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Abstract

DREAM complexes are transcriptional regulators that control the expression of

hundreds to thousands of target genes involved in the cell cycle, quiescence, differen-

tiation, and apoptosis. These complexes containmany subunits that can vary according

to the considered target genes. Depending on their composition and the nature

of the partners they recruit, DREAM complexes control gene expression through

diverse mechanisms, including chromatin remodeling, transcription cofactor and fac-

tor recruitment at various genomic binding sites. This complexity is particularly high

in mammals. Since the discovery of the first dREAM complex (drosophila Rb, E2F,

and Myb) in Drosophila melanogaster, model organisms such as Caenorhabditis elegans,

and plants allowed a deeper understanding of the processes regulated by DREAM-

like complexes. Here, we review the conservation of these complexes. We discuss the

contribution ofmodel organisms to the study ofDREAM-mediated transcriptional reg-

ulatory mechanisms and their relevance in characterizing novel activities of DREAM

complexes.
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INTRODUCTION

Cell division is essential in all living organisms since it allows their

development and growth. Guardians of the cell cycle progression are

needed toensureproliferationdoesnot get out of control.Oneof those

guardians is pRb (Retinoblastoma protein), the first tumor suppressor

identified,[1] which is a member of the conserved pocket-protein fam-

ily named RB family. pRb is known to regulate cell proliferation and

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

© 2023 The Authors. BioEssays published byWiley Periodicals LLC.

differentiation, notably via interaction with E2F family transcription

factors, which activate S phase genes. This interaction can be found in

pluricellular eukaryotes such as mammals, invertebrates, or plants.[2]

In Drosophila melanogaster, pRb homologs are Rbf1 and Rbf2.[3] The

search for new partners for Rbf1 led scientists to identify several co-

purifying proteins forming a transcription regulator complex named

dREAM or Myb-MuvB (MMB).[4–6] Homologs of DREAM/MMB sub-

units have been found from Caenorhabditis elegans[7] to human[8,9] and
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Arabidopsis thaliana.[10] In all of these multicellular eukaryotes, they

were found to associate into a DREAM-like complex organized around

a core of three to five subunits depending on the species.

In this review, we report how genetic, molecular biology and

biochemical approaches togetherwithomic studies identifiedDREAM-

like complexes as transcriptional activators or repressors of a broad

spectrum of target genes. Regulation of target genes expression

depends on the complex composition. The subunits present in the com-

plex drive its binding to specific target sites andmodulate transcription

by recruiting different partners, such as transcription activators or

chromatin remodelers. Thevarietyofmodel organisms studied allowed

the identification of a diversity of recruited partners. Altogether, this

multiplicity of subunits, partners and targets underlines the difficulty

of studying the activity of DREAM-like complexes. Interestingly, the

complementarity of the approaches taken and the accumulation of

data in the different model organisms revealed that DREAM-like com-

plexes regulate major biological processes. While DREAM complexes

are widely described as controlling the cell cycle in mammals, studies

on othermodel organisms highlight that these complexesmay regulate

other essential cellular processes. The objective of this review is not to

exhaustively describe all the data reported on these complexes but to

focuson the contributionofmodel organisms concerningDREAMcom-

plexes composition, their transcription regulation mechanisms, and

their role in cell fate.

DREAM: A CONSERVED COMPLEX

Initially, the transcription regulation complex dREAM has been dis-

covered in D. melanogaster. It is notably constituted of RB/E2F family

members. Since these major cell cycle regulators are found in numer-

ous eukaryotes, this observation led scientists to investigate the

conservation of this complex structure. One interesting finding is that

DREAM-like complexes are found frommammals to plants with differ-

ent compositions, even within the same organism, as described in D.

melanogaster andmammals (Table 1).

The discovery of the dREAM complex in Drosophila
melanogaster

In mammals, the RB family has been extensively studied for its role

in cell cycle progression by interacting with the E2F/DP (Dimerization

Partner) heterodimer. Besides its RB family members Rbf1 and Rbf2,

the D. melanogaster genome encodes dDP, a unique DP family mem-

ber, and dE2F1 and 2, two E2F family proteins. In this invertebrate,

Rbf1 and dE2F1-2/dDP also control transcription of cell cycle gene

regulators.

In 2004, purification of this D. melanogaster Rbf1-2/dE2F2/dDP

complex by chromatography revealed the presence of several copuri-

fying proteins: Mip120 (Myb-interacting protein of 120 kDa), Mip130,

Rbf1, Rbf2, dDP, dE2F2, Caf1p55, Mip40 and the transcription factor

dMyb in nuclear embryo extracts.[4] This newly found complex was

called drosophila Rb, E2F, andMyb (dREAM). Interestingly, a few years

earlier, Myb had already been found in a complex containing Mip130,

Caf1p55, and Mip40.[6] Another study focusing on Myb purified a

complex containing all dREAM subunits and dLin52.[5] This complex

was named Myb-MuvB (MMB) since all its subunits are encoded

by homologs of the C. elegans synMuvB genes with the exception

ofMyb.

DRM in C. elegans

The discovery of the D. melanogaster dREAM complex composed of

the so-called SynMuvB genes-encoded homologs led to focus on these

genes. They are involved in Ras-mediated signaling which induces

vulva development. Mutations in those pathways are responsible for

vulvaless (vul) phenotypes when downregulated and ectopic vulva

(multivulva,Muv) phenotypeswhen upregulated. Studies of these phe-

nomena led to the discovery of the syntheticmultivulva (SynMuv) gene

class, initially divided into class A and class B genes, depending on the

mutation they carried.[11] Gel filtration and co-immunoprecipitation

experiments on SynMuvB gene products led to the discovery of the C.

elegans dREAM counterpart, the DRM complex[7] (Table 1).

DNA targeting of the DRM complex is mediated by EFL-1/DPL-1

and the DNA-binding domains of LIN-54.[12] The RB family protein

LIN-35 acts as a scaffold to mediate the association between MuvB

and EFL-1/DPL-1, but its absence does not entirely abolish their asso-

ciation with DNA at few promoters targeted by DRM. Loss of LIN-35

induces the up-regulation of numerous DRM target genes. However,

it remains to be tested whether LIN-35 is essential for repression

or whether this upregulation is an indirect effect due to reduced

occupancy by other subunits.[13]

Unlike inD.melanogaster, noMyb-MuvB complex has been observed

in C. elegans, as no Myb homolog has been identified in C. elegans.

However, expression of a D. melanogaster Myb in C. elegans causes a

SynMuv phenotype[14] and LIN-9 and LIN-52 proteins conserve their

Myb-binding domains, suggesting that aMyb homolog, once present in

a common ancestor, was lost in the C. elegans branch.[14,15] Given the

results observed in C. elegans, it is now accepted that D. melanogaster

possesses aMuvB core, which can associate either with Rbf1-2, dE2F2

and dDP, or withMyb, or all four proteins (Table 1).

DREAM in mammals

After the discovery of D. melanogaster and C. elegans dREAM/DRM

complexes, the existence of homologs for most of the subunits

described in these organisms led researchers to wonder if such a com-

plex existed in mammals. This is indeed the case, but a higher level of

complexity occurs in mammals due to a higher number of homologous

proteins. For example, the RB family, which includes three proteins in

mammals, that is, pRb, p107, and p130, is represented by only two

proteins in D. melanogaster (Rbf1-2) and the sole C. elegans LIN-35

protein.
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F IGURE 1 Regulation of the binding of B-Myb and p130/E2F4 to theMuvB core complex during themammalian cell cycle. During the G1
phase, DREAM subunits are phosphorylated by cyclin-dependent kinases such as CDK2 and CDK4. Among these post-translational modifications,
p130 phosphorylation leads to the disruption of the DREAM complex.”[9,18] After p130/E2Fs dissociation, theMuvB core, whose subunits are
indicated in the bottom right-hand corner of the figure, binds to DNA through an interaction of LIN54with Cell cycle genes Homology Region
(CHR) promoter elements,[23,24] leading to the entry in S phase. B-MYB is then produced and recruited to theMuvB core to form theMMB
complex.[17] This complex does not bind E2F target genes anymore but activates genes implicated in the G2/M phase [25]. TheMMB remains
associated during the G2/M phase. It can then recruit additional transcription factors,[26] such as FOXM1.[26] TheMMB complex activates key
mitotic genes like Cyclin B1 for entry in theM phase, BUB1 for themitotic spindle checkpoint, or Aurora A for the spindle assembly.[27] After cell
division, LIN52 is phosphorylated on its serine 28 byDYRK1A, allowing the binding of p130 to theMuvB core and thus reassembly of a DREAM
complex containing RB and E2F-DP family proteins. Overexpression of B-MYB or expression of LIN52-S28A disrupts DREAM assembly and
promotesMMB formation.[28]

Immunoprecipitation experiments first showed that a complex was

formed by the homologs of dREAM/DRM complexes.[8,9] Not all RB

family members participate in the mammalian complex called DREAM

or LIN complex (LINC), p130 being the main one involved.[8] p107

can also be found in the complex,[9] but its role remains unclear even

if it might replace mutated p130 in the complex. Even if initial data

obtained by gel filtration and co-immunoprecipitationwith LIN9 found

pRb associated with MuvB core subunits,[9,16] pRb was not found to

co-immunoprecipitate with LIN54, or LIN37.[8,17] A major element

pointing toward the absence of pRb in the DREAM complex is that

no repression of the studied DREAM targets can be observed if p130

and p107 are inactive.[8] The inability of pRb to be incorporated in the

DREAM complex results from structural differences between pRb and

p130/p107 that impede pRb binding to LIN52.[18] Therefore, it is now

accepted that only p130 and p107 can be part of the DREAM complex

while pRb can cooperate with the DREAM complex to control G1/S

transition but not G2/M checkpoint.[19,20]

In mammals, the DREAM complex specifically refers to a com-

plex in which E2F and pRb family proteins are added to the MuvB

core, whereas the complex named MMB (Myb-MuvB) is formed of

the MuvB core added of one of the Myb family members.[21] Simi-

larly to pRb family proteins, not all three MYBs (A-MYB, B-MYB, and

C-MYB) are involved in the DREAM complex activity; only B-MYB

co-immunoprecipitates with LIN9,[22] LIN37, and LIN54 but not with

p130.[8] Mass spectrometry experiments alsodetectedaminorA-MYB

signal inMMBcomplexes in humancells.[8] TheC-terminus regionofB-

MYBcontains aMuv-binding domain (MBD) that allows the interaction

with LIN9 and LIN52. This domain differs between each Myb, explain-

ing the binding bias to the MuvB core.[15] Therefore, both mammalian

DREAM and MMB differ from the D. melanogaster dREAM complex

by their composition. Rbf1-2 and Myb can be found in the same com-

plex inD. melanogaster, whereas in mammals only the DREAM complex

contains the p130 RB family protein and the MMB complex includes

B-MYB (Table 1). These twomammalian complexes seem tightly linked

to the progression of the cell cycle with DREAM and MMB being

associated with distinct cell cycle phases, as described in Figure 1.

DREAM-like in plants

In plants, homologs of dREAM members exist. In monocotyledons

such as maize or rice, two main pRb subfamilies exist, with members
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Box 1:Myb proteins in plants and the DREAMcomplex

There are hundreds of Myb domain-containing proteins in

plants, but only a few are similar to mammalian and D.

melanogaster Myb family proteins. Due to the triple repeti-

tion of their DNA-binding domain, this group of proteins is

called R1R2R3-Myb or Myb3R. Some of them are transcrip-

tion activators (Myb3R4), while others repress transcription

(Myb3R3 and Myb3R5).[32] Myb3R1 was first believed to

be a transactivator, but this effect seems to depend on the

presence of Myb3R4. Conversely, MYB3R1 represses tran-

scription in the presence ofMYB3R3orMYB3R5. It has been

suggested that MYB3R1 might be a switch between tran-

scriptional activator and repressor activities of the DREAM

complex.[34] Consistently with their opposite roles,MYB3R3

andMYB3R4 are found in those DREAM-like complexes in a

mutually exclusive manner. They are respectively associated

with the transcription repressor E2FC and the transcription

activator E2FB.[32,34] Therefore, plant DREAM-like com-

plexes also seem able to activate or repress transcription

depending on the recruitedMyb3R protein.

involved either in the negative cell cycle regulation or endosperm

development.[29] In the dicotyledon named Arabidopsis thaliana, Rb-

Related 1 (RBR1) is the sole pocket protein and is closer to mammalian

pRb than to other mammalian pocket proteins. As in animals, its

association with E2F and DP family proteins mediates RBR1 action.

A. thaliana contains two DPs (DPA and B) and six E2Fs, but only three

of them (E2FA, B, and C) possess a dimerization domain as observed

in E2F family proteins found in animal models and human.[30] Using

pull-down and mass spectrometry experiments, the interaction study

between RBR1, E2FB or C, DPA or B and homologs of the MuvB

core proteins revealed the existence of DREAM-like repressor and

activator complexes. No plant homolog was found for Mip40/LIN37

and LIN52.[31,32] However, a plant-specific subunit has been identified

by co-immunoprecipitation of A. thaliana DREAM complex subunits

and mass spectrometry: BTE1/DCR2.[10,33] These complexes also

contain Myb homologs,[32] as described in Box 1. One last subunit

found inDREAM-like complexes in plants is CDKA,whichmay regulate

the complex assembly and composition through phosphorylation of

DREAM subunits.[29,34] Therefore, plant DREAM-like complexes dis-

play a composition that is slightly different to their animal counterparts

with only three of the five core subunits.

What about other model organisms?

In the zebrafish Danio rerio and in Xenopus tropicalis, orthologs for the

core proteinsMip120/LIN54 andMip130/LIN9, aswell as for pRb fam-

ily andMyb proteins can be found in online databases such as Flybase.

Despite this, no study is published yet on the existence or the absence

of dREAM-like complexes in X. tropicalis. On the opposite, Shepard

et al. described a role ofD. rerioB-MYB in the gene transactivation dur-

ing G2/M phases [35] and Yamauchi et al. reported the interaction of

Myb with the core dREAM proteinMip130/LIN9,[36] suggesting that a

dREAM-like complexmay exist inD. rerio.

Interestingly, no ortholog of Mip120/LIN54, Mip130/LIN9, or Rbf1

has been identified in Schizosaccharomyces pombe and Saccharomyces

cerevisiae. Therefore, dREAM-like complexes do not seem to exist in

yeasts. Overall, this suggests that a yeast ancestor has lost theDREAM

complex subunits that probably existed in its common ancestor with

plants and animals.

A TRANSCRIPTION REGULATION COMPLEX

Are DREAMs transcription activators or repressors?

The activity of DREAM complexes was discovered through the inacti-

vation of some of its subunits by mutation or RNA interference (RNAi)

in D. melanogaster,[4,37] C. elegans,[12] and mammalian cells.[8] When

discovered inD.melanogaster, dREAMseemed to bemainly a transcrip-

tional repressor complex. As a matter of fact, more than 600 of D.

melanogaster genes were up-regulated when one or more of DREAM

subunits were down-regulated by expressing specific RNAi. All mem-

bers of the dREAM/MMB complex were targeted except Caf1/p55.

On the opposite, almost as many genes were down-regulated in the

same conditions, suggesting that dREAM/MMB can both activate and

repress transcription.[38] Similarly, in C. elegans embryos and germline

cells,mutants of LIN-54 led to theupregulation ofmore than700genes

and the down-regulation of 550 others.[12] Finally, in mammalian cells,

the expression of RNAi targeting LIN9 or LIN54 mRNAs suppressed

transcriptional repression of DREAM-regulated genes. However, due

to the higher number of homologous genes in mammals, it is harder

to decipher the effect of downregulating DREAM complex regulators.

For example, the loss of p130 can be compensated by a spontaneous

increase in p107 transcription.[8,19] Altogether, data from invertebrate

models and mammals strongly suggest that DREAM-like complexes

have both activator and repressor activities on transcription.

To further characterize the target genes of DREAM-like complexes

and more finely identify DREAM binding sites, different chromatin

immunoprecipitation techniques have been used. ChIP-on-chip exper-

iments using antibodies against almost all dREAM/MMB subunits

allowed the identification of more than 3500 binding sites in D.

melanogaster cells. However, only 25% of the genes with a peak near

their promoter sequence show an expression change when dREAM

subunits are down-regulated by RNA interference,[38] suggesting that

the interaction of DREAM-like complexes with DNA is not sufficient to

cause a change in the level of transcription.

Part of the target genes of DREAM-like complexes is conserved

through evolution. LIN-54 binds to almost 2000 locations in the C.

elegans genome, including 1572 protein-coding genes. Among the

3015 orthologous genes found to be shared by D. melanogaster and
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6 of 14 HOAREAU ET AL.

C. elegans, around 1200 are bound byD. melanogasterMip120, and 650

by its C. elegans homolog LIN-54. Cross-referencing these lists led to

the identification of 327 genes that are bound by Mip120/LIN-54 in

both invertebrates.[12] Among these numerous targets, DREAM com-

plexes can bind the promotor region of some of the genes encoding

DREAM subunits but do not seem to regulate their transcriptional

activity.[8,12,38]

Overall, although dREAM was initially described as a repressor

complex, RNA interference and chromatin immunoprecipitation (ChIP)

studies showed that DREAM complexes can bind thousands of pro-

moters to activate or repress their transcriptional activity, or more

surprisingly, with no detected effect on target gene expression. There-

fore, transcriptional DREAM complexes-mediated regulation appears

complex. Their high number of targets combined with various possible

effects on transcription makes it very difficult to predict DREAM com-

plexes’ activity at a given promoter and the high genetic redundancy

observed in mammals highlights how crucial the use of animal models

is when studying these complexes.

How do DREAMs regulate transcription?

Although ChIP experiments identify the promoters bound by DREAM

complexes, they give little information on the mechanisms of regula-

tion mediated by these complexes. Since none of the DREAM subunits

seem to carry enzymatic activity, its components that do not pos-

sess a DNA-binding domain (i.e., Rbf1, Rbf2, Caf1p55, Mip40, Lin52)

might play a role in stabilizing the complex or recruiting other partners

such as chromatin-modeling enzymes. DREAM complexes regulate

transcription through multiple processes, some of which require the

recruitment of partners. The multiple facets of these regulations add

yet another complexity to how these complexes work.

Influence of the complex composition

The first andmost obvious way for DREAM to regulate transcription is

through the activity of its subunits. Firstly, the composition of the com-

plexdetermines its target genes and its binding sites. InD.melanogaster,

DNA-binding subunits, such as Mip120 (the LIN-54 homologue) and

dE2F2, have specific target sequences that allow the complex to bind

a wide range of genes. dE2F2 and Myb seem to be the main driv-

ing force of DREAM binding.[38] In C. elegans, which encodes no Myb,

ChIP-qPCR, experiments on lin-54 mutant worms have shown that

LIN-54 is involved in recruiting DRM at promoters. Moreover, LIN-

54 binding is enriched at sequences that contain a binding motif for

LIN-54 adjacent to an E2F-binding motif.[12] Consistently, DRM asso-

ciation with chromatin is done primarily through the DBD domains of

E2F-DP and the tesmin domains of LIN-54.[12,13] However, subunits

that contain a DNA-binding domain are not the only factors that reg-

ulate DREAM binding, since interaction with DNA is also impaired

by the absence of LIN-35.[13] Therefore, DNA-binding subunits of

DREAM-like complexes participate in the choice of target genes in

both invertebrate models but are not the sole subunits involved in this

preference.

Secondly, the complex composition controls target genes activation

or repression. The subunits found in DREAMs sometimes differ at pro-

moters. For example, the how genepromoter is boundby theMMB inD.

melanogasterwing imaginal disc cells to activate transcription,[39] while

in embryonic cells it is repressed by the dREAM complex.[38] System-

atic RNA interference against the different subunits of dREAM in D.

melanogaster cells helped determine the role of these proteins in gene

targeting. Mip120 and Mip130 have been identified as necessary for

the binding of all the tested target genes. Targeted genes were then

classified into multiple categories depending on which dREAM/MMB

subunits were essential for their regulation and whether they were

activated or repressed.[38]

Since the identification of Myb as a dREAM complex component

in D. melanogaster, this protein was considered a silent member of

the complex when it represses transcription. This hypothesis was

based on both the literature that mostly describes the transactivat-

ing role ofMyb, and theMyb-knock-down-independent transcriptional

repression of dREAM target genes.[5] However, since this first study,

Georlette et al. classification brought to light the antagonistic effects

of Rbf1-2/dE2F2 andMyb: Rbf1-2/dE2F2 aremainly present in repres-

sive complexes, while activating complexes always contain Myb. Com-

plexes including at the same time Rbf1-2 and Myb are repressive,

suggesting a dominant effect of Rbf1-2 overMyb (Figure 2).[38,40]

This antagonistic effect can be observed in other species (Figure 2).

As detailed in the third part of the review, depending on the cell cycle

phase, mammalian RB/E2F and MYB family proteins can associate to

theMuvB core in amutually exclusive manner to respectively form the

DREAMorMMB complexes.

DREAM binding sites as a clue on how DREAM affects
transcription

dREAM mainly binds transcriptionally inactive regions, which sup-

ports the hypothesis of its repressive activity. Immunostaining of

dREAM subunits on D. melanogaster’s polytene chromosomes revealed

a location on repressed chromatin and no colocalizationwith phospho-

rylated RNA polymerase II, a marker of actively transcribed regions.

Consistently, Rbf1, Rbf2, and Mip130 subunits associate to non-

acetylated histone H4 tails in peptide-binding assays, but not to

acetylated H4, showing another repressed-chromatin-binding prefer-

ence. Hypothesizing a role for this preference, Korenjak et al. proposed

that dREAMcomplexes bind deacetylated histones tomaintain them in

a repressed state and protect them from further modification. [4]

Numerous genomic studies have been done to decipher the dREAM

complex roles in transcription regulation, revealing that dREAM binds

promoter-proximal locations in gene-dense regions of different organ-

isms: 86% of dREAM-bound regions are within 1 kb of transcription

start sites (TSS) in D. melanogaster cells[38] and 78% between −1000

and +100 bp from TSS in C. elegans embryos. In contrast, the 22% left

in these embryos were located in inactive regions such as introns or
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F IGURE 2 Antagonism of Rb-family andMyb-family members. Composition of transcription repressing and transcription activating
complexes in (from left to right)D. melanogaster, C. elegans,Homo sapiens, and A. thaliana. InD. melanogaster, Myb can be observed in both dREAM
andMMB complexes but it does not seem to affect the dREAMactivity. In mammals, p107 can also be found in DREAM complex instead of p130.
Gray boxes represent the core and/or other members of the complex. In A. thaliana, MYBR1 can be found either in E2FB- and E2FC-containing
complexes andmay play the role of a switch between transactivating and trans-repressive complexes (see Box 1).

intergenic regions.[13] Therefore, the transcriptional role of DREAMs

seems to be carried out through promoter binding.

Interestingly, DREAM-like complexes seem to interact with nucle-

osomes. It has been shown that DREAM-bound genes display a

nucleosome-depleted TSS region upstream of high nucleosome occu-

pancy regions. Therefore, these promoters have an “expressed gene”

nucleosome-free TSS profile but a “repressed gene” coding region pro-

file with high nucleosome occupancy. This mechanism may allow to

keep repressive nucleosomes in place until the timing of expression

is right. [41] A recent study showed that the mammalian MuvB core

associates with the closest nucleosomes located downstream of the

TSS and that this association correlates with gene repression. MuvB

may once again stabilize nucleosome position by forming a bridge

between nucleosomes and DNA. This mechanism has been hypothe-

sized to contribute to repression by inhibiting chromatin remodeling

or the activity of transcription proteins such as polymerases.[42] This

type of regulation may be conserved in D. melanogaster, as dREAM

binding at TSS seems to play a part in regulating divergently paired

genes (DPG) that are genes transcribed in the opposite direction with

close TSS (less than 1000 bp), accounting for a third of fly genes.[43]

In mammals and D. melanogaster, DREAM complexes thus seem to

hold repressive nucleosomes in place to maintain expression repres-

sion. On the contrary, the MMB complex, which activates M-phase

genes in mammals, binds to nucleosomes to free and expose DNA.

This could allow the binding of the transcription machinery.[44] Bind-

ing to nucleosomes thus seems an important way for DREAM and

MMB complexes to regulate transcription bymaintaining unwinding of

nucleosome-bound DNA.

DREAMs recruit other partners to modulate
transcription

Although binding sites and composition of DREAM complexes are

important factors in the regulation of transcription, DREAMs can also

recruit partners to modulate gene expression. Those partners can act

directly on promoters or at a higher level by modifying the chromatin

state.

Transcription repressors and factors recruitment

Despite a variable composition that can go up to nine subunits,

DREAMs also recruit or interact with other proteins to regulate tran-

scription. One of these proteins, L(3)MBT (lethal (3) malignant brain

tumor), is sometimes considered an accessory subunit. It was identified

by a mass spectrometry approach destined to find Mip120 partners[5]

and this interaction was confirmed by co-immunoprecipitation and

GST-pulldown experiments.[38,40] This transcription repressor is capa-

ble of binding chromatin[45] and has been found to be associated

with transcription regulators such as insulator-binding proteins[46]

and H4K20 methylations in D. melanogaster.[47] Mip120 is critical for

L(3)MBT correct localization on chromatin. On the opposite, Mip130

and dE2F2 are not necessary for this binding but mutated dREAM

subunits mimic a loss of function of L(3)MBT at least for some of

its targets, suggesting that these dREAM subunits are involved in

L(3)MBT-mediated repression.[40] In mammals, even though no inter-

action has been shown between MuvB core proteins and L(3)MBTL1,

the homolog of L(3)MBT, this protein nevertheless binds to E2F tar-

get sites.[48] These data thus suggest that L(3)MBTL1 may participate
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8 of 14 HOAREAU ET AL.

in the recruitment of both D. melanogaster and mammalian DREAM on

DNA.

Even if some of the DREAM subunits are transcription factors,

they are not the only proteins that can intervene in the transcription

regulation activities of the complex. Promoter-binding studies such

as chromatin immunoprecipitation of DREAM subunits have revealed

enrichment for transcription factor binding sequences in the regions

bound by this complex. As expected, themost represented are the E2F-

and CHR-binding sequences respectively during the G1/S and G2/M

phases.[49] In mammalian cells, the prediction for enriched sequence

motifs identified B-MYB, but also CREB and NRF2-binding sequences,

suggesting that these transcription factors can cooperate or com-

pete with the DREAM complex to regulate the transcription of their

targets.[8] Likewise, Goetsch et al. compared in C. elegans the DRM

peak regions they found by ChIP to high occupancy target (HOT)

regions[13] that are genomic regions with many transcription factor

binding sites. They observed that around a third of their high confi-

dence DRM peaks correspond to HOT embryonic regions, suggesting

interaction with other transcription factors, and revealing potential

partners for DREAM complexes.

Additionally, the mammalian transcription activator FOXM1 has

been identified in motif enrichment analysis of MuvB core binding

sites,[26] and co-immunoprecipitation confirmed this interaction. This

binding toMMBmay depend on B-MYB[26,50] or LIN9[51] and is essen-

tial for the expression of somemitotic genes. Therefore, FOXM1canbe

consideredanaccessoryMMBsubunit. This binding cannotbeextrapo-

lated to invertebrates since no homolog of FOXM1 has been identified

inD. melanogaster and C. elegans.[25]

The co-activator of transcription of the Hippo pathway named YAP

regulates genes involved at different steps of the cell cycle, including

G1/S, mitosis, and cytokinesis. by binding enhancers.[52] YAP coop-

eration with the MMB complex was thus investigated in mammals,

showing that YAP can interact with the Myb and LIN9 MMB sub-

units, probably through chromatin looping. Consistently, the MMB

complex was found to be required for YAP-mediated expression of

G2/M genes.[53] YAP may be particularly important in the MMB activ-

ity since Myb and FOXM1 appear to be among its targets,[53,54] but

this has to be studied more thoroughly and model organisms could be

useful in this study.

Altogether, these data suggest that DREAM-like complexes are able

to recruit transcription regulators in every species studied. However,

these regulators may vary depending on the organism or the target

gene.

Chromatin state and histone marks

Besides binding histone tails or recruiting transcription regulators, as

detailed above, the DREAM complex can also recruit proteins that

modify the chromatin state or histone marks, which in turn affects

transcription of its target genes (Figure 3). These mechanisms are

illustrated below in invertebrates and inmammals.

Insulators are DNA elements that block the communication

between an enhancer and a promoter. Dyson’s lab has shown in D.

melanogaster that thedREAMcomplex could co-operatewith insulator-

F IGURE 3 DREAM complexesmodulate transcription through
threemechanisms, which appear to be conserved even though
different partners are involved according to the organism. (i) The
DNA-binding subunits of the DREAM complex recruit it to their target
sequences. Subunits also influence the activating or repressing action
of the complex, as shown by the antagonism betweenMyb and Rbf1
subunits in D. melanogaster (blue). (ii) DREAMs regulate transcription
by binding promoters or enhancers (green). (iii) DREAMs can also
modulate transcription by recruiting external partners, such as
accessory subunits, chromatin-remodeling enzymes, and other
transcription factors (pink).

binding proteins to repress a subset of target genes by blocking

enhancer sequence activity. Among these partners, Beaf-32 frequently

binds to TSS close to dREAM-bound regions, and CP190, a co-factor of

insulator complexes, can physically interact with dE2F2.[43] Therefore,

insulator-binding proteins add another type of dREAMpartners.

First identified as a G1 regulator in C. elegans,[55] LIN-36 was iden-

tified during an RNAi screen as regulators of a DREAM target reporter

gene and is encoded by SynMuv class B genes.[56] It contains an atyp-

ical zinc-finger DNA-binding domain and interacts with DRM through

LIN-35 at different target regions. Unsurprisingly, LIN-36 shares cell-

cycle and cell-division gene targets with LIN-35. LIN-36 seems to

function with DRM to recruit or maintain the repression-associated

histone variant HTZ-1 in C. elegans on gene bodies. Consistently,

around half of DRM targets characterized by this mark also appear to

be a LIN-36 target.[56] A link between the D. melanogaster counterpart

of HTZ-1, the H2A.Z variant, and the dREAM complex has also been

found in D. melanogaster.[57] Therefore, DREAM-like complexes have

been found to associate with some histone variants in invertebrates.

LIN-15B was identified in the same study as LIN-36 and also con-

tains an atypical zinc-finger-DNA-binding domain and interacts with

DRM through LIN-35 (p107/p130) at different target regions but

it seems more specific to the germline. DRM associated with LIN-

15B directs the MET-2 methyltransferase to the target genes to

apply repressive H3K9me2 marks[56] and compact chromatin.[58] In

D. melanogaster, the histone deacetylases HDAC1 homolog known

as Rpd3 has also been identified as a dREAM complex partner.[5]

It seems to be involved in the repression of the hid pro-apoptotic
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gene.[59] Moreover, the Caf1/p55 dREAM subunit is part of the NURF

(NUcleosome Remodeling Factor) complex, which suggests a possible

interaction between those two complexes.[5] In human andmouse qui-

escent cells, most DREAM subunits interact with SIN3B, a scaffold

protein known for assembling large repressive complexes contain-

ing HDACs,[60] which seems required to repress some of DREAM’s

targets.[61] Additionally, the MuvB core subunit RBBP4 (also known

as RBAP48) interacts with HDACs and with the NURD (NUcleosome

Remodeling and Deacetylase) complex.[62–64] Altogether, these data

strengthen the role of chromatin accessibility in theDREAM-mediated

regulation (Figure 3).

AN ESSENTIAL COMPLEX FOR VARIOUS
BIOLOGICAL PROCESSES

Numerous genome-wide studies were led to determine the function of

DREAM/MMB complexes after discovering dREAM in D. melanogaster

and its homologs in C. elegans and mammals. Thanks to Gene Ontology

analyses, these genome-wide studies identified processes involving

DREAMs beyond the extensively described and reviewed role in the

cell cycle progression.

A crucial role in the cell cycle

Inmammals, theDREAMcomplexmainlybinds toearly or late cell cycle

genes.[8,65] This result is not surprising since RB family proteins are

regulators of the G1/S transition. The primordial role of DREAM in the

control of the cell cycle is confirmed by loss-of-function studies and

implies a role in developmental biology. LIN37 is essential to DREAM

control of G0 entrance[66] and G1/S transition.[67] The role of LIN9

in regulating mitotic genes probably explains the embryonic lethal-

ity of null mutants.[68] This key role in cell proliferation and genomic

stability is observed when LIN9 is deleted,[69] as it leads to mitotic

defects and G2/M arrest.[9,17,70] Even before the dREAM complex

description, Mip proteins were found along with Myb and Caf1/p55 in

a database search to identify proteins that bind to replication origin-

associated proteins in D. melanogaster, suggesting an ancestral role of

these DREAM subunits in the control of replication.[6]

Mutually exclusive mammalian DREAM and MMB complexes

described in the first part of our review are linked by their role in the

cell cycle. In human cells, at G0 and early G1 phase, p107/p130-DP-

E2F4-5 and theMuvB core associate into the DREAM complex[17] and

contribute to repress E2F target genes such as B-MYB, cell cycle genes

and FOXM1.[8,27,71] The kinetics that regulates the mutually exclusive

association of Myb and RB/E2F in DREAM/MMB complexes and its

impacts are described in Figure 1.

The tumor suppressor p53 is an important partner of mammalian

DREAM/MMB. In stress conditions such as induction of DNA dam-

age, activation of the p53 pathway induces the dissociation of B-MYB

and the recruitment of p130/E2F4 to the MuvB core, forming and

stabilizing the DREAM complex at promoters.[72,73] p53 also plays

a crucial role in senescence, a stable cell cycle arrest state due to

physiological aging or particular stress conditions.[74,75] Interestingly,

the senescence of conditionally immortalized human breast fibrob-

lasts is associated to the down-regulation of numerous genes, of

which respectively 49%, 16% and 22% are targets of DREAM, RB-

E2F, and MMB-FOXM1. Expression of Myb, FOXM1, and of a mutant

LIN52 encoding the non-phosphorylable LIN52-S28A is sufficient

to bypass senescence of these cells.[76] Therefore, the mammalian

DREAM/MMB and p53 interplay seems to extend over various activ-

ities, including coping with DNA damage and controlling senescence

entry.

Regulation of programmed cell death

Although themammalianDREAMcomplex seems tobemainly involved

in cell cycle regulation, D. melanogaster dREAM may control a much

larger spectrum of processes. Chromatin-immunoprecipitation stud-

ies revealed that around a third of all D. melanogaster gene promoters

were bound by dREAM members,[38] suggesting a role for dREAM in

controlling cellular processes beyond the cell cycle.

In D. melanogaster, the observation of a Myb-dependent apoptosis

led Rovani et al. to investigatewhether this cell deathwas directly con-

trolled by Myb or a consequence of excessive proliferation. This study

identified a cooperation between the pro-apoptotic grim gene andMyb

in neural precursor cells at the posteriorwingmargin.Mip130 andMyb

loss of functions lead to similar phenotypes andMyb seems epistatic to

Mip130. Therefore, Myb-mediated cell death in this tissue most likely

relies on its integration in the dREAM complex. Surprisingly, despite

the often-admitted antagonistic role of E2F and Myb in the dREAM

complex, dE2F2 is also involved in this process.[77] It thus seems that

the conventional viewof dREAM/MMBcomplexesmay not account for

the entire processes that can be encountered when focusing on their

different roles. It remains undefined whether Myb and dE2F2 act in

a unique complex or both MMB and dREAM complexes regulate cell

death in a similar manner.

The dREAM/MMB regulation of apoptosis in D. melanogaster may

even be more complex. Our team found that Rbf1 pro-apoptotic

activity in the developing wing depends on the repression of the

anti-apoptotic gene buffy and an activation of the pro-apoptotic gene

how.[39] The MuvB core proteins Mip120 and Mip130 are required

for this apoptosis and participate in the transcriptional regulation of

buffy but not of how. In contrast, Myb seems to exert an antagonistic

effect since its overexpression inhibits Rbf1-induced apoptosis, acti-

vates buffy transcription and decreases the transcriptional activation

of how induced by Rbf1/dE2F2.[39] In a different tissue, that is, the

eye-antenna disc, the dREAM complex containing Rbf1 can inhibit

apoptosis through the repression of the pro-apoptotic hid.[59] There-

fore, dREAM can have opposite roles in apoptosis, which seems to

depend on the cells’ proliferative state.

The implication of dREAM in the control of apoptosis is not lim-

ited toD. melanogaster. A screen designed to identify new programmed

cell death genes in C. elegans revealed the role of the DP homolog
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named dpl-1. Considering the partnership of mammalian DP with pRb

and E2Fs, Reddien et al. investigated the role of their homologs, lin-35

and efl-1, in programmed cell death. This study revealed their pro-

apoptotic role along with other DRM members: LIN-52 and LIN-37.

Some DRM subunits, that is, LIN-53 and LIN-9, do not seem to be

involved in this process, but we can hypothesize that DRM complex

composition can differ depending on the target gene, as observed with

dREAM inD. melanogaster.[78]

DREAM in gametogenesis

The SynMuv genes were identified in C. elegans as genes required

for the development of reproductive organs.[79,80] In D. melanogaster,

Korenjak et al. also proposed that dREAM may have a role in the

reproductive system by regulating sex-associated targets, whose mis-

expression could cause changes in cell fates.[4] This proposal was

based on the fact that most dREAM members are conserved in both

organisms and that dE2F2 is known to be required to express genes

important in gametogenesis.[81] Consistently, dE2F2 mutants display

fertility problems.[82,83]

Additionally, in D. melanogaster, tMAC (testis Meiosis Arrest Com-

plex) is considered as a testis-specific kind of dREAM complex. This

transcription regulation complex is composed of two dREAM sub-

units (Mip40 and Caf1-p55), three subunits homologous to dREAM

elements, and two proteins that are not usually found in the dREAM

complex.[84] DNA adenine methyltransferase identification (DamID)

data revealed that dREAM and tMAC do not bind simultaneously the

same promoters in the testis. It seem that dREAM represses genes

in the testis, whereas tMAC activates spermatocyte-differentiation-

governing genes by recruiting Mip40.[85] It remains to clarify if both

complexes compete to bind some common components such asMip40,

if one can transform into the other and if both can coexist in the same

cell during spermatogenesis. Interestingly, dREAM is also involved in

oogenesis in D. melanogaster, since the absence of Mip120 causes an

arrest of oogenesis associatedwith chromosome defects.[86] However,

data on the role of dREAM in oogenesis are sparse. Whether this role

depends on a regulation of cell cycle or not remains to be explored.

Therefore, DREAM-like complexes seem to be involved in invertebrate

reproductive organs.

Similar to the tMAC complex in D. melanogaster, a testis-specific

complex seems to exist in mammals. This tMac-like was identi-

fied while studying a testis-specific paralog of LIN54 named MTL5

(Metallothionein-like 5) or Tesmin. MTL5 travels from cytoplasm to

nucleus during spermatocytes meiosis in a LIN9-dependent manner.

Immunoprecipitation associated with Mass Spectrometry (IP-MS), co-

immunoprecipitation and proximity-dependent biotin labeling experi-

ments showed thatMTL5 interactswithA-MYBand allmembers of the

MuvB core except LIN54 inmouse spermatocytes. AlthoughDREAM is

known for its role duringmitosis, this testis-specific complex is involved

in spermatocytes meiosis.[87,88]

CONCLUSION

DREAM complexes represent a highly conserved transcriptional regu-

lator complex family, which may seem reminiscent of classic repressor

complexes but display a much broader spectrum of action. Due to the

diversity ofmechanismsbywhich they regulate transcription,DREAM-

mediated regulations are hard to predict. These complexes are com-

posed of the MuvB core with added subunits that appear to be shared

with other regulator complexes. The regulation of these interactions

has only been nicely described for themammalianDREAM/MMBcom-

plexes during cell cycling. Interestingly, animal models revealed that

some of the MuvB core components are also part of other complexes,

such as the tMac, which increases the level of regulation complex-

ity. Studies of DREAM complexes will probably open new avenues to

understand and tomodel the high complexity of sophisticated network

regulations that now remain out of reach.

Due to their relatively lowgenetic complexity,D.melanogaster andC.

eleganshelped reveal newrolesofDREAM/MMBcomplexes. Extending

these studies to plants and other model organisms may lead to the dis-

coveryof new functions and regulationsof these complexes thatmayor

may not be ancestral. Among these roles, DREAM complexes regulate

essential processes such as cell cycle, apoptosis and gametogenesis.

Therefore, DREAM components, partners and regulators may be of

great interest in the study of cancer biology. Consistently, the cell cycle

regulators Myb and FOXM1 are often overexpressed in tumors. High

levels of theseproteins and their targets are associatedwith poor prog-

nosis in many cancers.[89,90] Studying how DREAM complexes control

proliferation and apoptosis could provide clues for targets and strate-

gies for cancer therapies. Oddly enough, this aspect does not seem

to have raised a strong interest and the potential role of mammalian

DREAM/MMB in apoptosis regulation has not been explored yet.
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