possible and
included many preliminary results on the algebra and the module structure of the
extended affine Hecke algebra A (see Section B]) and on its module structure M
which is isomorphic to HX (Q2K??) the homology of the adjoint affine grassmannian.
We also added new results. Especially we provide a generalization of a formula in
[Lam08, Proposition 5.4] to coweights for the map j2¢ : HI' (QK?*d) — Zz . (9)
(see Proposition [T.]).

Proposition 1.2. Let p¥ € PV be antidominant and set W,v = (sq, | © €
[1,7] and (a;, 1) =0) ={w e W | w(p") = pY}. Then

]ad(gtuv) — Z th(uv) .

weW/W,v

Finally, we use this formula to give an explicit formula for the image of the map
jHI(QK) — Z; () for the special elements 7;(v;) = w7, " (see Proposition

[C4]). Here ﬁ//d_ﬂg denotes the set of minimal representatives of the quotient Waff JW.

Proposition 1.3. We have 7;(v;) € W_ﬂ and

gﬁ(vZ Z Z Ti gv _1 ~r (w)v;w— 1Av7

w< LY v<vy

where < is the Bruhat order and <j, the weak left Bruhat order.
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We hope to use the above formula to prove Pieri type formulas in HX (QK) in
the spirit of what Lam, Lapointe, Morse and Shimozono [LLMS10] did in type A.

Acknowledgement: we thank Elizabeth Mili¢evi¢ for showing us a counterexam-
ple to [CMP09, Theorem 1] which lead to the present correction and development.
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2. NOTATIONS

In this section, we fix notation for affine Kac-Moody Lie algebras, we introduce
the finite group Z and define the extended affine Weyl group Wag.

2.1. Affine Lie algebras. We denote by g a simple finite-dimensional Lie algebra
of rank 7, and by h a Cartan subalgebra. We denote by G the simply-connected
group corresponding to g and by G®? the adjoint group. The affine Kac-Moody
group corresponding to G will be denoted by G and P C G is the parabolic subgroup
such that /P is the affine Grassmannian.

The corresponding affine Lie algebra will be denoted by ga.g, with Cartan sub-
algebra bag. The simple roots are denoted (a;);e1,-) and the null-root, orthogonal
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to all the simple roots (c)ie[1,r, Will be denoted by e. Recall that we have the
equality € = © + «p, where © is the highest root of g. As in [Kac90, p.82] we will
use the decompositions hYg = hY & CAg ® Ce and hag = h & CK & Cd. We denote
by R.g the set of roots of g.¢ and by R those of g.

We denote by @, P,QV, PV the root, weight, coroot, coweight lattices of g. We
also denote by S the symmetric algebra on P.

2.2. Affine Weyl groups. Let W be the Weyl group of g and let Wog = QY x W
be the affine Weyl group. For AV € @QV, the corresponding element in Weg will
be denoted by t)v. The reflection associated to a root a will be denoted by s,.
The group Wa,g is a Coxeter group with Coxeter generators s; for 1 < ¢ < r and
s0 = tovse ([Kum02, Prop 13.1.7], see also Lemma [27)).

Define the extended affine Weyl group Waﬂ‘ = PV xW D W,g. The group Wag
acts on P @ Ze while the group by Wa,g acts only on Q & Ze via
" wh « (4 ne) = wlp) + (0 — (1, A))e

wtyy - (A +ne) =w(X) + (n— (A pY))e

where we have A € Q,\Y € QV,u € P,u¥ € PV. Note that in general W,g does
not act on P @ Ze since (P, PV) ¢ 7 in general.

We may however define an actions of Wag on PV (and therefore on QV) by

prescribing that translations do not act: we simply set wiyv(u") = w(p") for
we W and AV, uv € PV,

Notation 2.1. Since an element in QV is ilso an element in QY @ZJ, we will denote
by w - AV the result of the action of w € Wag on AV as an element in QY @ Z¢§ and
by w(AY) the element in QY.
Recall the definition of the fundamental alcove
Ao ={xeby | (\a))>0forallie[l,r] and (\,0Y) < 1}.

The stabiliser of A, in Waff will be denoted by Z; it is a subgroup of Waff isomorphic
to PV/QV [LS10, §10.1]. In loc. cit., the authors also prove the following result.

Lemma 2.2. Let T € Z. The conjugation by T is an automorphism of the Coxeter
group Wag. In fact, there exists an automorphism f. of the affine Dynkin diagram
such that

Vie TU{0}, T80, T ' = 87.0; = Sag iy -
In particular, we have T-€ = €.

Notation 2.3. For T € W, set 7(Z) := 7271 € Wag. We have {(7(Z)) = ((Z).
Lemma 2.4. An element 7 in Z permutes the positive real roots.

Proof. According to Lemma 2, we have 7 - (3 njo; +nd) = Y njoy (jy + nd.
Since a real root a+nd is positive if and only if n > 0 or n = 0 and o > 0, 7 indeed
permutes positive roots. O

As explained in [CMP09], Wg is not a Coxeter group, but we have a well defined
length function.

Definition 2.5. Every element x € Wag can be uniquely written as 72 with 7 € Z
and T € W
(1) Define the length function by £(x) := ¢(Z).
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(2) Define a partial order on Wasr by 7 <oy<=rt=cand T <.
Covering relations in Wag for the above partial order are defined by x <y if z <y
and £(z) = £(y) — 1.

Remark 2.6. The length of x € Wag is also the number of inversions, namely the
cardinal of the set I(x) = {a € Ragr | @ > 0, is real and z(«) < 0}. Indeed, for
x = 72, by Lemma 24 we have I(x) = I(Z).

2.3. Translations. We will need the following lemma.
Lemma 2.7. Let o € R. We have tov = Se_aSa-

Proof. Set K+ = {u € bYs | (4, K) = 0}. By [Kac90, p.87], it is enough to compute
Se—aSa(1) for p € K+. We have

Se—asall) = i — (1 (e — )V (e — a) — (i, aV)ar+ (1, a)a, (¢ — a)") e — @)
Now, for any 8 € R.g, we have by [Kac90, §2.3.5 and §6.2.3]:

Vy __ 2(6+ﬂ7,u> 72([3’#)7 \Y
<:u7(€+ﬂ) >_ (6+67€+ﬁ) - (676) _<,uﬂﬂ >

Therefore,
Seasall) = -+ (ma¥)(e—a)— (1a¥)a — 2ua¥)(e - a)
= p—(paV)e=tov(p),
where the last equality follows from the definition of t,v in [Kac90l §6.5.5]. O

Corollary 2.8. For a € R,k € Z and u¥ € PV, we have sq1ke(itY) = sa(p").

Proof. We have Sa-l—e(:u'v) = Sa-l-et—a(:u'v) = Sa+65a+63—a(:u'v) = S—a(lufv) = Sa(Mv)'
The result follows by induction. ([

3. EXTENDED NIL-HECKE RING

The goal of this section is to extend the notion of the nil-Hecke ring defined by
Kostant and Kumar [KK86]. This ring was used in [LS10] to compare the quantum
cohomology of G/P and the homology of affine Grassmannians QK. We need a
refined version of this nil-Hecke ring that enables dealing with QK24 the adjoint
affine grassmannian (see Section []).

3.1. Definition. We extend several classical object in particular the affine nil-
Hecke algebra. Our reference for these classical objects is Kumar’s book [Kum02].

Definition 3.1. Recall that the ring Q.g is
(2) Qut = EP Frac(s) s,
wWEWass
We define the following extended version:
(3) Qur = P Frac(s)du
wGWaff
In both cases, the ring structure is ieﬁned by the equations d,,6, = 0y, and d,s =

u(8)dy, for u,v € Wyg resp. u,v € Wyg, and s € S.

Definition 3.2. As in [Kum02], we consider particular elements in Q.g.
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(1) For i € I, set A; = (6. — d5,). For i =0, set Ay = 5 (6. — ds,) (note
that this is coherent with the forthcoming Definition [3.6)).
(2) For w € W,g and for w = s;, - - s;, a reduced expression. We set:

Aw=As, - Ay, .

By [Kum02, Theorem 11.1.2], the right hand side does not depend on the chosen
reduced expression.

Recall that for x € Wag, there is a unique decomposition ¢ = 7& with 7 € Z
and T € Wog.

Definition 3.3. Let x = 72 € Waﬁ‘, we set A, = 0, Az.

Definition 3.4. As in [KK86], the (extended) nil-Hecke ring is generated over S
by the elements A,,.

(1) The nil-Hecke ring is
Aar= P 54w C Qur.

wEWagr
(2) The extended nil-Hecke ring is

l/&aff: @ S'chéaﬁ-
weWaff
Remark 3.5. We will see below that both are indeed subrings of @aﬁ-.

3.2. Definition and properties of A,. It will be helpful to generalize the defi-
nition of A; in the following way.

Definition 3.6. For a real root o = + ke with v € R, set A, = %(56 —ds,.)-
These elements satisfy the following properties.

Proposition 3.7. Let w € Wag, a € Rag a real root and \ € Q. Then we have:
(1) 5wAa5w*1 = Aw(a)-
(2) Au) = sa(N)As + (N a¥)1.

Proof. Let w = ut,v,a =+ ke, A € P be as in the proposition. Then,

5wAa5w*1 = 5w%(5e - 55(1)571;*1 = @610(56 - 55& )51071
- ﬁ(ae ~Ousaw=1) = (e = 0s,00) = Au(a) -

For the second point, we use [LS10, §6.1] and the above conjugation relation.
Let w € Waog and ¢ € I U {0} be such that @ = w(a;). We have
AN = §pAidu—
= 5wAiw_1()\)(5w71
= (Sw(Siw_l()\)Ai + (w‘l()\), O‘z\'/»&w*l
= ws;w H (A0 Aidy-1 + N\ w(a)Y)
= sa(MNAs+ (N aY).
O

Remark 3.8. The second formula in the above proposition generalizes the usual
relation satisfied by the elements A; (see for example [LS10] §6.1]).

Corollary 3.9. For any real root o, we have A, € Aug.
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Corollary 3.10. The (extended) nil Hecke rings A.g and Aaf}" are subrings of @af}".

Proof. The second formula above shows that for s,s’ € S and u,v € Wyg, the
product sA,s’A, lies in A,g therefore A,g is a ring. The first formula _proves that
for 7,0 € Z and for u,v € Wag, we have 6, 4,05 Ay = 0:05 Ag—1(4) Av € Aag proving
that &ag is a ring. O

4. MODULE AND RING STRUCTURES OF A,g

In this section we present three different descriptions of &ag and describe its
S-module structure and its ring structure in each case.

4.1. S-module structure of &aﬁ. Recall that we have an injection of W,g in the
group of invertibles of A,g, given by w +— §,,: in fact ds, = 1 — ; A; € Aug thus
0w € Aug for all w € Wa,g. Therefore the subgroup QY C Wag also injects in A.g,
and since A,g is a ring we have an injection of the Laurent polynomial algebra
Z]QY] inside Aug. Thus Aug is Z[QY]-module via left mutliplication. The natural
Z-module basis of Z[Q"] will be denoted by (hxv)xveqv.

We now introduce two new algebraic models of A,g.
Definition 4.1. Let (1, @2 be the following morphisms of Z-modules:

1 1 Z[PY] ®ziqv) Aag  — Qart
hAv [ Aw — 5t>\v Aw y

Y2 Z[Z] ®z Aag  — @aff
TR Ay — 0, A .

Note that A.g has a structure of S-bimodule, thus also the two tensor products in
this definition. Both maps ¢; and o are S-linear on the right, moreover ¢; is also
S-linear on the left whereas 2 is not.

Proposition 4.2. With the above notations, Im(¢1) = Im(p2) = Aag. Moreover,
if J C Aag is a left ideal, then p1(Z[PV] ®zov) J) = w2(2[Z] @z J).

Proof. Observe that ¢; is well-defined: ¢1(hyv ® 1) = p1(1 ® ¢, ) = &, for
AV € QY. We now prove that ¢1(Z[PY] ® J) C ¢2(Z[Z] ® J). Let \Y € PV:
there exists 7 € Z and w € Wa,g such that tyv = 7@w. Then for a € J, we have
e1(hav ®a) =6, a = 0:0ga € p2(Z[Z] ® J) since dga € J.

The reverse inclusion @2(Z[Z] ® J) C ¢1(Z[PV] ® J) follows similarly from the
fact that any element in Z can be written as a product tyvu for some AV € PV
and u € W. Finally, the equality Im(ps) = &ag follows from the definition of &ag
(Definition B.4]). O

4.2. Ring structure of &ag. We give the description of the ring structure of &ag
according to the given three equivalent definitions of this module.

Proposition 4.3. Let xz,y € ﬁ//ag, then we have

A4, = { Asy if Uzy) = U(x) + €(y)

0 otherwise.
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Proof. Write © = 0% and y = 7y with 0,7 € Z and Z,y € W,g. Recall that for

u,v € Wag, we have:

0 otherwise.

AA, = { Ay i L(uv) = L(u) + £(v)

By Lemma 2.2] we have
Az Ay = 6,Az0:A5
== 5057—147-71(5)14@\
_ { bor Ar1myg if (71 (@)Y) = (77 H(Z)) + ()

0 otherwise

(=2}

But ¢(771(Z)7y)

UZ) + £(y) = £(x) + L(y). The result follows.

{(zy) since zy = o1y = ot H(Z)y, and L(771(T)) + £(7)
)-

Ol

We now express the product in Aug = ©1(Z[PY] ®z1qv) Aar). Note that we need

to compute the product (d¢,, Au)(d¢,, Ay). We therefore need to “move” &,
the left of A,. The following proposition gives formulas for this.

Proposition 4.4. Let \Y € PV and let « = + ke € Rag. Then:
(1) Aabi,y = 05, (t,0)Aa + = (615Av =0t )
(2) 5t>\v - 5t3a(>\v) 5t>\v( 5t,<a»\v>av)7
(3) 1=0u,v =@ 40, + 40, )(1—0) forneN,
(4) 1- 6t,av = W(Aa - ’YAaAe—a + Ae—a)-

Proof. (1) From the equality sotxv = t,_ (av)Sa, We get s, 0¢,, = O, Os,,

a(AY)

&ag. By definition of A, (Definition B.6]), this relation implies
(1 - ’VAa)étAv = 6t5a(>\v) (1 - ’7Aoz) :
Aa + 6, — 0

(2) and (3) are easy consequences of the product formulas in @aﬂ‘.
(4) By Lemma 27 we have

1—515 v = 1—5

—a

Thus we get vAads,, = V0

sa(AY) sa(AV)°

SaSe—a

= 1—-(1—-740)(1+~v4c—0)

= F)/Aa - "YAefa + 'YAaﬁYAefa

= VAo — VAo + 7 (5a(V)Aa + (@¥,7)) Ac_a
= ’YAa + ’YAe—a - ’72A0¢A6—o¢ )

where we used Proposition [3.7] on the fourth line.

The ring structure in Ao = 02(Z[Z] @7 Aagr) is easy to describe:
Proposition 4.5. Let 0,7 € Z and let a,b € A,g. Then:
o0 @ a) - a(T @ b) = a(oT @7 (a)b).
Proof. This follows from the fact that in I&aff, we have 6,a6,b = §,6,7 1 (a)b.

to

O

In the next proposition, we give an explicit formula for the commuting relation

of the elements A, and A € P, generalizing [KK86, Proposition 4.3.b]:
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Proposition 4.6. Let x € Waff and let A € P. We have:
Adx=as(NA+ > (Na A, ,
Q: TS <<T
where the sum runs over positive real roots o such that s, < x.
Proof. Let x = 77 € %g with 7 € Z and T € W,g. Let A € P. According to
Definition [33] we have A, = 6, Az. Using [KK86, Proposition 4.3.b], we get (sums
always run over positive real roots):
AN =0 430 =06;2(N Az + 5, > (\a')As,
Q: TS <T
=12\ A+ > (N aY)i Az,
: TS <T
e+ Y (na) ., .
a: TSa<T

Since, by Definition B3] the relation Zs, <7 holds if and only if the relation xs, <z
holds, we get the result. ([

4.3. Module over Aaﬁ'. We now define a natural module over Aaﬁ' which will be
identified in the next section with the homology of the adjoint affine Grassmman-
nian QK24

Definition 4.7. Let W_g resp. Wa_ﬁ be the set of minimal length representatives

of the quotient Wag/W resp. Wag/W. By [LSI0, Lemma 3.3], W, is the set of
elements w = utyv such that \Y <0 and Vi € I, (\V, ;) =0 = u(a;) > 0.

We generalize the characterization of W g as follows:

Lemma 4.8. We have utyv € W;H if and only if \Y <0 and for all i in I it holds
A,;) =0 = u(a;) >0.
Proof. Recall that we have a length formula in Waﬁ' similar to the one in Wg:

Cutrv) = Y (A, @) + x(u(a) <0)|

a€ERT

where x(P) = 1 if P is true and x(P) = 0 if P is false. This is proved in [CMP09,
Corollary 3.13]. It follows that

Clutavsi) — E(utav) = [(AY, —aq) + x(u(ai) > 0)] = [(AY, o) + x(u(as) < 0)].
This is non-negative for all 7 in I if and only if for all ¢, (A\Y, a;) <0, and (A\Y, ;) =0
implies u(a;) > 0. O
Definition 4.9. For each w € W, we define a variable &, and we set

M= P 5 &
weW g
Recall [LS10} §6.2] that we may define a left A,g-module structure on M via:

Ay €, = Ewu if L(wu) = l(w) 4+ £(u) and wu € W,
W ST 0 otherwise.
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As left A,g-module, we have an isomorphism

M ~ A/ J, where J = @ S Ay.
wgW

Using Proposition [£:2] we define similarly a left ideal in Augr.

Definition 4.10. Let J = ¢1(Z[PY] ®ziqv) J) = 2(Z[Z]) @2 J) = P Au
wEW
Definition 4.11. We introduce the following three modules.
e Let M; be the S-module Z[PY] @z qv) M.
o Let MQ = Z[Z] ®z M. This is an &aﬁ-—module with the action given by
(c®a) - (T®&) =07@7 a) &, for 0 ®a € Z[Z] @z Aag = Aag.
o Let Mg = @ S - Ew. This is an Aug-module with the action given by
weEW
A, & = { Ewu if E(wu) = l(w) + (u) and wu € Wa_ﬁ-,
0 otherwise,
forgw El&aﬂ‘: @ S-gw.
WEWoagt
Proposition 4.12. With the above definitions,
(1) Moding out by j, the morphism @1 induces an S-module isomorphism
My — Aag/J.
(2) Modmg out by J the morphism s induces an Adﬂ‘ module isomorphism
M2 — Adff/e] (which is not S-linear if we give M2 the tensor product S-

module structure).
(8) The left Ayg-modules Ay /J and Ms are isomorphic.

Proof. This proposition follows easily from Propositions and O

Remark 4.13. The &aﬁ—module structure induced on ]T/[/l by the isomorphism in
Proposition L.121(1) can also be described via Proposition [4.41

Definition 4.14. The &Eg—module defined by one of the above equivalent defini-
tions will be denoted by M.

5. HOMOLOGY OF THE ADJOINT AFFINE GRASSMANNIAN Q) K2d

In this section, we recall the adjoint affine Grassmannian QK 24, we prove that the
A,g-module M is isomorphic to the homology of QK?4, we define a ring structure
on this module and study the compatibility of these two structures.

5.1. Cohomology of the finite-dimensional flag manifold G/B. Recall, see
for example [Kum02, Chapter 11], that H}(G/B) has an S-basis (§*)wew =
(0B (w))wew indexed by the Weyl group. The pull-back along the map (G/B)T
G/ B induces an inclusion

H7(G/B) — Hi((G/B)") = s™.

Viewing &* as a function on W, Kumar [Kum02, 11.1.6.(3)] sets dy ., = £“(v) =
(€, v) and D = (dyp)uwew- If (f¥)wew is the basis of SV given by (f* v)
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f*“(v) = 0y, then we have (£%), = D(f*),. Given the identification [Kum02]
11.1.4(2)], we also have (f*,d,) = dy v-

The dual of H}(G/B) is HI (G/B) and identifies as an S-module with the S-
subalgebra A of A,g generated by (Ay)wew:

(4) HI(G/B)~ P S- Au

weW
Note that (Ay)wew is the dual basis to (§*)wew i.e. (§%, A,) = E“(Ay) = du.0 (see
[Kum02 11.1.5], were A,, is denoted by z,). Over F' = Frac(S) we also have the
basis (8 )wew for HI (G/B). Kumar, in [Kum02, 11.1.2.(e)], describes the base

change:
Au = Z Cu,v5v

with C' = (¢y,»)uvew a matrix with coeflicients in S, in particular, we have (A,), =
C(dy)v. We have the following relation between the matrices C' and D.

Fact 5.1 (See [Kum02, 11.1.7.(a)]). We have D= = CT. Thus,
Sy =Y £"(v)Ay .

w<lv
Proof. In fact, from the identity (4,), = C(d,),, we deduce that (6,), = C71(A,), =
DT(A,). Since D, = £€*(v) and the matrix D is triangular, we get the result. [J

Note also that an explicit formula for the coefficients £*(v) is known: see [Kum02,
Proposition 11.1.11].

5.2. Affine Grassmannian and the Pontryagin ring structure. Let G be the
simply-connected almost simple group associated to g, and let G2 be the adjoint
quotient of this group. Let K resp. K?! be a maximal compact subgroup in G
resp. G, Let QK resp. QK2 be the group of loops [ with values in K resp.
K3 such that [(0) is the unit element in K resp. K2!. By a loop we mean a
map ! : S* — K@ that extends to a meromorphic map D° — G@d) where D°
denotes the pointed disk. Moding out a loop by the center of K yields an inclusion
QK c QK*. The action of TN K on QK resp. QK is given by conjugation.

This implies that the equivariant homology of QK and QK21 have a natural
structure of an algebra, given by the Pontryagin product which is also (T' N K)-
equivariantly homotopy equivalent to the point-wise product of loops. In this sec-
tion, we will recall an algebraic model for HI ™K (QK) and give one for HI ™K (QK24).
In particular we will describe the ring structure as well as an &iﬁ—module structure
on HIME(QK?) extending the ring structure and the A,g-module structure on
HIK(QK).

5.3. Geometry of fixed points in QK?4, Since K — K? is the universal cover
of K* the connected components of QK¢ are isomorphic to QK and are indexed
by m(G*) = 7 (K*) = Z. We now describe the T-fixed points in QK. We
have, in the loop space picture

(QE)T = {4y, : St — K | \Y € PV},

where th (t) = exp(2imtAY) is the loop induced by the one-parameter subgroup
AV of T®  (the maximal torus of K* ). For AV € PV, let [\Y] be its class in
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PV/QV = 7 (K*!) and denote by QK?SV] be the connected component of QK24
containing v, . We have
oK™= J[ K},
AV]epPv/QY
Let myv : QK — QK5 be the left multiplication by ¢,,. Since T' and 1)y,
commute, this is a T-equivariant isomorphism. Thus, H*T(QK[/\V] )~ HI(QK).

5.4. Reminder on HI(QK). Recall from [KK86] that QK has a cellular decom-
position whose cells are indexed by W_;. This implies that, as S-module, we have

HI(QK)= @ S-tw~M

wEW 4
Furthermore, according to [Lam08| (3.1) and (3.2)], Aag acts on HI (G/P) by

A, €y = Eow If L(vw) = £(v) + €(w) and vw € W4
v SY T ] 0 otherwise

and A.g acts on H3(G/P) by
A, €0 = { & if L(vw) = L(w) — L(w) and vw € W

0 otherwise

5.5. S-algebra structure on HI (QK?%). We use the TNK-equivariant homology
of the TN K-space QK2 where TNK acts on QK via TNK — (TNK)* — G4,
The inclusion TN K — T induces an isomorphism in equivariant cohomology
HY(pt) = Hin g (pt). Note that we have Hrax (QK) ~ Hrax (§/P) ~ Hr(S/P),
where G/P is the affine Grassmannian. Abusing notations slightly, we will denote
in the following Hrnx (2K) simply by Hz(2K), and similarly for Hy(QK?2d). The
T-equivariant cohomology of the point is the symmetric algebra on P, namely S,
see [Br98, p.5], so that the homology HI (QK??) will be an S-module and even an
S-algebra. We are not considering 7%-equivariant homology.

Proposition 5.2. As S-algebras, we have: H! (QK*!) ~ S[PV] ®g1qv) HI (QK).

Proof. We have the following inclusions that are compatible with pointwise multi-
plication and T-equivariant inducing S-algebra morphisms

Okt — S QK HT'(QKT) ——— HT(QK)
(QKad)T —>QKad, Hz“((QKad)T) ﬁHI(QKad).

Recall that we have bijections (QK>)T ~ PV and QK7 ~ QV that are group
homomorphisms since th th = ‘f/’vtxvﬂw We thus have HI ((QK*)T) ~ S[PV]
and HT(QK™T) ~ S[QV]. In particular, the above diagram induces an S-algebra
morphism S[PY] ®gov] HI (QK) — HI(QK?>?). The restriction of this map to
th @ HI(QK™) = HI (QK>*)T) is the multiplication myv. The above decom-
position of QK? in connected components gives an isomorphism of S-modules
HI QK= @ HI'(QKY)
[AV]ePY/QY
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proving that the map S[PV] ®gjov) HI (QK) — HI (QK?*) is surjective.

To prove injectivity, first note that, since HI (QK) is a free S-module and S[P"|
is a free S[QV]-module, the S-module S[PY] ®g(qv) HI (QK) is free. We therefore
only need to prove the injectivity of the map after base extension to F' = Frac(S)
the field of fractions of S. Now recall the following general result (see [Kum02,
C.8 Theorem]: on the level of T-equivariant cohomology we have isomorphisms
Hi#(QK) ®s F ~ H:(QKT) @5 F and H:(QK?*) g F ~ H:(QK*)T) @ F.
This induces isomorphisms in T-equivariant homology:

HI(QK")®s F ~ HI (QK) ®s F and H (QK*)") ©5 F ~ HI (QK*) @ F.

After base change to F, since HT (QKT) ~ F[QV] and HI (QK*)T)@gF ~ F[PY],
our map is given by

F[PY] ®@piqu FIQ¥] — F[P]
and is therefore injective. O

Recall that, as S-module, we have an isomorphism H! (Q2K) = M. In particular
the above results identifies HI (QK?) with the S-module M of Definition ET4

Corollary 5.3. As S-modules, we have: HI (QK??) ~ M.

Corollary 5.4. The exists an Aaﬁ—module structure on HY (QK?d) compatible with
the Aag-module structure on HX (K. Furthermore, for this structure, we have an

isomorphism of Aag-modules HT (QK*1) ~ M.

Proof. We define the A,g-module structure on HT(QK>). Since we have the
isomorphism of S-modules HT (QK*!) ~ M; = S[PV] ®giov] M, we may extend
the A,g-module structure on M to the &ag—module structure M. O

Remark 5.5. The above &ag—module structure on H! (QK?) also has a geometric
description, see [CMPQ9, Proposition 3.3].

Remark 5.6. The above result shows that our claim on [CMP09, Page 12] that
HT(QK?) is the tensor product ring Z[Z] @z HI (QK) is wrong: by localization
HT(QK?) is a subring of F[PV] and this Laurent polynomial algebra contains no
roots of unity, whereas Z[Z] @z HI (QK) does.

Recall that Wag can be embedded in Aaff via w — 8. The induced action is
denoted by z - € := 8, - £ for x € Wag and fe HT(QK?),
Corollary 5.7. Let w € W and AV, Y € PV, we have

wtyv - ’@Zt v = 'wt)\v ¢t v th(AV+MV)'
Proof. As already explained in the proof of Proposition 5.2} we have dy,, - ¢t v =
wtwﬂv We need to check that d,, wt v @[thwv) But our identification of
HT(QK?) with M identifies ’@Ztuv with h,v ® 1. Recall that 1 = [0] € Aag/J, s0
that by ® 1= [0, ] and 8y -y = 0w [0, ] = [0wdr,.] = [0uwdr,, 8,-1] since
Suw-1 € J. We get
Ow 'wtuv = [5w6tuv 5w*1] = [6tw(uv)] = ¢tw(;~)

proving the result. O
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5.6. Compatibility between the ring and the &aﬁ-module structure. The
above description of HI (QK??) as ring and as Aag-module is not enough for our
purposes: we need to be able to multiply two classes of the form o ® &, and 7 ® &,
see also Remark To this end, we recall the definition and properties of j24
given in [CMP09, §3.3].

Proposition 5.8. There is an S-algebra isomorphism j*¢ : HT (AK*!) — Z; (9.
It satisfies:

(1) 24(E) - & = €& for &€ € HI(AK™) ;

(2) jad(’(/ltxv) = 5t>\v fO’f’ )\V € Pv.
Forw e Wa_fp gad (Ew) is characterized by the two following properties:

(a) jad(gw) is congruent to A, modulo Ewew\{e} Aaff CAy

(b) jad(gw) belongs to Z3 ff(S).

The map j2¢ has the following equivariance property:

Proposition 5.9. Let u € W,\Y € PV, ¢ € HT(QK*). Then
(1) jad(ut,\v; £) = 5t%w)5ujad(g)5u*1 = 5utwjad(g)5u*1;
(2) 6t,,54(€) = 5 ()0, -

Proof. (1) Let s € S be a scalar, we have:

o Pt 5) = (ot 6) = u(o) s O )

o G Bud ™ (5E)ur = Gu, s, Gusi ™ (E)0r = ()61, v 0 (E)0 1.
Thus, by semi-linearity, it is enough to prove the result for £ = wtuv . For ¢ = z/)tuv ,
we have ;29 (utyv 'th v) = j*(u '{/fvtwwv) = jad(Jtu(wHu(Mv)) = 5tu(w)+u(w).
We also have ¢, V) Oy g™ (z/;t v )0yu—1 = 04 5u5tw Oy—1 = Thus the

result is proved. o
(2) Both terms are S-linear so we only need to check this for § = v, but we

have 6t/\vjad({/)vtuv) = 5t/\\/ 5tuv = 5tuv 6t/\v = jad(lztuv )5t/\v- O

w(AV) 5tu(/\v)+u(uv)'

In particular, the previous Proposition allows computing j2¢ in terms of j:
Example 5.10. Let 7; = v;t_o,, € Z and let £ € H' (QK). Then
5 €) = 61, 5(E) 6,1

We deduce a formula allowing reducing products in the homology of QK?2¢ to
products in the homology of QK

Corollary 5.11. Let 0 = utyv, 7 = vt,v be elements in Z. Let £¢ € HI(QK).
Then

(0-&) x (1-&) =07 (Yo, x (071) x (u'€)),
where 1/)017- = 1/)u71(#v),#v = 1/)v71(>\v),>\v.
Proof. Since Z is abelian, o7 = 70. We have o7 = utyvvt,y = uvt,—1(3v)q,v
and 70 = vtvuty = vub,-1v ). We get v H(AY) + AV = (1Y) + Y
u(pY) —pY =v7H(AY) = AV, so that 1, , is well defined. We also get uv = vu.
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Using Proposition [5.9] we compute:

(- &x(r-&) = o€ (r-&)

= 5u5t/\vjad(€)5u*15v5t“v g/

- 5u5t/\vjad(€)5v5u*15t“v : 5/

= 5u5t>\v 5Ujad(1)_1 . §>5tu71(“\9 5u—1 . é’

= 6“6txv 5U5tu71(“v)jad(vil : 5)571*1 ' 5/

= 6u(5tkv 5”5tuv 6tu*1(w),uvjad(v_l . §~)(5u71 . g’

= O0T:* (Q/Jo',‘r X (’U*_lg) X (u*_l I)) :
(|

Remark 5.12. In [CMP09, p.12], it is claimed that HI (Q2K?24) is the tensor prod-
uct ring Z[Z] ®z HF (QK). As explained in Remark [5.6, this is not true. However
as the next corollary shows, this is true in the non equivariant homology.

Corollary 5.13. In non equivariant homology, let E,g' € H.(QK*) and 0,7 € Z,
then

(0-&x(r-&)=07-(ExE).
Proof. Indeed, push-forwards u; ! and v, ! are trivial in non equivariant homology.

Moreover, the equivariant classes 1,v restrict to the class of a point in H, (QK?>4),
which is the unit in H,(QK??). O

5.7. Translations modulo P. We use [LS10, Lemma 10.1] and [CMPQ9, Corol-
lary 3.15] as a definition:

o s fumemen = § )

6)  (WP)ag = {ut,,v € Wagr ’ Vy e RE, (WY, v) = { _01 ﬁgg; zg } .
Following [LST0L §10.2 and 10.3], we also define (Wp)ag = {wtrv |w € Wp, AV €
Q}}. Recall, from [CMP09, Section 3.4] that any element w € W can be uniquely
factorized as wywy with wy € (Wp)aff and we € (Wp)ag and £(w) = £(w1) + £(w2).
We denote w; = wp(w). Thus (Wp)aff is a set of representatives for the quotient
Waff /(Wp)ag which will be relevant for Peterson’s isomorphism ().

Following [LS10, Section 10.4] and [CMP09, Section 3.4], define the ideals Jp C

M and J; p C M as follows:
Jp = > S¢, and Jp = > SE,.

TEW L \(WP) e €W \(WP) st

The following result corrects [CMP09, Proposition 3.16] which used the wrong
product structure, see Remark (.6

Proposition 5.14. Let x € W;H N (WP)ag and let vV € PY. Then xrp(t,) €

_—

W;H N (Wp)aﬁ‘. Let us write as usual v = 0% and wp(t,v) = Trp(t,v) with
o =utyv,7 =vt,v. Then

(&) x (u '€ ) = Yo 7¢

e P modulo Jp.
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Proof. The proof follows the arguments in [CMPQ9]. In particular, we get

(0-&) x (1-€

wm)) =0T fmj(;v) modulo Jp.

Using the correct product formula given in Corollary 5111 the left hand side is
~1 ~1
oT - (wa,r(v* &) x (u* gﬁm)))
This proves the result since Jp N M = Jp (as 07 € ﬁ//d_ﬂ SrTeWy). O

In particular, the case P = B yields:

Corollary 5.15. Let © € W;H and let v¥ € PY. Then xt,v € W;H Let us write
as usual T = oT and t,v = Tt/l,\v with o = utyv,7 = vt,v. Then

(06) x (U ) = Yorba, -

6. AFFINE SYMMETRIES

In this section, we correct [CMP09, Section 3.5], see Remark 5.6l using the correct
product formula given in Corollary [B.11] and Proposition 514l In particular we
prove that the formulas given in [CMPQ9| are correct in the non equivariant setting.

6.1. Peterson’s isomorphism. Proposition [5.14]is our needed result in the equi-
variant homology of the affine Grassmannian. Translating this formula in the
quantum cohomology of G/P, we prove our main theorem. We use Peterson’s
isomorphism proved in [LS10] to relate HI (QK) and QH%(G/P).

Let np : Q¥ — Q) be the projection on the coroot subspace generated by simple
roots a; with a; € Rp. Peterson’s isomorphism is the map

(7) Yp HI (QK)p — Z[Qp] ®z HF(G/P)

gwa(t/\v)gﬂ-P(tMv) — qnp()\V,#V)o'P(’LU)
where w € W¥ and AV, ¥ € QY with QY the set of antidominant elements in QV.

Remark 6.1. In the above statement we have:

(1) The space HI' (QK)p is a quotient and a localization of HI (2K) defined
in [CMP09, §2.2]. The family {of (w),w € W/Wp} is the Schubert base of
H%(G/P), and the element in Z[Q}] corresponding to vV € Q} is denoted
by g,v. We have for vV € QY the formula

deglar) = S (Via) = —L(t).

a€RFT\R},

(2) This isomorphism is graded. In fact, for very negative coweights AV, u",
the element §wﬂp(tw)§;}(tw) has homological degree ¢(mp(tyv)) — {(w) —
Urmp(t,v)), by [LS10, Lemma 3.3]. On the other hand, in quantum coho-
mology, the element g, (Av_,v)o” (w) has degree —(mp(trv))+L(mp (t,v )+
L(w).
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6.2. A Weyl group action on QH7}.(G/P). In this subsection, we define an action
of the Weyl group on H;(G/P) and on QH}(G/P) by left translation. We will
prove the compatibility of this action with Peterson’s isomorphism in the next
subsection. Since this action is different from the action defined in Kumar [Kum02,
11.3.4] we define it carefully. We start with the action on G/B and then deal with
the general situation for G/P.

We define an algebraic and a geometric action of the Weyl group W on H}.(G/B).
We then prove that these actions coincide.

Let n € G be in the normalizer of T and let w be the corresponding element of
the Weyl group. Define the left action L, : G/B — G/B by left multiplication:
Ly, - [r] = [n~1z]. This action is T-equivariant if we consider the w-twisted action
of T on G/B given by t - [z] = [w(t)x]. It therefore induces a w-semilinear map
H;(G/B) — H};(G/B), denoted L: L¥(s€) = w(s)L}(§) for s € S and & €
HY(G/B).

Fact 6.2. The above action L}, satisfies the following properties:

(1) L depends on w and not on n itself; it will be denoted by w* in the sequel.

(2) Via the inclusion H3(G/P) C H}(G/B) given by pulling back the projec-
tion G/B — G/P, we have w*H;(G/P) C Hy(G/P).

(8) The induced action of w* on the non equivariant cohomology H*(G/B) is
trivial.

Proof. (1) Let N denote the normalizer of T. The map N xG/B — G/B, (n, [z]) —
L,, - [z] is continuous and therefore for { € H}.(G/B), the map N — L*¢ is locally
constant.

(2) For n in the normalizer of T', we have a commutative diagram:

LB
G/B L G/B

L

G/P Ly G/p

Here we made a difference between the action of n on G/B and G/P using su-
perscripts. It follows that for £ € Hi(G/P), we have w*¢ = (LB)*¢ = (L)*¢ €
HY(G/P).

(3) For g € G, we can consider the action of left translation L} on non equivariant
cohomology H*(G/B). By the same argument as in (1), this action is trivial.
In particular, for ¢ = n in N, we obtain that the action L} on non equivariant
cohomology is trivial. O

Recall that W can be embedded in A.g via v — §,.

Definition 6.3. Let w € W. Consider H;(G/B) as the dual of HI (G/B) C Aug
and set

(we f)(x) = f(0,-1) for x € HI (G/B) = A.
Proposition 6.4. For f € H}.(G/B) and w € W, we have we f = w*f.

Proof. Using Frac(S)-linearity, we only need to compare these actions on the ele-
ments £’. We have (we£)(6,) = £”(0y-10u) = £ (Ou-14) = Opw-14 = E(wtu) =
(w*€”)(u), proving the result. O
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Corollary 6.5. Let a be a simple root and w € W. We have

(s0)70" (w) = { Ziggg —acl (sqw) Z iZZUU z :uU7
Proof. We compute ((s4)*0? (w))(Ay) = of (w)(ds, An) = oF (w)((1 — adn)AL) =
of (w)(A,) — aof (w) (A4 Ay). Now we have

0 if squ <wu
Aadu = { As o if squ > u.
Since of (w)(Ay) = 0y, We get
1) if squ <u
* P _ u,Ww [e%
((sa)"0 " (w))(Au) = { Ouw — Wsyuw  if Sq > u.
This in turn gives the result. (Il
Remark 6.6. (1) Note that, for a simple, the two conditions w € W and

sew < w imply the inclusion sqw € W since the inversion set of sqw is
contained in the inversion set of w. In particular, in the second case of the
above formula, the class 0¥ (s,w) is well defined.

(2) This formula also shows that the action w* is trivial in the non equivariant
setting (indeed, in that case wet set a = 0).

The action w* is extended to QHT-(G/P) by linearity on quantum parameters.

6.3. Compatibility of Peterson’s isomorphism. In this subsection we prove
that Peterson’s isomorphism is compatible with the actions u, in homology and u*
in cohomology. We start with a useful lemma.

Lemma 6.7. Let w € W and let \Y € QY be such that x = wrp(tyv) € (WF)ag.
Write x = wrp(tav) = vt withv € W and p¥ € QY.
Let a be a simple root and let B = w™(a), B/ = v ().

(1) We have w™'v € Wp and p¥ € QY.

(2) We have 8 € Rp <= ' € Rp.

(3) We have sqx € Wg <= (n¥, ) # 0.

(4) We have sqx € (WF).qg <= B¢ Rp < sqw € WF.

(5) We have the equivalence:

(saz € W N (WP)ag and ((saz) > (z)) <= (saw € W and l(sqw) < ((w)) .

Proof. (1) By [LS10, Lemma 10.7], we have 7p(tyv) = ut,v with v € Wp. This
give w™ v =u € Wp. Since vt,v € W we have " € QY.

(2) Since u = wtv € Wp and 8 = u(B'), we have 3 € Rp < 8’ € Rp.

(3) We have vt,v € W_g therefore ¥ € QY and for v > 0, we have the impli-
cation ((#",v) = 0 = wv(y) > 0). The condition savt, € W 4 is thus equivalent
to ((Y,7) = 0 = sqv(y) > 0) for v > 0. But since for v = ', the roots
v(y) and s,v(7y) have opposite signs, the condition s,vt,v € W_g is equivalent to
(w, By = 0.

(4) We have vt,v € (WF).q4 therefore, for v € R}, we have the equivalences
((nY,v) =0< v(y) >0) and ((¢¥,7) = =1 & v(y) < 0). The condition s,vt, €
(WF)ag is equivalent to having the equivalences ({(",7) = 0 < sqv(y) > 0) and
(Y, v) = =1 & sqv(y) < 0). Since for v = B, the roots v(y) and s,v(7y) have
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opposite signs, the last equivalences occur if and only if 3/ ¢ Rp. This in turn is
equivalent to 8 &€ Rp by (2).

For the last equivalence, note that by definition, we have (s,w € WP «
saw(R}p) C RY). Since w € WP, we have w(Rf) C RT. Since the inversion
sets of w and s,w only differ by 3 (or its opposite, depending on the sign of 3) we
get the last equivalence.

(5) Note that we have the equivalence ({(sqw) < £(w) < 8 < 0). We therefore
need to prove that the left hand side of the equivalence is equivalent to 5 ¢ Rp
and 3 < 0. Note that since w € W, this is equivalent to 3 < 0.

First assume that s,z € Wz N (WF).e and {(sqz) > ((z). By [LS10, Lemma
3.3], since vt,v,sqvt,y € Waffm, we have {(sqx) = {(t,v) — £(sqv) and £(z) =
l(tyv) — £(v). In particular, we have £(sqv) < €(v), thus 5/ < 0. Since sz €
(WP)agr, we also have 3 ¢ Rp thus 8’ € Rp. Now, since u € Wp, this implies
B <.

Conversely, assume S < 0. By the above arguments, this implies g ¢ Rp and
thus sqr € (WP ).g. This also implies 8’ ¢ Rp and since u € Wp and 5/ = u=1(B),
we get 3’ < 0. Since vt, € Wog, =8’ > 0 and v(—=f') = —a < 0, we must have
(n”, ") # 0 and by (3), this implies sqz € Wg. O

We have the following equivariance property of ¥p.
Proposition 6.8. For ¢ € HI (QK)p, we have ¥p(u.f) = u*€.

Proof. We may assume that v = s;, with a; a simple root. Then w.yrp(t,v) =
Ou - é.wﬂ'p(t/\v) e (1 — OZZAZ) . é'WTFP(t)\\/)' If K(Si’u)ﬂ'p(t)\v)) > é(’wﬂp(b\v)) and
siwmp(tyv) € (Wp)aﬁ AW g, then this is equal to guﬂl’P(t)\\/) — aiéS'LWﬂ'P(t)\v)' Oth-
erwise, this is equal t0 {yrp (s, )-

The action s;*0” (w) is computed in Corollary 6.5l If £(s;w) < ¢(w) and s;w €
WP then this is equal to o (w) — a0 (s;w). Otherwise, this is equal to o (w).

Let 8 = w !(a;). The condition s;w € WF and £(s;w) < ¢(w) is equivalent to
the condition ¢(s;wmp(tav)) > L(wrp(tav)) and s;wrp(tyv) € (WF)ag N W by
Lemma [6.71(5). This proves the result. O

6.4. The result. We now prove our main result. For ¢ a cominuscule node, ¢.e.
such that @, is a minuscule coweight, we let v; be the smallest element in W
such that v;(w@;) = wo(w,’) (wp is the longest element in W). The coweight
vi(w)) = wo(w;’) is the opposite of a fundamental coweight: there exists f(i) € I
such that v;(w}) = —w\f/( )- Actually we have ap(;) = —wo(ai) and vy = v b

Theorem 6.9. Let i be a cominuscule node. In QHY(G/P) we have
O'P(’Ui) X U;(UP(’U})) = an(w;/fwfl(wiv))ap(viw) .

Proof. Let w € WF we have mp(w) = w. Let @) be the minuscule coweight
associated to ¢ and let ¢V and vV be in @V and dominant enough. As in [CMPQ9,
83.5], we get

ﬂ—P(t—wiv—M) = Tiﬂ'p(vf(i))ﬂ'p(t,(wierwfv(i)Jﬂu) and

mp (wt,,/t,wiv,#) = T;Tp (vf(i)w)ﬂ'p (tf(w;/ +w71(w;(i))+l‘+’/)'
For p and v dominant enough, the elements wt_,, t_gyv_, and wt_,t_5v_, are

in W;H and their image by 7p are in (WP Jaft N ﬁ//;ff We may therefore apply
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Proposition 5.1 to the elements wt_, and t_5v_, to get:

(vf(i))*gwfrp(t,uv) X gﬂp(vf(i))WP(t,(Wierwy(iﬁMv))
= §7TP(Uf(i)w)WP(tmiv+w*1<w;m+w+uv>>)’
where = means equality in H! (QK) p or equivalently equality modulo Jp. Applying
Peterson’s map (@), we get thanks to Proposition [6.8 the corresponding formula in
the quantum cohomology ring:
V0" (@)anp ) * X (Ur(0))anp (@ 42y +1))

= (V)W) np () w3 (Y b+ 5
hence finally:

Vi 0" (W) %0 (Vr(0) = ey, —w (=Y, )0 Winw).
This concludes the proof of the theorem. ([

Corollary 6.10. Let i be such that @, is a minuscule coweight. In QH*(G/P),

we have
UP(’Ui) X Up(w) = an(wiv,wfl(wly))O'P(’Ui’w).

Example 6.11. Let G be of type Ay, so that G/B = P!. Let s be the non trivial
element of W and « the simple root. We have

o (s) * (0% (s) —a) = q.

Proof. Let i be the unique node of the Dynkin diagram of G. Then v; = s. To
apply Theorem [6.9 we also set w = s. Let x resp. y be the B-stable resp. B~ -
stable point in P!. The class 02 (s) is the T-equivariant class of x, and v}o?(s) is
the T-equivariant class of y. Since [z] — [y] = @, we have v}oB(s) = oB(s) — a.
Denoting h = oB(s), the theorem yields h x (h — a) = ¢, as claimed. Note that
h? = q + ah is also predicted eg by [Mi07, Theorem 1]. O

7. PIERI FORMULAS

We now give another application of Proposition [B.8 to prove a formula for
J(&ri(vs))s see Proposition [Tl This gives the multiplication in H] (Q2K) by the
class &;,(,)- We hope in subsequent work to deduce Pieri formulas for the non-
equivariant multiplication by classes generating H.(Q2K) in all classical types.

We first provide a generalization of [Lam08, Proposition 5.4] to coweights. For
pY e PV, set Wyv = (sq, | 1€ [1,7] and (o, p¥) =0) ={we W | w(p") =p"}.
Proposition 7.1. Let u¥ € PV be antidominant. Then

jad(gtuv) = Z Avtw(MV) .
weW/W v
Proof. We follow the idea of proof given in [Lam08, Proposition 5.4]. Using Lemma
A8 we see that for w € W/W,v non trivial, t,,,v) € W, so that At v, belongs
to the ideal Emew\{e} Aag - Ay of Proposition 5.8 Thus, using Proposition 5.8, we
; S Z&dff (S)

To prove that ¢ := ) w JW Ay, (V) centralizes S, or equivalently commutes
"

w(pV

only need to prove that EwEW/W oA
H ~

with any A in P, we use Proposition to compute Ztuv)\. In this formula, the
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term t,v () is equal to A by (@) in §2:2 Let P be the set of pairs (vV, ) where
vV e W -V, B is a positive real root, and t,vsg < t,v. We have:

(8) cA— ¢ = Z <>\, ﬂv>;[tyv s3>
(vv.p)e?

So our concern now is to prove that this sum vanishes.
We consider the map ¢ : P — P defined by (v, 3) = (sg(v¥), —t,v(B)). Let
(vY,B) € P. We have

tyvsg =t,vsgt_ vty = Sty (B)tvv
= s LS (B) = tss(V)S—t,v(8)

where the last equality follows from (II) and Lemma 2.8 By the length formula
in [CMPQ9, Corollary 3.13], £(t,,(,v)) = £(t,v) and by definition of P, £(t,vsg) =
{(tgv) — 1. Thus, £(t,v)5—¢,.(3)) = £(tssvy) — 1. Moreover, by [BB05, Proposi-
tion 4.4.6], t,v(B) < 0, which implies t,,,vy5_¢ , (8) <tssv) and —t,v(8) >0, so
(sg(vY), —t,v(B)) € P as claimed.

We also observe that (A, —t,v(8)V) = (\,—8Y) = —(\, 3Y). Finally,

_tSB(V\/)(—tVV (B)) = tsB(VV)tVV (ﬁ) = Sﬁtuv S,@tuv (B) .

One can check that this root is equal to 3, so that ¢ is an involution and the terms
in [8) cancel pairwise. O

We now prove some preliminary lemmas.
Lemma 7.2. Leti € I,g. We have jad(gwo(wiv)) =01 Z Az (wyviw—1 -

' w< Lw;
Proof. Since wy(w;") < 0 we may apply Proposition [Z.] and get
7 G (wy)) = Z Ap -
wY EW wo (=)
Thus,
jad(ng(wiv)) = EHVEW-wiv At,,LV = ZwSLvi A'LUth\/w71

EwSLvi Awalviwfl - ZwSLvi ATfln(w)viwfl

67';1 ZUJSL'Ui ATi(w)'in71 :

Lemma 7.3. Let s € S and i € I,g. We have

Z A‘ri(w)viw*1 B :Ti(s) Z A‘ri(w)viw*1

w< L v; w< L v;

Proof. Let i € I,g. Since jad(gwo(wiv)) =0 -1 ngwi Az, (wyv;w—1, We deduce that
6"';1 Z An(w)viw*1 S ZAaff (S)
w< Lv;
Let s € S, we have:
57_51( Z Ari(w)viw*1)5 = S(STfl Z A‘ri(w)viw*1 = 57__717'1'(8) Z An(w)viwfla
’ w<Lv; ’ w< Lv; ' w<Lv;

which proves the lemma. O
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Proposition 7.4. Let i € Ig, let as above v; the mazimal element in W and T;
the automorphism of the affine Dynkin diagram defined by i. Then 7;(v;) € W_g
and we have:

j(f‘ri(vi)) = Z Z Ti(fv(vi_l))An(w)viw’lAv'

W Lvi <yt

Proof. We first prove that 7;(v;) € W_5. We know that 7;(a;) = ag. Since v; €
Wi we have for 1 < j < n with j # i, £(v;s;) > £(v;). Since v; € W, £(v;s0) >
0(v;). Applying 7;, we deduce that for all & > 0, €(7;(vi)sg) > €(7i(v;)). Thus,
7'1'(’01') S Wa}f

Moreover, we know that 7, = Vit oy Therefore, v; = Titwy = twg(wY)Ti, SO that

bwo(w?) = vm'l-_l = Ti_lri(vi). By Proposition [5.9, we deduce that j(¢

57-;1.].(673 (vi) )501 .
By Lemma [T.2] we deduce that

two(ﬁ}/)) -

5Ti*1j(57i(vi))5vi = 6-,—;1 Z A‘ri(w)viw*1 .

w< L

Therefore, using Fact 5.1 and then Lemma [7.3, we find

.7(57’1(’01)) = Z’LUSL'Ui ATi(w)in715U;1
ngwi An(w)viw*1 ngv;l gv(vfl)Av
= ZwSLvi Z’USU71 Ti(gv(vi_l))An(w)viwflAv .

i

O
Remark 7.5. Let x € W,_g. In the non equivariant homology, we thus have
g‘ri('ui) . fz = Z g‘ri(w)viwflz )
where the sum is over w <y w; such that £(7;(w)v;w=lz) = £(v;) + £(z) and

Ti(w)vwlr € Wog-
By Corollary B.15, we know that there is only one Schubert class in the product
§ri(vi) + Eo, from which we deduce that there is exactly one w < wv; such that

U(ri(w)yviw™tz) = £(v;) + €(x) and 73 (w)viw te € Wig.

Example 7.6. Let us assume we are in type Avg and let us write for short Asig
instead of A, s, s, and similarly for {219 and d210. Let ¢ = 1 so that v; = s3s251 and
7:(v;) = s28180. First we observe that

67_;1 = 5123 = (1 — alAl)(l — OézAz)(l - 043A3)
1-— OélAl — (041 + OéQ)AQ — (041 —+ o + Oég)Ag

I+

ai(ar + ag)(ar + ag + ag)Aias .

ar(on + ag)Arz + a1(on + as + az)Ais + (oq + az)(a1 + az + ag)Aas
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Since 7;(1) = —0 = —(a1 + @z + a3), Ti(a2) = a1 and 7;(a3) = @q, we get:

J(&210) Ag1o + Aszzr + Agzz + Aios

a3(Az103 + As213 + Ao323)

(a2 + a3)(A2102 + As212A41032)

(a1 + a2 + a3)(Az101 + Aoz21 + A1031)

az(ag + a3)(A21023 + As2123 + A10323)

az(aq + oz + a3)(A21031 + Aoz2s1)

(a2 + az)(a1 + a2 + a3)(A21012 + Aoz212 + A1o312)
az(ag + a3)(a1 + o + a3)(A210123 + Aoz2123 + A103123) -

A+
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