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AFFINE SYMMETRIES IN QUANTUM COHOMOLOGY:

CORRECTIONS AND NEW RESULTS

P.–E. CHAPUT AND N. PERRIN

Abstract. In [CMP09] a general formula was given for the multiplication by
some special Schubert classes in the quantum cohomology of any homogeneous

space. Although this formula is true in the non equivariant setting, the stated
equivariant version was wrong. We provide correction for the equivariant for-
mula, thus giving a correct argument for the non equivariant formula. We also
give new formulas in the equivariant homology of the affine grassmannian that
could lead to non-equivariant Pieri formulas.

1. Introduction

In [CMP09] a general formula was given for the multiplication in the quantum
cohomology of any homogeneous space by some special Schubert classes coming
from cominuscule weights. Although this formula is true in the non equivariant
setting, the stated equivariant version is wrong. We provide correction for the
equivariant formula, thus giving a correct argument for the non equivariant formula.
We also provide new product formulas in the equivariant homology of the affine
grassmannian.

LetG be a semisimple simply connected algebraic group and fix T ⊂ B a maximal
torus and a Borel subgroup containing it. Denote by P∨ and Q∨ be the coweight
and corrot lattices. A dominant coweight λ∨ ∈ P∨ is minuscule if 〈λ∨, α〉 ∈ {0, 1}
for any positive root α. A minuscule dominant coweight is a fundamental coweight.
Denote by Im the subset of the set I of vertices of the Dynkin diagram of G
parametrising minuscule coweights.

We consider a finite group Z which has several interpretation. Define Z has

Z := P∨/Q∨.

Representatives for this quotient are for example the opposites of the minuscule
fundamental coweights (−̟∨

i )i∈Im . The group Z is also the center of G and if Gad

the the adjoint group associated to G, then Z = π1(G
ad ).

The group Z can be realised as a subgroup of the Weyl groupW of G as follows.
Let w0 be the longest element in W . For i ∈ Im define vi ∈ W to be the smallest
element in W such that vi̟i = w0̟i. Then the family (vi)i∈Im forms a finite
subgroup of W isomorphic to Z. Finally Z can be realised as a subgroup of the
extended affine Weyl group Waff = W ⋉ P∨ (see Section 2.2 below) by i 7→ τi :=
vit−̟i

.

For P ⊂ G a parabolic subgroup, let IP be the set of vertices in the Dynkin
diagram such that, for i ∈ I, the simple root αi is a root of P if and only if i ∈ IP .
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For w ∈ W , denote by σP (w) the Schubert class in H2ℓ(w)(G/P,Z) defined by
w. Denote by Q∨

P the coroot lattice of P and consider ηP : Q∨ → Q∨/Q∨
P the

quotient map. We define an action of the Weyl group W of G on the equivariant
cohomology H∗

T (G/P ) using, for w ∈ W , the pull-back in cohomology of the left
multiplication by w (see Subsection 6.1). We denote this action by w∗. This action
is trivial in non-equivariant cohomology and extends to an action on equivariant
quantum cohomology QH∗

T (G/P ). In this paper we obtain the following formula
in the quantum equivariant cohomology QH∗

T (G/P ) for any parabolic subgroup
P ⊂ G (see Theorem 6.9).

Theorem 1.1. Let i be a cominuscule node. In QH∗
T (G/P ) we have

σP (vi)× v∗i (σ
P (w)) = qηP (̟∨

i −w−1(̟∨
i ))σ

P (viw).

This result corrects our formula in [CMP09, Theorem 1] which was wrong in the
equivariant setting (the action v∗i on the second factor on the LHS was missing).
The error in [CMP09] comes from an incorrect description of the ring structure
of HT

∗ (ΩK
ad) the equivariant homology of the adjoint affine grassmannian (see

Section 5). If ΩK is the affine grassmannian for G, the incorrect claim ([CMP09,
Page 12]) was that HT

∗ (ΩK) should be isomorphic to Z ⊗ HT
∗ (ΩK). This is not

true as explained in Section 5 (see Remark 5.6). This is corrected in the present
paper. Especially, in Proposition 5.2, we prove the S-algebra isomorphism (here
S = H∗

T (pt)):

HT
∗ (ΩK

ad) ≃ S[P∨]⊗S[Q∨] H
T
∗ (ΩK).

The incorrect product formula was then used only once in [CMP09, Proposition
3.16]. We give a correct version of Proposition 3.16 in [CMP09] in Proposition
5.14.

We tried to write this paper as independently from [CMP09] as possible and
included many preliminary results on the algebra and the module structure of the

extended affine Hecke algebra Ãaff (see Section 3) and on its module structure M̃
which is isomorphic to HT

∗ (ΩK
ad) the homology of the adjoint affine grassmannian.

We also added new results. Especially we provide a generalization of a formula in
[Lam08, Proposition 5.4] to coweights for the map jad : HT

∗ (ΩK
ad) → Z

Ãaff
(S)

(see Proposition 7.1).

Proposition 1.2. Let µ∨ ∈ P∨ be antidominant and set Wµ∨ = 〈sαi
| i ∈

[1, r] and 〈αi, µ
∨〉 = 0〉 = {w ∈ W | w(µ∨) = µ∨}. Then

jad(ξtµ∨ ) =
∑

w∈W/Wµ∨

Ãtw(µ∨)
.

Finally, we use this formula to give an explicit formula for the image of the map
j : HT

∗ (ΩK) → Z
Ãaff

(S) for the special elements τi(vi) = τiviτ
−1
i (see Proposition

7.4). Here W̃−
aff denotes the set of minimal representatives of the quotient W̃aff/W .

Proposition 1.3. We have τi(vi) ∈ W̃−
aff and

j(ξτi(vi)) =
∑

w≤Lvi

∑

v≤v−1
I

τi(ξ
v(v−1

i ))Aτi(w)viw−1Av,

where ≤ is the Bruhat order and ≤L the weak left Bruhat order.
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We hope to use the above formula to prove Pieri type formulas in HT
∗ (ΩK) in

the spirit of what Lam, Lapointe, Morse and Shimozono [LLMS10] did in type A.

Acknowledgement: we thank Elizabeth Milićević for showing us a counterexam-
ple to [CMP09, Theorem 1] which lead to the present correction and development.
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2. Notations

In this section, we fix notation for affine Kac-Moody Lie algebras, we introduce

the finite group Z and define the extended affine Weyl group W̃aff .

2.1. Affine Lie algebras. We denote by g a simple finite-dimensional Lie algebra
of rank r, and by h a Cartan subalgebra. We denote by G the simply-connected
group corresponding to g and by Gad the adjoint group. The affine Kac-Moody
group corresponding to G will be denoted by G and P ⊂ G is the parabolic subgroup
such that G/P is the affine Grassmannian.

The corresponding affine Lie algebra will be denoted by gaff , with Cartan sub-
algebra haff . The simple roots are denoted (αi)i∈[1,r] and the null-root, orthogonal
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to all the simple roots (αi)i∈[1,r], will be denoted by ǫ. Recall that we have the
equality ǫ = Θ + α0, where Θ is the highest root of g. As in [Kac90, p.82] we will
use the decompositions h∨aff = h∨ ⊕CΛ0 ⊕Cǫ and haff = h⊕CK ⊕Cd. We denote
by Raff the set of roots of gaff and by R those of g.

We denote by Q,P,Q∨, P∨ the root, weight, coroot, coweight lattices of g. We
also denote by S the symmetric algebra on P .

2.2. Affine Weyl groups. Let W be the Weyl group of g and let Waff = Q∨⋊W
be the affine Weyl group. For λ∨ ∈ Q∨, the corresponding element in Waff will
be denoted by tλ∨ . The reflection associated to a root α will be denoted by sα.
The group Waff is a Coxeter group with Coxeter generators si for 1 ≤ i ≤ r and
s0 = tΘ∨sΘ ([Kum02, Prop 13.1.7], see also Lemma 2.7).

Define the extended affine Weyl group W̃aff := P∨ ⋊W ⊃Waff . The group Waff

acts on P ⊕ Zǫ while the group by W̃aff acts only on Q⊕ Zǫ via

(1)
wtλ∨ · (µ+ nǫ) = w(µ) + (n− 〈µ, λ∨〉)ǫ
wtµ∨ · (λ+ nǫ) = w(λ) + (n− 〈λ, µ∨〉)ǫ

where we have λ ∈ Q, λ∨ ∈ Q∨, µ ∈ P, µ∨ ∈ P∨. Note that in general W̃aff does
not act on P ⊕ Zǫ since 〈P, P∨〉 6⊂ Z in general.

We may however define an actions of W̃aff on P∨ (and therefore on Q∨) by
prescribing that translations do not act: we simply set wtλ∨(µ∨) = w(µ∨) for
w ∈ W and λ∨, µ∨ ∈ P∨.

Notation 2.1. Since an element in Q∨ is also an element in Q∨⊕Zδ, we will denote

by w · λ∨ the result of the action of w ∈ W̃aff on λ∨ as an element in Q∨ ⊕ Zδ and
by w(λ∨) the element in Q∨.

Recall the definition of the fundamental alcove

A◦ = {λ ∈ h∨R | 〈λ, α∨
i 〉 ≥ 0 for all i ∈ [1, r] and 〈λ,Θ∨〉 ≤ 1}.

The stabiliser of A◦ in W̃aff will be denoted by Z; it is a subgroup of W̃aff isomorphic
to P∨/Q∨ [LS10, §10.1]. In loc. cit., the authors also prove the following result.

Lemma 2.2. Let τ ∈ Z. The conjugation by τ is an automorphism of the Coxeter
group Waff . In fact, there exists an automorphism fτ of the affine Dynkin diagram
such that

∀i ∈ I ∪ {0} , τsαi
τ−1 = sτ ·αi

= sαfτ (i)
.

In particular, we have τ · ǫ = ǫ.

Notation 2.3. For x̂ ∈ Waff , set τ(x̂) := τx̂τ−1 ∈ Waff . We have ℓ(τ(x̂)) = ℓ(x̂).

Lemma 2.4. An element τ in Z permutes the positive real roots.

Proof. According to Lemma 2.2, we have τ · (
∑
njαj + nδ) =

∑
njαfτ (j) + nδ.

Since a real root α+nδ is positive if and only if n > 0 or n = 0 and α > 0, τ indeed
permutes positive roots. �

As explained in [CMP09], W̃aff is not a Coxeter group, but we have a well defined
length function.

Definition 2.5. Every element x ∈ W̃aff can be uniquely written as τx̂ with τ ∈ Z
and x̂ ∈Waff

(1) Define the length function by ℓ(x) := ℓ(x̂).
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(2) Define a partial order on W̃aff by τx̂ ≤ σŷ ⇐⇒ τ = σ and x̂ ≤ ŷ.

Covering relations in W̃aff for the above partial order are defined by x⋖ y if x ≤ y
and ℓ(x) = ℓ(y)− 1.

Remark 2.6. The length of x ∈ W̃aff is also the number of inversions, namely the
cardinal of the set I(x) = {α ∈ Raff | α > 0, α is real and x(α) < 0}. Indeed, for
x = τx̂, by Lemma 2.4, we have I(x) = I(x̂).

2.3. Translations. We will need the following lemma.

Lemma 2.7. Let α ∈ R. We have tα∨ = sǫ−αsα.

Proof. Set K⊥ = {µ ∈ h∨aff | 〈µ,K〉 = 0}. By [Kac90, p.87], it is enough to compute
sǫ−αsα(µ) for µ ∈ K⊥. We have

sǫ−αsα(µ) = µ− 〈µ, (ǫ − α)∨〉(ǫ− α) − 〈µ, α∨〉α+ 〈µ, α∨〉〈α, (ǫ − α)∨〉(ǫ − α).

Now, for any β ∈ Raff , we have by [Kac90, §2.3.5 and §6.2.3]:

〈µ, (ǫ + β)∨〉 =
2(ǫ+ β, µ)

(ǫ+ β, ǫ+ β)
=

2(β, µ)

(β, β)
= 〈µ, β∨〉.

Therefore,

sǫ−αsα(µ) = µ+ 〈µ, α∨〉(ǫ − α)− 〈µ, α∨〉α− 2〈µ, α∨〉(ǫ− α)
= µ− 〈µ, α∨〉ǫ = tα∨(µ) ,

where the last equality follows from the definition of tα∨ in [Kac90, §6.5.5]. �

Corollary 2.8. For α ∈ R, k ∈ Z and µ∨ ∈ P∨, we have sα+kǫ(µ
∨) = sα(µ

∨).

Proof. We have sα+ǫ(µ
∨) = sα+ǫt−α(µ

∨) = sα+ǫsα+ǫs−α(µ
∨) = s−α(µ

∨) = sα(µ
∨).

The result follows by induction. �

3. extended nil-Hecke ring

The goal of this section is to extend the notion of the nil-Hecke ring defined by
Kostant and Kumar [KK86]. This ring was used in [LS10] to compare the quantum
cohomology of G/P and the homology of affine Grassmannians ΩK. We need a
refined version of this nil-Hecke ring that enables dealing with ΩKad the adjoint
affine grassmannian (see Section 5).

3.1. Definition. We extend several classical object in particular the affine nil-
Hecke algebra. Our reference for these classical objects is Kumar’s book [Kum02].

Definition 3.1. Recall that the ring Qaff is

(2) Qaff =
⊕

w∈Waff

Frac(S) δw

We define the following extended version:

(3) Q̃aff =
⊕

w∈W̃aff

Frac(S) δw

In both cases, the ring structure is defined by the equations δuδv = δuv and δus =

u(s)δu, for u, v ∈ Waff resp. u, v ∈ W̃aff , and s ∈ S.

Definition 3.2. As in [Kum02], we consider particular elements in Qaff .
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(1) For i ∈ I, set Ai =
1
αi
(δe − δsi). For i = 0, set A0 = −1

Θ (δe − δs0) (note

that this is coherent with the forthcoming Definition 3.6).
(2) For w ∈Waff and for w = si1 · · · siℓ a reduced expression. We set:

Aw = Ai1 · · ·Aiℓ .

By [Kum02, Theorem 11.1.2], the right hand side does not depend on the chosen
reduced expression.

Recall that for x ∈ W̃aff , there is a unique decomposition x = τx̂ with τ ∈ Z
and x̂ ∈Waff .

Definition 3.3. Let x = τx̂ ∈ W̃aff , we set Ãw = δτAx̂.

Definition 3.4. As in [KK86], the (extended) nil-Hecke ring is generated over S
by the elements Aw.

(1) The nil-Hecke ring is

Aaff =
⊕

w∈Waff

S ·Aw ⊂ Qaff .

(2) The extended nil-Hecke ring is

Ãaff =
⊕

w∈W̃aff

S · Ãw ⊂ Q̃aff .

Remark 3.5. We will see below that both are indeed subrings of Q̃aff .

3.2. Definition and properties of Aα. It will be helpful to generalize the defi-
nition of Ai in the following way.

Definition 3.6. For a real root α = γ + kǫ with γ ∈ R, set Aα = 1
γ (δe − δsα).

These elements satisfy the following properties.

Proposition 3.7. Let w ∈ W̃aff , α ∈ Raff a real root and λ ∈ Q. Then we have:

(1) δwAαδw−1 = Aw(α).
(2) Aαλ = sα(λ)Aα + 〈λ, α∨〉1.

Proof. Let w = utµ∨ , α = γ + kǫ, λ ∈ P be as in the proposition. Then,

δwAαδw−1 = δw
1
γ (δe − δsα)δw−1 = 1

u(γ)δw(δe − δsα)δw−1

= 1
u(γ)(δe − δwsαw−1) = 1

u(γ)(δe − δsw(α)
) = Aw(α) .

For the second point, we use [LS10, §6.1] and the above conjugation relation.
Let w ∈Waff and i ∈ I ∪ {0} be such that α = w(αi). We have

Aαλ = δwAiδw−1λ
= δwAiw

−1(λ)δw−1

= δw(siw
−1(λ)Ai + 〈w−1(λ), α∨

i 〉)δw−1

= wsiw
−1(λ)δwAiδw−1 + 〈λ,w(αi)

∨〉
= sα(λ)Aα + 〈λ, α∨〉 .

�

Remark 3.8. The second formula in the above proposition generalizes the usual
relation satisfied by the elements Ai (see for example [LS10, §6.1]).

Corollary 3.9. For any real root α, we have Aα ∈ Aaff .
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Corollary 3.10. The (extended) nil Hecke rings Aaff and Ãaff are subrings of Q̃aff .

Proof. The second formula above shows that for s, s′ ∈ S and u, v ∈ Waff , the
product sAus

′Av lies in Aaff therefore Aaff is a ring. The first formula proves that

for τ, σ ∈ Z and for u, v ∈ Waff , we have δτAuδσAv = δτδσAσ−1(u)Av ∈ Ãaff proving

that Ãaff is a ring. �

4. Module and ring structures of Ãaff

In this section we present three different descriptions of Ãaff and describe its
S-module structure and its ring structure in each case.

4.1. S-module structure of Ãaff . Recall that we have an injection of Waff in the
group of invertibles of Aaff , given by w 7→ δw: in fact δsi = 1 − αiAi ∈ Aaff thus
δw ∈ Aaff for all w ∈ Waff . Therefore the subgroup Q∨ ⊂ Waff also injects in Aaff ,
and since Aaff is a ring we have an injection of the Laurent polynomial algebra
Z[Q∨] inside Aaff . Thus Aaff is Z[Q∨]-module via left mutliplication. The natural
Z-module basis of Z[Q∨] will be denoted by (hλ∨)λ∨∈Q∨ .

We now introduce two new algebraic models of Ãaff .

Definition 4.1. Let ϕ1, ϕ2 be the following morphisms of Z-modules:

ϕ1 : Z[P∨]⊗Z[Q∨] Aaff → Q̃aff

hλ∨ ⊗Aw 7→ δtλ∨Aw ,

ϕ2 : Z[Z]⊗Z Aaff → Q̃aff

τ ⊗Aw 7→ δτAw .

Note that Aaff has a structure of S-bimodule, thus also the two tensor products in
this definition. Both maps ϕ1 and ϕ2 are S-linear on the right, moreover ϕ1 is also
S-linear on the left whereas ϕ2 is not.

Proposition 4.2. With the above notations, Im(ϕ1) = Im(ϕ2) = Ãaff . Moreover,
if J ⊂ Aaff is a left ideal, then ϕ1(Z[P

∨]⊗Z[Q∨] J) = ϕ2(Z[Z]⊗Z J).

Proof. Observe that ϕ1 is well-defined: ϕ1(hλ∨ ⊗ 1) = ϕ1(1 ⊗ δtλ∨ ) = δtλ∨ for
λ∨ ∈ Q∨. We now prove that ϕ1(Z[P

∨] ⊗ J) ⊂ ϕ2(Z[Z] ⊗ J). Let λ∨ ∈ P∨:
there exists τ ∈ Z and ŵ ∈ Waff such that tλ∨ = τŵ. Then for a ∈ J , we have
ϕ1(hλ∨ ⊗ a) = δtλ∨a = δτδŵa ∈ ϕ2(Z[Z]⊗ J) since δŵa ∈ J .

The reverse inclusion ϕ2(Z[Z] ⊗ J) ⊂ ϕ1(Z[P
∨] ⊗ J) follows similarly from the

fact that any element in Z can be written as a product tλ∨u for some λ∨ ∈ P∨

and u ∈ W . Finally, the equality Im(ϕ2) = Ãaff follows from the definition of Ãaff

(Definition 3.4). �

4.2. Ring structure of Ãaff . We give the description of the ring structure of Ãaff

according to the given three equivalent definitions of this module.

Proposition 4.3. Let x, y ∈ W̃aff , then we have

ÃxÃy =

{
Ãxy if ℓ(xy) = ℓ(x) + ℓ(y)
0 otherwise .
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Proof. Write x = σx̂ and y = τ ŷ with σ, τ ∈ Z and x̂, ŷ ∈ Waff . Recall that for
u, v ∈ Waff , we have:

AuAv =

{
Auv if ℓ(uv) = ℓ(u) + ℓ(v)
0 otherwise .

By Lemma 2.2, we have

ÃxÃy = δσAx̂δτAŷ

= δσδτAτ−1(x̂)Aŷ

=

{
δστAτ−1(x̂)ŷ if ℓ(τ−1(x̂)ŷ) = ℓ(τ−1(x̂)) + ℓ(ŷ)
0 otherwise

But ℓ(τ−1(x̂)ŷ) = ℓ(xy) since xy = σx̂τ ŷ = σττ−1(x̂)ŷ, and ℓ(τ−1(x̂)) + ℓ(ŷ) =
ℓ(x̂) + ℓ(ŷ) = ℓ(x) + ℓ(y). The result follows. �

We now express the product in Ãaff = ϕ1(Z[P
∨]⊗Z[Q∨]Aaff). Note that we need

to compute the product (δtλ∨Au)(δtµ∨Av). We therefore need to “move” δtµ∨ to
the left of Au. The following proposition gives formulas for this.

Proposition 4.4. Let λ∨ ∈ P∨ and let α = γ + kǫ ∈ Raff . Then:

(1) Aαδtλ∨ = δsα(tλ∨ )Aα + 1
γ (δtλ∨ − δtsα(λ∨)

).

(2) δtλ∨ − δtsα(λ∨)
= δtλ∨ (1− δt−〈α,λ∨〉α∨ ),

(3) 1− δtnα∨ = (1 + δtα∨ + · · ·+ δt(n−1)α∨ )(1 − δtα∨ ) for n ∈ N,

(4) 1− δt−α∨ = γ(Aα − γAαAǫ−α +Aǫ−α).

Proof. (1) From the equality sαtλ∨ = tsα(λ∨)sα, we get δsαδtλ∨ = δtsα(λ∨)
δsα in

Ãaff . By definition of Aα (Definition 3.6), this relation implies

(1− γAα)δtλ∨ = δtsα(λ∨)
(1− γAα) .

Thus we get γAαδtλ∨ = γδtsα(λ∨)
Aα + δtλ∨ − δtsα(λ∨)

.

(2) and (3) are easy consequences of the product formulas in Q̃aff .
(4) By Lemma 2.7, we have

1− δt−α∨ = 1− δsαsǫ−α

= 1− (1− γAα)(1 + γAǫ−α)
= γAα − γAǫ−α + γAαγAǫ−α

= γAα − γAǫ−α + γ (sα(γ)Aα + 〈α∨, γ〉)Aǫ−α

= γAα + γAǫ−α − γ2AαAǫ−α ,

where we used Proposition 3.7 on the fourth line. �

The ring structure in Ãaff = ϕ2(Z[Z]⊗Z Aaff) is easy to describe:

Proposition 4.5. Let σ, τ ∈ Z and let a, b ∈ Aaff . Then:

ϕ2(σ ⊗ a) · ϕ2(τ ⊗ b) = ϕ2(στ ⊗ τ−1(a)b) .

Proof. This follows from the fact that in Ãaff , we have δσaδτb = δσδττ
−1(a)b . �

In the next proposition, we give an explicit formula for the commuting relation

of the elements Ãx and λ ∈ P , generalizing [KK86, Proposition 4.3.b]:
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Proposition 4.6. Let x ∈ W̃aff and let λ ∈ P . We have:

Ãxλ = x(λ)Ãx +
∑

α: xsα⋖x

〈λ, α∨〉Ãxsα ,

where the sum runs over positive real roots α such that xsα ⋖ x.

Proof. Let x = τx̂ ∈ W̃aff with τ ∈ Z and x̂ ∈ Waff . Let λ ∈ P . According to

Definition 3.3, we have Ãx = δτAx̂. Using [KK86, Proposition 4.3.b], we get (sums
always run over positive real roots):

Ãxλ = δτAx̂λ = δτ x̂(λ)Ax̂ + δτ
∑

α: x̂sα⋖x̂

〈λ, α∨〉Ax̂sα

= τx̂(λ)δτAx̂ +
∑

α: x̂sα⋖x̂

〈λ, α∨〉δτAx̂sα

= x(λ)Ãx +
∑

α: x̂sα⋖x̂

〈λ, α∨〉Ãxsα .

Since, by Definition 3.3, the relation x̂sα⋖ x̂ holds if and only if the relation xsα⋖x
holds, we get the result. �

4.3. Module over Ãaff . We now define a natural module over Ãaff which will be
identified in the next section with the homology of the adjoint affine Grassmman-
nian ΩKad.

Definition 4.7. Let W−
aff resp. W̃−

aff be the set of minimal length representatives

of the quotient Waff/W resp. W̃aff/W . By [LS10, Lemma 3.3], W−
aff is the set of

elements w = utλ∨ such that λ∨ ≤ 0 and ∀i ∈ I, 〈λ∨, αi〉 = 0 =⇒ u(αi) > 0 .

We generalize the characterization of W−
aff as follows:

Lemma 4.8. We have utλ∨ ∈ W̃−
aff if and only if λ∨ ≤ 0 and for all i in I it holds

〈λ∨, αi〉 = 0 =⇒ u(αi) > 0 .

Proof. Recall that we have a length formula in W̃aff similar to the one in Waff :

ℓ(utλ∨) =
∑

α∈R+

|〈λ∨, α〉+ χ(u(α) < 0)| ,

where χ(P) = 1 if P is true and χ(P) = 0 if P is false. This is proved in [CMP09,
Corollary 3.13]. It follows that

ℓ(utλ∨si)− ℓ(utλ∨) = |〈λ∨,−αi〉+ χ(u(αi) > 0)| − |〈λ∨, αi〉+ χ(u(αi) < 0)| .

This is non-negative for all i in I if and only if for all i, 〈λ∨, αi〉 ≤ 0, and 〈λ∨, αi〉 = 0
implies u(αi) > 0. �

Definition 4.9. For each w ∈W−
aff , we define a variable ξw and we set

M =
⊕

w∈W−
aff

S · ξw.

Recall [LS10, §6.2] that we may define a left Aaff -module structure on M via:

Aw · ξu =

{
ξwu if ℓ(wu) = ℓ(w) + ℓ(u) and wu ∈ W−

aff ,
0 otherwise .
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As left Aaff -module, we have an isomorphism

M ≃ Aaff/J, where J =
⊕

w 6∈W−
aff

S ·Aw.

Using Proposition 4.2, we define similarly a left ideal in Ãaff .

Definition 4.10. Let J̃ = ϕ1(Z[P
∨]⊗Z[Q∨] J) = ϕ2(Z[Z]⊗Z J) =

⊕

w 6∈W̃−
aff

Ãw .

Definition 4.11. We introduce the following three modules.

• Let M̃1 be the S-module Z[P∨]⊗Z[Q∨] M .

• Let M̃2 = Z[Z] ⊗Z M . This is an Ãaff -module with the action given by

(σ ⊗ a) · (τ ⊗ ξ) = στ ⊗ τ−1(a) · ξ, for σ ⊗ a ∈ Z[Z]⊗Z Aaff = Ãaff .

• Let M̃3 =
⊕

w∈W̃−
aff

S · ξ̃w. This is an Ãaff -module with the action given by

Ãw · ξ̃u =

{
ξ̃wu if ℓ(wu) = ℓ(w) + ℓ(u) and wu ∈ W̃−

aff ,
0 otherwise ,

for Ãw ∈ Ãaff =
⊕

w∈W̃aff

S · Ãw.

Proposition 4.12. With the above definitions,

(1) Moding out by J̃ , the morphism ϕ1 induces an S-module isomorphism

M̃1 → Ãaff/J̃ .

(2) Moding out by J̃ , the morphism ϕ2 induces an Ãaff-module isomorphism

M̃2 → Ãaff/J̃ (which is not S-linear if we give M̃2 the tensor product S-
module structure).

(3) The left Ãaff-modules Ãaff/J̃ and M̃3 are isomorphic.

Proof. This proposition follows easily from Propositions 4.3 and 4.5. �

Remark 4.13. The Ãaff -module structure induced on M̃1 by the isomorphism in
Proposition 4.12.(1) can also be described via Proposition 4.4.

Definition 4.14. The Ãaff -module defined by one of the above equivalent defini-

tions will be denoted by M̃ .

5. Homology of the adjoint affine Grassmannian ΩKad

In this section, we recall the adjoint affine Grassmannian ΩKad, we prove that the

Ãaff -module M̃ is isomorphic to the homology of ΩKad, we define a ring structure
on this module and study the compatibility of these two structures.

5.1. Cohomology of the finite-dimensional flag manifold G/B. Recall, see
for example [Kum02, Chapter 11], that H∗

T (G/B) has an S-basis (ξw)w∈W =
(σB(w))w∈W indexed by the Weyl group. The pull-back along the map (G/B)T →
G/B induces an inclusion

H∗
T (G/B) → H∗

T ((G/B)T ) = SW .

Viewing ξw as a function on W , Kumar [Kum02, 11.1.6.(3)] sets du,v = ξu(v) =
〈ξu, v〉 and D = (du,v)u,v∈W . If (fw)w∈W is the basis of SW given by 〈fu, v〉 =
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fu(v) = δu,v, then we have (ξu)u = D(fu)u. Given the identification [Kum02,
11.1.4(2)], we also have 〈fu, δv〉 = δu,v.

The dual of H∗
T (G/B) is HT

∗ (G/B) and identifies as an S-module with the S-
subalgebra A of Aaff generated by (Aw)w∈W :

(4) HT
∗ (G/B) ≃

⊕

w∈W

S ·Aw

Note that (Aw)w∈W is the dual basis to (ξw)w∈W i.e. 〈ξu, Av〉 = ξu(Av) = δu,v (see
[Kum02, 11.1.5], were Au is denoted by xu). Over F = Frac(S) we also have the
basis (δw)w∈W for HT

∗ (G/B). Kumar, in [Kum02, 11.1.2.(e)], describes the base
change:

Au =
∑

v

cu,vδv

with C = (cu,v)u,v∈W a matrix with coefficients in S, in particular, we have (Av)v =
C(δv)v. We have the following relation between the matrices C and D.

Fact 5.1 (See [Kum02, 11.1.7.(a)]). We have D−1 = CT . Thus,

δv =
∑

w≤v

ξw(v)Aw .

Proof. In fact, from the identity (Av)v = C(δv)v, we deduce that (δv)v = C−1(Av)v =
DT (Av). Since D

T
v,w = ξw(v) and the matrix D is triangular, we get the result. �

Note also that an explicit formula for the coefficients ξw(v) is known: see [Kum02,
Proposition 11.1.11].

5.2. Affine Grassmannian and the Pontryagin ring structure. Let G be the
simply-connected almost simple group associated to g, and let Gad be the adjoint
quotient of this group. Let K resp. Kad be a maximal compact subgroup in G
resp. Gad. Let ΩK resp. ΩKad be the group of loops l with values in K resp.
Kad such that l(0) is the unit element in K resp. Kad. By a loop we mean a
map l : S1 → K(ad) that extends to a meromorphic map D◦ → G(ad), where D◦

denotes the pointed disk. Moding out a loop by the center of K yields an inclusion
ΩK ⊂ ΩKad. The action of T ∩K on ΩK resp. ΩKad is given by conjugation.

This implies that the equivariant homology of ΩK and ΩKad have a natural
structure of an algebra, given by the Pontryagin product which is also (T ∩ K)-
equivariantly homotopy equivalent to the point-wise product of loops. In this sec-
tion, we will recall an algebraic model forHT∩K

∗ (ΩK) and give one forHT∩K
∗ (ΩKad).

In particular we will describe the ring structure as well as an Ãaff -module structure
on HT∩K

∗ (ΩKad) extending the ring structure and the Aaff -module structure on
HT∩K

∗ (ΩK).

5.3. Geometry of fixed points in ΩKad. Since K → Kad is the universal cover
of Kad , the connected components of ΩKad are isomorphic to ΩK and are indexed
by π1(G

ad ) = π1(K
ad ) = Z. We now describe the T -fixed points in ΩKad. We

have, in the loop space picture

(ΩKad)T = {ψ̃tλ∨ : S1 → Kad | λ∨ ∈ P∨},

where ψ̃tλ∨ (t) = exp(2iπtλ∨) is the loop induced by the one-parameter subgroup

λ∨ of T ad (the maximal torus of Kad ). For λ∨ ∈ P∨, let [λ∨] be its class in
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P∨/Q∨ = π1(K
ad ) and denote by ΩKad

[λ∨] be the connected component of ΩKad

containing ψ̃tλ∨ . We have

ΩKad =
∐

[λ∨]∈P∨/Q∨

ΩKad
[λ∨] .

Let mλ∨ : ΩK → ΩKad
[λ∨] be the left multiplication by ψ̃tλ∨ . Since T and ψ̃tλ∨

commute, this is a T -equivariant isomorphism. Thus, HT
∗ (ΩK

ad
[λ∨] ) ≃ HT

∗ (ΩK).

5.4. Reminder on HT
∗ (ΩK). Recall from [KK86] that ΩK has a cellular decom-

position whose cells are indexed by W−
aff . This implies that, as S-module, we have

HT
∗ (ΩK) =

⊕

w∈W−
aff

S · ξw ≃M.

Furthermore, according to [Lam08, (3.1) and (3.2)], Aaff acts on HT
∗ (G/P) by

Av · ξw =

{
ξvw if ℓ(vw) = ℓ(v) + ℓ(w) and vw ∈ W−

aff

0 otherwise

and Aaff acts on H∗
T (G/P) by

Av · ξ
w =

{
ξvw if ℓ(vw) = ℓ(w)− ℓ(w) and vw ∈ W−

aff

0 otherwise

5.5. S-algebra structure on HT
∗ (ΩKad). We use the T∩K-equivariant homology

of the T ∩K-space ΩKad, where T ∩K acts on ΩKad via T ∩K → (T ∩K)ad → Gad.
The inclusion T ∩ K → T induces an isomorphism in equivariant cohomology
H∗

T (pt) → H∗
T∩K(pt). Note that we have HT∩K(ΩK) ≃ HT∩K(G/P) ≃ HT (G/P),

where G/P is the affine Grassmannian. Abusing notations slightly, we will denote
in the following HT∩K(ΩK) simply by HT (ΩK), and similarly for HT (ΩK

ad). The
T -equivariant cohomology of the point is the symmetric algebra on P , namely S,
see [Br98, p.5], so that the homology HT

∗ (ΩK
ad) will be an S-module and even an

S-algebra. We are not considering T ad-equivariant homology.

Proposition 5.2. As S-algebras, we have: HT
∗ (ΩK

ad) ≃ S[P∨]⊗S[Q∨] H
T
∗ (ΩK).

Proof. We have the following inclusions that are compatible with pointwise multi-
plication and T -equivariant inducing S-algebra morphisms

ΩKT //

��

ΩK

��

(ΩKad)T // ΩKad,

HT
∗ (ΩK

T ) //

��

HT
∗ (ΩK)

��

HT
∗ ((ΩK

ad)T ) // HT
∗ (ΩK

ad).

Recall that we have bijections (ΩKad)T ≃ P∨ and ΩKT ≃ Q∨ that are group

homomorphisms since ψ̃tλ∨ ψ̃tµ∨ = ψ̃tλ∨+µ∨ . We thus have HT
∗ ((ΩK

ad)T ) ≃ S[P∨]

and HT
∗ (ΩK

T ) ≃ S[Q∨]. In particular, the above diagram induces an S-algebra
morphism S[P∨] ⊗S[Q∨] H

T
∗ (ΩK) → HT

∗ (ΩK
ad). The restriction of this map to

ψ̃tλ∨ ⊗HT
∗ (ΩK

T ) → HT
∗ ((ΩK

ad)T ) is the multiplication mλ∨ . The above decom-

position of ΩKad in connected components gives an isomorphism of S-modules

HT
∗ (ΩK

ad) =
⊕

[λ∨]∈P∨/Q∨

HT
∗ (ΩK

ad
[λ∨] )
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proving that the map S[P∨]⊗S[Q∨] H
T
∗ (ΩK) → HT

∗ (ΩK
ad) is surjective.

To prove injectivity, first note that, since HT
∗ (ΩK) is a free S-module and S[P∨]

is a free S[Q∨]-module, the S-module S[P∨]⊗S[Q∨] H
T
∗ (ΩK) is free. We therefore

only need to prove the injectivity of the map after base extension to F = Frac(S)
the field of fractions of S. Now recall the following general result (see [Kum02,
C.8 Theorem]: on the level of T -equivariant cohomology we have isomorphisms

H∗
T (ΩK) ⊗S F ≃ H∗

T (ΩK
T ) ⊗S F and H∗

T (ΩK
ad) ⊗S F ≃ H∗

T ((ΩK
ad)T ) ⊗S F .

This induces isomorphisms in T -equivariant homology:

HT
∗ (ΩK

T )⊗S F ≃ HT
∗ (ΩK)⊗S F and HT

∗ ((ΩK
ad)T )⊗S F ≃ HT

∗ (ΩKad)⊗S F.

After base change to F , sinceHT
∗ (ΩK

T ) ≃ F [Q∨] andHT
∗ ((ΩK

ad)T )⊗SF ≃ F [P∨],
our map is given by

F [P∨]⊗F [Q∨] F [Q
∨] → F [P∨]

and is therefore injective. �

Recall that, as S-module, we have an isomorphism HT
∗ (ΩK) =M . In particular

the above results identifies HT
∗ (ΩK

ad) with the S-module M̃ of Definition 4.14:

Corollary 5.3. As S-modules, we have: HT
∗ (ΩK

ad) ≃ M̃ .

Corollary 5.4. The exists an Ãaff-module structure on HT
∗ (ΩK

ad) compatible with
the Aaff-module structure on HT

∗ (ΩK). Furthermore, for this structure, we have an

isomorphism of Ãaff-modules HT
∗ (ΩK

ad) ≃ M̃.

Proof. We define the Ãaff -module structure on HT
∗ (ΩK

ad). Since we have the

isomorphism of S-modules HT
∗ (ΩK

ad) ≃ M̃1 = S[P∨] ⊗S[Q∨] M , we may extend

the Aaff -module structure on M to the Ãaff−module structure M̃ . �

Remark 5.5. The above Ãaff -module structure on HT
∗ (ΩK

ad) also has a geometric
description, see [CMP09, Proposition 3.3].

Remark 5.6. The above result shows that our claim on [CMP09, Page 12] that
HT

∗ (ΩK
ad) is the tensor product ring Z[Z] ⊗Z H

T
∗ (ΩK) is wrong: by localization

HT
∗ (ΩK

ad) is a subring of F [P∨] and this Laurent polynomial algebra contains no
roots of unity, whereas Z[Z]⊗Z H

T
∗ (ΩK) does.

Recall that W̃aff can be embedded in Ãaff via w 7→ δw. The induced action is

denoted by x · ξ̃ := δx · ξ̃ for x ∈ W̃aff and ξ̃ ∈ HT
∗ (ΩK

ad).

Corollary 5.7. Let w ∈W and λ∨, µ∨ ∈ P∨, we have

wtλ∨ · ψ̃tµ∨ := δwtλ∨ · ψ̃tµ∨ = ψ̃tw(λ∨+µ∨)
.

Proof. As already explained in the proof of Proposition 5.2, we have δtλ∨ · ψ̃tµ∨ =

ψ̃tλ∨+µ∨ . We need to check that δw · ψ̃tµ∨ = ψ̃tw(µ∨)
. But our identification of

HT
∗ (ΩK

ad) with M̃ identifies ψ̃tµ∨ with hµ∨ ⊗ 1. Recall that 1 = [δ] ∈ Ãaff/J̃ , so

that hµ∨ ⊗ 1 = [δtµ∨ ] and δw · ψ̃tµ∨ = δw · [δtµ∨ ] = [δwδtµ∨ ] = [δwδtµ∨ δw−1] since

δw−1 ∈ J̃ . We get

δw · ψ̃tµ∨ = [δwδtµ∨ δw−1] = [δtw(µ∨)] = ψ̃tw(µ∨)

proving the result. �
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5.6. Compatibility between the ring and the Ãaff-module structure. The

above description of HT
∗ (ΩK

ad) as ring and as Ãaff -module is not enough for our
purposes: we need to be able to multiply two classes of the form σ⊗ ξx and τ ⊗ ξy,
see also Remark 5.6. To this end, we recall the definition and properties of jad

given in [CMP09, §3.3].

Proposition 5.8. There is an S-algebra isomorphism jad : HT
∗ (ΩK

ad) → Z
Ãaff

(S).
It satisfies:

(1) jad(ξ) · ξ′ = ξξ′ for ξ, ξ′ ∈ HT
∗ (ΩK

ad) ;

(2) jad(ψ̃tλ∨ ) = δtλ∨ for λ∨ ∈ P∨.

For w ∈ W̃−
aff , j

ad(ξ̃w) is characterized by the two following properties:

(a) jad(ξ̃w) is congruent to Aw modulo
∑

x∈W\{e} Ãaff · Ax ;

(b) jad(ξ̃w) belongs to Z
Ãaff

(S).

The map jad has the following equivariance property:

Proposition 5.9. Let u ∈W,λ∨ ∈ P∨, ξ̃ ∈ HT
∗ (ΩK

ad). Then

(1) jad(utλ∨ · ξ̃) = δtu(λ∨)
δuj

ad(ξ̃)δu−1 = δutλ∨ j
ad(ξ̃)δu−1 ;

(2) δtλ∨ j
ad(ξ̃) = jad(ξ̃)δtλ∨ .

Proof. (1) Let s ∈ S be a scalar, we have:

• jad(utλ∨ · sξ̃) = jad(u(s)utλ∨ · ξ̃) = u(s)jad(utλ∨ · ξ̃) ;

• δtu(λ∨)
δuj

ad(sξ̃)δu−1 = δtu(λ∨)
δusj

ad(ξ̃)δu−1 = u(s)δtu(λ∨)
δuj

ad(ξ̃)δu−1 .

Thus, by semi-linearity, it is enough to prove the result for ξ̃ = ψ̃tµ∨ . For ξ̃ = ψ̃tµ∨ ,

we have jad(utλ∨ · ψ̃tµ∨ ) = jad(u · ψ̃tλ∨+µ∨ ) = jad(ψ̃tu(λ∨)+u(µ∨)
) = δtu(λ∨)+u(µ∨)

.

We also have δtu(λ∨)
δuj

ad(ψ̃tµ∨ )δu−1 = δtu(λ∨)
δuδtµ∨ δu−1 = δtu(λ∨)+u(µ∨)

. Thus the

result is proved.

(2) Both terms are S-linear so we only need to check this for ξ̃ = ψ̃tµ∨ but we

have δtλ∨ j
ad(ψ̃tµ∨ ) = δtλ∨ δtµ∨ = δtµ∨ δtλ∨ = jad(ψ̃tµ∨ )δtλ∨ . �

In particular, the previous Proposition allows computing jad in terms of j:

Example 5.10. Let τi = vit−̟i
∈ Z and let ξ ∈ HT

∗ (ΩK). Then

jad(τi · ξ) = δτi j(ξ) δv−1
i
.

We deduce a formula allowing reducing products in the homology of ΩKad to
products in the homology of ΩK:

Corollary 5.11. Let σ = utλ∨ , τ = vtµ∨ be elements in Z. Let ξ̃, ξ̃′ ∈ HT
∗ (ΩK

ad).
Then

(σ · ξ̃)× (τ · ξ̃′) = στ · (ψσ,τ × (v−1
∗ ξ̃)× (u−1

∗ ξ̃′)) ,

where ψσ,τ = ψu−1(µ∨)−µ∨ = ψv−1(λ∨)−λ∨ .

Proof. Since Z is abelian, στ = τσ. We have στ = utλ∨vtµ∨ = uvtv−1(λ∨)+µ∨

and τσ = vtµ∨utλ∨ = vutu−1(µ∨)+λ∨ . We get v−1(λ∨) + λ∨ = u−1(µ∨) + µ∨ so

u−1(µ∨)− µ∨ = v−1(λ∨)− λ∨, so that ψσ,τ is well defined. We also get uv = vu.
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Using Proposition 5.9, we compute:

(σ · ξ̃)× (τ · ξ̃′) = jad(σ · ξ̃) · (τ · ξ̃′)

= δuδtλ∨ j
ad(ξ̃)δu−1δvδtµ∨ · ξ̃′

= δuδtλ∨ j
ad(ξ̃)δvδu−1δtµ∨ · ξ̃′

= δuδtλ∨ δvj
ad(v−1 · ξ̃)δt

u−1(µ∨)
δu−1 · ξ̃′

= δuδtλ∨ δvδtu−1(µ∨)
jad(v−1 · ξ̃)δu−1 · ξ̃′

= δuδtλ∨ δvδtµ∨ δtu−1(µ∨)−µ∨ j
ad(v−1 · ξ̃)δu−1 · ξ̃′

= στ · (ψσ,τ × (v−1
∗ ξ̃)× (u−1

∗ ξ̃′)) .

�

Remark 5.12. In [CMP09, p.12], it is claimed that HT
∗ (ΩKad) is the tensor prod-

uct ring Z[Z]⊗Z H
T
∗ (ΩK). As explained in Remark 5.6, this is not true. However

as the next corollary shows, this is true in the non equivariant homology.

Corollary 5.13. In non equivariant homology, let ξ̃, ξ̃′ ∈ H∗(ΩK
ad) and σ, τ ∈ Z,

then

(σ · ξ̃)× (τ · ξ̃′) = στ · (ξ̃ × ξ̃′) .

Proof. Indeed, push-forwards u−1
∗ and v−1

∗ are trivial in non equivariant homology.

Moreover, the equivariant classes ψ̃λ∨ restrict to the class of a point in H∗(ΩK
ad),

which is the unit in H∗(ΩK
ad). �

5.7. Translations modulo P . We use [LS10, Lemma 10.1] and [CMP09, Corol-
lary 3.15] as a definition:

(5) (WP )aff =

{
utν∨ | ∀γ ∈ R+

P , 〈ν
∨, γ〉 =

{
0 if u(γ) > 0
−1 if u(γ) < 0

}

(6) (W̃P )aff =

{
utν∨ ∈ W̃aff

∣∣∣ ∀γ ∈ R+
P , 〈ν

∨, γ〉 =

{
0 if u(γ) > 0
−1 if u(γ) < 0

}
.

Following [LS10, §10.2 and 10.3], we also define (WP )aff = {wtλ∨ |w ∈ WP , λ
∨ ∈

Q∨
P }. Recall, from [CMP09, Section 3.4] that any element w ∈ W̃aff can be uniquely

factorized as w1w2 with w1 ∈ (W̃P )aff and w2 ∈ (WP )aff and ℓ(w) = ℓ(w1)+ ℓ(w2).

We denote w1 = πP (w). Thus (W̃P )aff is a set of representatives for the quotient

W̃aff/(WP )aff which will be relevant for Peterson’s isomorphism (7).
Following [LS10, Section 10.4] and [CMP09, Section 3.4], define the ideals JP ⊂

M and J̃P ⊂ M̃ as follows:

JP =
∑

x∈W−
aff\(W

P )aff

Sξx and J̃P =
∑

x∈W̃−
aff\(W̃

P )aff

Sξ̃x.

The following result corrects [CMP09, Proposition 3.16] which used the wrong
product structure, see Remark 5.6.

Proposition 5.14. Let x ∈ W̃−
aff ∩ (W̃P )aff and let ν∨ ∈ P∨

− . Then xπP (tν∨) ∈

W̃−
aff ∩ (W̃P )aff . Let us write as usual x = σx̂ and πP (tν∨) = τ ̂πP (tν∨) with

σ = utλ∨ , τ = vtµ∨ . Then

(v−1
∗ ξx̂)× (u−1

∗ ξ ̂πP (tν∨ )
) = ψ−1

σ,τξ ̂xπP (tν∨ )
modulo JP .
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Proof. The proof follows the arguments in [CMP09]. In particular, we get

(σ · ξx̂)× (τ · ξ ̂πP (tν∨ )
) = στ · ξ ̂xπP (tν∨ )

modulo J̃P .

Using the correct product formula given in Corollary 5.11, the left hand side is

στ · (ψσ,τ (v
−1
∗ ξx̂)× (u−1

∗ ξ ̂πP (tν∨ )
)) .

This proves the result since J̃P ∩M = JP (as σx̂ ∈ W̃−
aff ⇔ x̂ ∈ W−

aff). �

In particular, the case P = B yields:

Corollary 5.15. Let x ∈ W̃−
aff and let ν∨ ∈ P∨

− . Then xtν∨ ∈ W̃−
aff . Let us write

as usual x = σx̂ and tν∨ = τ t̂ν∨ with σ = utλ∨ , τ = vtµ∨ . Then

(v−1
∗ ξx̂)× (u−1

∗ ξt̂ν∨
) = ψ−1

σ,τξx̂tν∨
.

6. Affine symmetries

In this section, we correct [CMP09, Section 3.5], see Remark 5.6 using the correct
product formula given in Corollary 5.11 and Proposition 5.14. In particular we
prove that the formulas given in [CMP09] are correct in the non equivariant setting.

6.1. Peterson’s isomorphism. Proposition 5.14 is our needed result in the equi-
variant homology of the affine Grassmannian. Translating this formula in the
quantum cohomology of G/P , we prove our main theorem. We use Peterson’s
isomorphism proved in [LS10] to relate HT

∗ (ΩK) and QH∗
T (G/P ).

Let ηP : Q∨ → Q∨
P be the projection on the coroot subspace generated by simple

roots αi with αi 6∈ RP . Peterson’s isomorphism is the map

(7) ψP : HT
∗ (ΩK)P → Z[Q∨

P ]⊗Z H
∗
T (G/P )

ξwπP (tλ∨ )ξ
−1
πP (tµ∨ ) 7→ qηP (λ∨−µ∨)σ

P (w)

where w ∈ WP and λ∨, µ∨ ∈ Q∨
− with Q∨

− the set of antidominant elements in Q∨.

Remark 6.1. In the above statement we have:
(1) The space HT

∗ (ΩK)P is a quotient and a localization of HT
∗ (ΩK) defined

in [CMP09, §2.2]. The family {σP (w), w ∈ W/WP } is the Schubert base of
H∗

T (G/P ), and the element in Z[Q∨
P ] corresponding to ν∨ ∈ Q∨

P is denoted
by qν∨ . We have for ν∨ ∈ Q∨

− the formula

deg(qν∨) =
∑

α∈R+\R+
P

〈ν∨, α〉 = −ℓ(tν∨).

(2) This isomorphism is graded. In fact, for very negative coweights λ∨, µ∨,
the element ξwπP (tλ∨ )ξ

−1
πP (tµ∨ ) has homological degree ℓ(πP (tλ∨)) − ℓ(w) −

ℓ(πP (tµ∨)), by [LS10, Lemma 3.3]. On the other hand, in quantum coho-
mology, the element qηP (λ∨−µ∨)σ

P (w) has degree−ℓ(πP (tλ∨))+ℓ(πP (tµ∨))+
ℓ(w).
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6.2. A Weyl group action on QH∗
T (G/P ). In this subsection, we define an action

of the Weyl group on H∗
T (G/P ) and on QH∗

T (G/P ) by left translation. We will
prove the compatibility of this action with Peterson’s isomorphism in the next
subsection. Since this action is different from the action defined in Kumar [Kum02,
11.3.4] we define it carefully. We start with the action on G/B and then deal with
the general situation for G/P .

We define an algebraic and a geometric action of the Weyl groupW onH∗
T (G/B).

We then prove that these actions coincide.
Let n ∈ G be in the normalizer of T and let w be the corresponding element of

the Weyl group. Define the left action Ln : G/B → G/B by left multiplication:
Ln · [x] = [n−1x]. This action is T -equivariant if we consider the w-twisted action
of T on G/B given by t · [x] = [w(t)x]. It therefore induces a w-semilinear map
H∗

T (G/B) → H∗
T (G/B), denoted L∗

n: L∗
n(sξ) = w(s)L∗

n(ξ) for s ∈ S and ξ ∈
H∗

T (G/B).

Fact 6.2. The above action L∗
n satisfies the following properties:

(1) L∗
n depends on w and not on n itself; it will be denoted by w∗ in the sequel.

(2) Via the inclusion H∗
T (G/P ) ⊂ H∗

T (G/B) given by pulling back the projec-
tion G/B → G/P , we have w∗H∗

T (G/P ) ⊂ H∗
T (G/P ).

(3) The induced action of w∗ on the non equivariant cohomology H∗(G/B) is
trivial.

Proof. (1) Let N denote the normalizer of T . The mapN×G/B → G/B, (n, [x]) 7→
Ln · [x] is continuous and therefore for ξ ∈ H∗

T (G/B), the map N 7→ L∗
nξ is locally

constant.
(2) For n in the normalizer of T , we have a commutative diagram:

G/B G/B

G/P G/P

LB
n

LP
n

Here we made a difference between the action of n on G/B and G/P using su-
perscripts. It follows that for ξ ∈ H∗

T (G/P ), we have w∗ξ = (LB
n )

∗ξ = (LP
n )

∗ξ ∈
H∗

T (G/P ).
(3) For g ∈ G, we can consider the action of left translation L∗

g on non equivariant
cohomology H∗(G/B). By the same argument as in (1), this action is trivial.
In particular, for g = n in N , we obtain that the action L∗

n on non equivariant
cohomology is trivial. �

Recall that W can be embedded in Aaff via v 7→ δv.

Definition 6.3. Let w ∈ W . Consider H∗
T (G/B) as the dual of HT

∗ (G/B) ⊂ Aaff

and set

(w • f)(x) = f(δw−1x) for x ∈ HT
∗ (G/B) = A.

Proposition 6.4. For f ∈ H∗
T (G/B) and w ∈ W , we have w • f = w∗f .

Proof. Using Frac(S)-linearity, we only need to compare these actions on the ele-
ments ξv. We have (w•ξv)(δu) = ξv(δw−1δu) = ξv(δw−1u) = δv,w−1u = ξv(w−1u) =
(w∗ξv)(u), proving the result. �
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Corollary 6.5. Let α be a simple root and w ∈WP . We have

(sα)
∗σP (w) =

{
σP (w) if sαw > w;
σP (w)− ασP (sαw) if sαw < w.

Proof. We compute ((sα)
∗σP (w))(Au) = σP (w)(δsαAu) = σP (w)((1− αAα)Au) =

σP (w)(Au)− ασP (w)(AαAu). Now we have

AαAu =

{
0 if sαu < u
Asαu if sαu > u.

Since σP (w)(Av) = δv,w, we get

((sα)
∗σP (w))(Au) =

{
δu,w if sαu < u
δu,w − αδsαu,w if sαu > u.

This in turn gives the result. �

Remark 6.6. (1) Note that, for α simple, the two conditions w ∈ WP and
sαw < w imply the inclusion sαw ∈ WP since the inversion set of sαw is
contained in the inversion set of w. In particular, in the second case of the
above formula, the class σP (sαw) is well defined.

(2) This formula also shows that the action w∗ is trivial in the non equivariant
setting (indeed, in that case wet set α = 0).

The action w∗ is extended to QH∗
T (G/P ) by linearity on quantum parameters.

6.3. Compatibility of Peterson’s isomorphism. In this subsection we prove
that Peterson’s isomorphism is compatible with the actions u∗ in homology and u∗

in cohomology. We start with a useful lemma.

Lemma 6.7. Let w ∈ WP and let λ∨ ∈ Q∨
− be such that x = wπP (tλ∨) ∈ (WP )aff .

Write x = wπP (tλ∨) = vtµ∨ with v ∈W and µ∨ ∈ Q∨.
Let α be a simple root and let β = w−1(α), β′ = v−1(α).

(1) We have w−1v ∈ WP and µ∨ ∈ Q∨
−.

(2) We have β ∈ RP ⇐⇒ β′ ∈ RP .
(3) We have sαx ∈W−

aff ⇐⇒ 〈µ∨, β〉 6= 0.
(4) We have sαx ∈ (WP )aff ⇐⇒ β 6∈ RP ⇐⇒ sαw ∈ WP .
(5) We have the equivalence:

(
sαx ∈ W−

aff ∩ (WP )aff and ℓ(sαx) > ℓ(x)
)
⇐⇒

(
sαw ∈ WP and ℓ(sαw) < ℓ(w)

)
.

Proof. (1) By [LS10, Lemma 10.7], we have πP (tλ∨) = utµ∨ with u ∈ WP . This

give w−1v = u ∈WP . Since vtµ∨ ∈W−
aff we have µ∨ ∈ Q∨

−.
(2) Since u = w−1v ∈WP and β = u(β′), we have β ∈ RP ⇔ β′ ∈ RP .
(3) We have vtµ∨ ∈ W−

aff therefore µ∨ ∈ Q∨
− and for γ > 0, we have the impli-

cation (〈µ∨, γ〉 = 0 ⇒ v(γ) > 0). The condition sαvtµ ∈ W−
aff is thus equivalent

to (〈µ∨, γ〉 = 0 ⇒ sαv(γ) > 0) for γ > 0. But since for γ = β′, the roots
v(γ) and sαv(γ) have opposite signs, the condition sαvtµ∨ ∈ W−

aff is equivalent to
〈µ∨, β′〉 = 0.

(4) We have vtµ∨ ∈ (WP )aff therefore, for γ ∈ R+
P , we have the equivalences

(〈µ∨, γ〉 = 0 ⇔ v(γ) > 0) and (〈µ∨, γ〉 = −1 ⇔ v(γ) < 0). The condition sαvtµ ∈
(WP )aff is equivalent to having the equivalences (〈µ∨, γ〉 = 0 ⇔ sαv(γ) > 0) and
(〈µ∨, γ〉 = −1 ⇔ sαv(γ) < 0). Since for γ = β′, the roots v(γ) and sαv(γ) have
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opposite signs, the last equivalences occur if and only if β′ 6∈ RP . This in turn is
equivalent to β 6∈ RP by (2).

For the last equivalence, note that by definition, we have (sαw ∈ WP ⇔
sαw(R

+
P ) ⊂ R+). Since w ∈ WP , we have w(R+

P ) ⊂ R+. Since the inversion
sets of w and sαw only differ by β (or its opposite, depending on the sign of β) we
get the last equivalence.

(5) Note that we have the equivalence (ℓ(sαw) < ℓ(w) ⇔ β < 0). We therefore
need to prove that the left hand side of the equivalence is equivalent to β 6∈ RP

and β < 0. Note that since w ∈ WP , this is equivalent to β < 0.
First assume that sαx ∈ W−

aff ∩ (WP )aff and ℓ(sαx) > ℓ(x). By [LS10, Lemma
3.3], since vtµ∨ , sαvtµ∨ ∈ Waffm, we have ℓ(sαx) = ℓ(tµ∨) − ℓ(sαv) and ℓ(x) =
ℓ(tµ∨) − ℓ(v). In particular, we have ℓ(sαv) < ℓ(v), thus β′ < 0. Since sαx ∈
(WP )aff , we also have β 6∈ RP thus β′ 6∈ RP . Now, since u ∈ WP , this implies
β < 0.

Conversely, assume β < 0. By the above arguments, this implies β 6∈ RP and
thus sαx ∈ (WP )aff . This also implies β′ 6∈ RP and since u ∈ WP and β′ = u−1(β),
we get β′ < 0. Since vtµ ∈ W−

aff , −β
′ > 0 and v(−β′) = −α < 0, we must have

〈µ∨, β′〉 6= 0 and by (3), this implies sαx ∈W−
aff . �

We have the following equivariance property of ψP .

Proposition 6.8. For ξ ∈ HT
∗ (ΩK)P , we have ψP (u∗ξ) = u∗ξ.

Proof. We may assume that u = si, with αi a simple root. Then u∗ξwπP (tλ∨ ) =
δu · ξwπP (tλ∨ ) = (1 − αiAi) · ξwπP (tλ∨ ). If ℓ(siwπP (tλ∨)) > ℓ(wπP (tλ∨)) and

siwπP (tλ∨) ∈ (WP )aff ∩W−
aff , then this is equal to ξwπP (tλ∨ ) − αiξsiwπP (tλ∨ ). Oth-

erwise, this is equal to ξwπP (tλ∨ ).

The action si
∗σP (w) is computed in Corollary 6.5. If ℓ(siw) < ℓ(w) and siw ∈

WP , then this is equal to σP (w) − αiσ
P (siw). Otherwise, this is equal to σP (w).

Let β = w−1(αi). The condition siw ∈ WP and ℓ(siw) < ℓ(w) is equivalent to
the condition ℓ(siwπP (tλ∨)) > ℓ(wπP (tλ∨)) and siwπP (tλ∨) ∈ (WP )aff ∩W−

aff by
Lemma 6.7.(5). This proves the result. �

6.4. The result. We now prove our main result. For i a cominuscule node, i.e.
such that ̟∨

i is a minuscule coweight, we let vi be the smallest element in W
such that vi(̟

∨
i ) = w0(̟

∨
i ) (w0 is the longest element in W ). The coweight

vi(̟
∨
i ) = w0(̟

∨
i ) is the opposite of a fundamental coweight: there exists f(i) ∈ I

such that vi(̟
∨
i ) = −̟∨

f(i). Actually we have αf(i) = −w0(αi) and vf(i) = v−1
i .

Theorem 6.9. Let i be a cominuscule node. In QH∗
T (G/P ) we have

σP (vi)× v∗i (σ
P (w)) = qηP (̟∨

i −w−1(̟∨
i ))σ

P (viw) .

Proof. Let w ∈ WP , we have πP (w) = w. Let ̟∨
i be the minuscule coweight

associated to i and let µ∨ and ν∨ be in Q∨ and dominant enough. As in [CMP09,
§3.5], we get

πP (t−̟∨
i −µ) = τiπP (vf(i))πP (t−(̟∨

i +̟∨
f(i)

+µ) and

πP (wt−νt−̟∨
i
−µ) = τiπP (vf(i)w)πP (t−(̟∨

i +w−1(̟∨
f(i)

)+µ+ν).

For µ and ν dominant enough, the elements wt−ν , t−̟∨
i −µ and wt−νt−̟∨

i −µ are

in W̃−
aff and their image by πP are in (W̃P )aff ∩ W̃−

aff . We may therefore apply
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Proposition 5.14 to the elements wt−ν and t−̟∨
i
−µ to get:

(vf(i))∗ξwπP (t−ν∨ ) × ξπP (vf(i))πP (t−(̟∨
i

+̟∨
f(i)

+µ∨))

≡ ξπP (vf(i)w)πP (t−(̟∨
i

+w−1(̟∨
f(i)

+µ∨+ν∨)))
,

where≡means equality inHT
∗ (ΩK)P or equivalently equality modulo JP . Applying

Peterson’s map (7), we get thanks to Proposition 6.8 the corresponding formula in
the quantum cohomology ring:

v∗f(i)σ
P (w)q−ηP (ν∨) ∗ ×σ

P (vf(i))q−ηP ((̟∨
i +̟∨

f(i)
+µ∨))

= σP (vf(i)w)q−ηP ((̟∨
i +w−1(̟∨

f(i)
)+µ∨+ν∨)) ,

hence finally:

v∗f(i)σ
P (w) ∗ σP (vf(i)) = qηP (̟∨

f(i)
−w−1(̟∨

f(i)
))σ

P (vf(i)w).

This concludes the proof of the theorem. �

Corollary 6.10. Let i be such that ̟∨
i is a minuscule coweight. In QH∗(G/P ),

we have
σP (vi)× σP (w) = qηP (̟∨

i −w−1(̟∨
i ))σ

P (viw) .

Example 6.11. Let G be of type A1, so that G/B = P1. Let s be the non trivial
element of W and α the simple root. We have

σB(s) ∗ (σB(s)− α) = q .

Proof. Let i be the unique node of the Dynkin diagram of G. Then vi = s. To
apply Theorem 6.9, we also set w = s. Let x resp. y be the B-stable resp. B−-
stable point in P1. The class σB(s) is the T -equivariant class of x, and v∗i σ

B(s) is
the T -equivariant class of y. Since [x] − [y] = α, we have v∗i σ

B(s) = σB(s) − α.
Denoting h = σB(s), the theorem yields h × (h − α) = q, as claimed. Note that
h2 = q + αh is also predicted eg by [Mi07, Theorem 1]. �

7. Pieri formulas

We now give another application of Proposition 5.8 to prove a formula for
j(ξτi(vi)), see Proposition 7.4. This gives the multiplication in HT

∗ (ΩK) by the
class ξτi(vi). We hope in subsequent work to deduce Pieri formulas for the non-
equivariant multiplication by classes generating H∗(ΩK) in all classical types.

We first provide a generalization of [Lam08, Proposition 5.4] to coweights. For
µ∨ ∈ P∨, set Wµ∨ = 〈sαi

| i ∈ [1, r] and 〈αi, µ
∨〉 = 0〉 = {w ∈ W | w(µ∨) = µ∨}.

Proposition 7.1. Let µ∨ ∈ P∨ be antidominant. Then

jad(ξtµ∨ ) =
∑

w∈W/Wµ∨

Ãtw(µ∨)
.

Proof. We follow the idea of proof given in [Lam08, Proposition 5.4]. Using Lemma

4.8, we see that for w ∈W/Wµ∨ non trivial, tw(µ∨) 6∈ W̃−
aff , so that Atw(µ∨)

belongs

to the ideal
∑

x∈W\{e} Ãaff ·Ax of Proposition 5.8. Thus, using Proposition 5.8, we

only need to prove that
∑

w∈W/Wµ∨
Atw(µ∨)

∈ Z
Ãaff

(S).

To prove that c :=
∑

w∈W/Wµ∨
Ãtw(µ∨)

centralizes S, or equivalently commutes

with any λ in P , we use Proposition 4.6 to compute Ãtν∨λ. In this formula, the
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term tν∨(λ) is equal to λ by (1) in §2.2. Let P be the set of pairs (ν∨, β) where
ν∨ ∈W · µ∨, β is a positive real root, and tν∨sβ ⋖ tν∨ . We have:

(8) cλ− λc =
∑

(ν∨,β)∈P

〈λ, β∨〉Ãtν∨sβ ,

so our concern now is to prove that this sum vanishes.
We consider the map ι : P → P defined by ι(ν∨, β) = (sβ(ν

∨),−tν∨(β)). Let
(ν∨, β) ∈ P. We have

tν∨sβ = tν∨sβt−ν∨tν∨ = stν∨ (β)tν∨

= tst
ν∨ (β)(ν∨)stν∨ (β) = tsβ(ν∨)s−tν∨ (β) ,

where the last equality follows from (1) and Lemma 2.8. By the length formula
in [CMP09, Corollary 3.13], ℓ(tsβ(ν∨)) = ℓ(tν∨) and by definition of P, ℓ(tν∨sβ) =
ℓ(tβ∨)− 1. Thus, ℓ(tsβ(ν∨)s−tν∨ (β)) = ℓ(tsβ(ν∨))− 1. Moreover, by [BB05, Proposi-
tion 4.4.6], tν∨(β) < 0, which implies tsβ(ν∨)s−tν∨ (β) ⋖ tsβ(ν∨) and −tν∨(β) > 0, so
(sβ(ν

∨),−tν∨(β)) ∈ P as claimed.
We also observe that 〈λ,−tν∨(β)∨〉 = 〈λ,−β∨〉 = −〈λ, β∨〉. Finally,

−tsβ(ν∨)(−tν∨(β)) = tsβ(ν∨)tν∨(β) = sβtν∨sβtν∨(β) .

One can check that this root is equal to β, so that ι is an involution and the terms
in (8) cancel pairwise. �

We now prove some preliminary lemmas.

Lemma 7.2. Let i ∈ Iaff . We have jad(ξ̃w0(̟∨
i )) = δτ−1

i

∑

w≤Lvi

Aτi(w)viw−1 .

Proof. Since w0(̟
∨
i ) ≤ 0 we may apply Proposition 7.1 and get

jad(ξw0(̟∨
i )) =

∑

µ∨∈W ·w0(̟∨
i )

Atµ∨ .

Thus,

jad(ξw0(̟∨
i )) =

∑
µ∨∈W ·̟∨

i
Atµ∨ =

∑
w≤Lvi

Awt̟∨
i
w−1

=
∑

w≤Lvi
Awτ−1

i viw−1 =
∑

w≤Lvi
Aτ−1

i τi(w)viw−1

= δτ−1
i

∑
w≤Lvi

Aτi(w)viw−1 .

�

Lemma 7.3. Let s ∈ S and i ∈ Iaff . We have
 ∑

w≤Lvi

Aτi(w)viw−1


 s = τi(s)


 ∑

w≤Lvi

Aτi(w)viw−1


 .

Proof. Let i ∈ Iaff . Since j
ad(ξw0(̟∨

i )) = δτ−1
i

∑
w≤Lvi

Aτi(w)viw−1 , we deduce that

δτ−1
i

∑

w≤Lvi

Aτi(w)viw−1 ∈ ZAaff
(S) .

Let s ∈ S, we have:

δτ−1
i

(
∑

w≤Lvi

Aτi(w)viw−1) s = sδτ−1
i

∑

w≤Lvi

Aτi(w)viw−1 = δτ−1
i
τi(s)

∑

w≤Lvi

Aτi(w)viw−1 ,

which proves the lemma. �
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Proposition 7.4. Let i ∈ Iaff , let as above vi the maximal element in WPi and τi
the automorphism of the affine Dynkin diagram defined by i. Then τi(vi) ∈ W−

aff

and we have:

j(ξτi(vi)) =
∑

w≤Lvi

∑

v≤v−1
i

τi(ξ
v(v−1

i ))Aτi(w)viw−1Av .

Proof. We first prove that τi(vi) ∈ W−
aff . We know that τi(αi) = α0. Since vi ∈

WPi , we have for 1 ≤ j ≤ n with j 6= i, ℓ(visj) > ℓ(vi). Since vi ∈ W , ℓ(vis0) >
ℓ(vi). Applying τi, we deduce that for all k > 0, ℓ(τi(vi)sk) > ℓ(τi(vi)). Thus,
τi(vi) ∈W−

aff .
Moreover, we know that τi = vit−̟∨

i
. Therefore, vi = τit̟∨

i
= tw0(̟∨

i )τi, so that

tw0(̟∨
i ) = viτ

−1
i = τ−1

i τi(vi). By Proposition 5.9, we deduce that jad(ξtw0(̟∨
i

)
) =

δτ−1
i
j(ξτi(vi))δvi .

By Lemma 7.2, we deduce that

δτ−1
i
j(ξτi(vi))δvi = δτ−1

i

∑

w≤Lvi

Aτi(w)viw−1 .

Therefore, using Fact 5.1 and then Lemma 7.3, we find

j(ξτi(vi)) =
∑

w≤Lvi
Aτi(w)viw−1δv−1

i

=
∑

w≤Lvi
Aτi(w)viw−1

∑
v≤v−1

i
ξv(v−1

i )Av

=
∑

w≤Lvi

∑
v≤v−1

i
τi(ξ

v(v−1
i ))Aτi(w)viw−1Av .

�

Remark 7.5. Let x ∈W−
aff . In the non equivariant homology, we thus have

ξτi(vi) · ξx =
∑

ξτi(w)viw−1x ,

where the sum is over w ≤L vi such that ℓ(τi(w)viw
−1x) = ℓ(vi) + ℓ(x) and

τi(w)viw
−1x ∈W−

aff .
By Corollary 5.15, we know that there is only one Schubert class in the product

ξτi(vi) · ξx, from which we deduce that there is exactly one w ≤L vi such that

ℓ(τi(w)viw
−1x) = ℓ(vi) + ℓ(x) and τi(w)viw

−1x ∈ W−
aff .

Example 7.6. Let us assume we are in type Ã3 and let us write for short A210

instead of As2s1s0 and similarly for ξ210 and δ210. Let i = 1 so that vi = s3s2s1 and
τi(vi) = s2s1s0. First we observe that

δτ−1
i

= δ123 = (1− α1A1)(1− α2A2)(1 − α3A3)

= 1− α1A1 − (α1 + α2)A2 − (α1 + α2 + α3)A3

+ α1(α1 + α2)A12 + α1(α1 + α2 + α3)A13 + (α1 + α2)(α1 + α2 + α3)A23

− α1(α1 + α2)(α1 + α2 + α3)A123 .
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Since τi(α1) = −θ = −(α1 + α2 + α3), τi(α2) = α1 and τi(α3) = α2, we get:

j(ξ210) = A210 +A321 +A032 +A103

+ α3(A2103 +A3213 +A0323)
+ (α2 + α3)(A2102 +A3212A1032)
+ (α1 + α2 + α3)(A2101 +A0321 +A1031)
+ α3(α2 + α3)(A21023 +A32123 +A10323)
+ α3(α1 + α2 + α3)(A21031 +A03231)
+ (α2 + α3)(α1 + α2 + α3)(A21012 +A03212 +A10312)
+ α3(α2 + α3)(α1 + α2 + α3)(A210123 +A032123 +A103123) .
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