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1. Introduction

Controllability for partial differential equations has been extensively studied
in the last twenty years and there is a vast literature on the subject treating
a number of different models. Here we only present the case of linear
controlled partial differential equation and we focus essentially on the wave
equation (with some comments on Schrodinger equation) and on heat type
equations. We do not treat the case of Korteweg de Vries equation or
Stokes equation, neither the important case of nonlinear equations such as
nonlinear parabolic equations or Navier-Stokes equations. For a reader who
would be interested in modern developments on these subjects, we refer to
the very important book by Jean-Michel Coron [6] or to some published
articles (see [9], [23], [12], [14], [7] for example).

We restrict ourselves to the classical methods introduced essentially in
[18] for the Hilbert Uniqueness Method (HUM) and [11] for global Carleman
estimates. Other methods could have been considered, for example the
method of moments (see [25]) or methods based on microlocal analysis
(see [1] for example).

The present notes require some basic knowledge on the existence the-
ory for the equations considered and on classical functional spaces (like
Sobolev spaces) and functional analysis, but they should be accessible to
most graduate students.
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2. Introduction to Controllability

We consider an abstract linear evolution controlled system on an interval
of time (0,7), with T" > 0.

% + Au= Bh on (0,7), (2.0.1)

u(0) = wo, (2.0.2)
where A is an operator in the space variable, t is the time variable, B is
the control operator, h is the control.

We have the choice of the control h (in a suitable space, say X) and
this control acts on the system via operator B which can be unbounded.

We assume that there is a good existence theory, for example: h € X
and ug € H give u € C([0,T], H).

What can we obtain as values of the solution at time 7'7

Controllability is the study of the reachable states {u(T)} and there are
several more precise notions of controllability.

2.1. Approximate Controllability

Approximate controllability means:
Given any ug € H and any u; € H; for every ¢ > 0, does there exist
he € X such that

w(0) =up and ||u(T)—ui|lg < €?
Approximate controllability has been extensively studied in the early 1990’s
but the interest has decreased....
We will not develop this notion here.

2.2. Null Controllability

Null controllability in time 7" means:
Given any ug € H, does there exist h € X such that

u(0) =wo and u(T)=07?

2.3. Ezxact Controllability

Exact controllability in time T" means (Figure 2.1):
Given any ug € H and u; € H, does there exist h € X such that

u(0) =wuy and u(T)=wu;?
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Controlled trajectory going from ugtoug
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Figure 2.1 Exact controllability

This notion will be relevant for reversible systems like wave equations,
Schrédinger equations, etc.

For linear reversible systems exact controllability is in fact equivalent
to null controllability (Figure 2.2): take first uy = 0 with ug given which
gives a first control hg, then ug = 0 with u; given (for the reverse system)
which gives a second control h; then adding up we see that the two notions
are equivalent. This is no longer valid for nonlinear systems.

nonlinear systems.

Trajectory going from 0 to up

Trajectory going from ugtoug

Trajectory going from ug to 0 \

Yo

Figure 2.2 Exact controllability for reversible systems and null controllability
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2.4. Ezxact Controllability to Trajectories

This notion is relevant for nonlinear systems of the form

% + Au+ N(u) = Bh in (0,T), (2.4.3)

u(0) = up. (2.4.4)

We consider an “ideal” uncontrolled trajectory u solution (Figure 2.3)
of

dit‘ +Au+N(@) =0 in (0,7), (2.4.5)
(0) = uo. (2.4.6)

am

"Ideal" trajectory

Figure 2.3 Ideal trajectory

Exact controllability to trajectories means (Figure 2.4):
Given ug € H can we find h € X such that at time T" we have
w(T) =a(T)?

This notion will be important for non reversible systems. For linear systems,
it is equivalent (by simple difference) to null controllability.
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Controlled trajectory

N

"Ideal" trajectory

Figure 2.4 Global Exact Controllability to trajectories

u(m)

We can also define the local version of exact controllability to trajectories
(Figure 2.5).

=

Controlled trajectory

N

"Ideal" trajectory

Figure 2.5 Local Exact Controllability to trajectories
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3. Simple Examples

3.1. Transport Equation in 1-D

We consider the linear transport equation on an interval (0,1) where the
control acts on the left boundary. We want to study the exact controllability
for this equation.

Oou Ou

S5 =0 on (0,1) x (0,7), (3.1.1)
u(0,t) = h(t), te(0,T), (3.1.2)
u(x,0) = ug(x), =€ (0,1). (3.1.3)

Then the solution is given by

u(z,t) = &(x —t)
with

§(x) =uo(x) and &(—t) = h(t).

e When T' < 1: for T < & < 1 we have u(z,T) = ug(x — T') so that it is
impossible to reach any u; on this interval.

e When T > 1: for z € (0,1), we have u(x,T) = h(T — x) and we can
choose h(t) = u1 (T —t) for t € (T'—1,T) to obtain the exact controllability
result.

This simple example shows that, due to the finite speed propagation in
the transport equation (Figure 3.1), we need the time T to be large enough
in order to obtain exact controllability.

1.2

0.9

!

Independent of control

0.2

Figure 3.1 Transport equation
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3.2. Wave Equation in 1-D

We want to study here the case of a wave equation on an interval (0,1)
with 0 initial velocity (in order to simplify) and with control acting on the
left boundary.

0%u  O%u

ﬁ — @ =0 on (0, 1) X (O,j—v)7 (324)
u(0,t) = h(t), wu(l,t)=0, t€(0,T), (3.2.5)
0
u(z,0) = ug(z), a—?(m,O) =0, z€(0,1). (3.2.6)
This equation can be written as a first order (in time) system
Y
4 +AY +BH =0
dt
by setting
u
0
Y = H=
ou | <h> ’
ot
and
—u
AY = 0%u
 0a?

Operator B is here unbounded and corresponds to boundary conditions.
As the wave equation is reversible we are only interested in the null con-
trollability which means here that we want to achieve

u(z,T) =0 and @(z,T) = 0.
ot
A simple calculation shows that
1 1
u(z,t) = iuo(a: —t)+ §uo(x +1)
where ug has been extended so that
uo(t) +uo(—t) = 2h(t) and wo(l—1t)+ue(l+t)=0.

efor0<T <landT <z <1lwehave,asz—T <landz+7T <2
1 1
u(x,T)=§u0(x—T)—§u0(2—(x+T))

which is independent of h so that exact controllability is impossible.
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e For 1 <T <2 and = small enough, we have
1 1
w(z, T)=h(T —z) — §u0(2 +x-T)+ §u0(2 —x —t),

and
Ju
at
In order to find A such that u(x,T) = 0, this gives h and it is in general
impossible to adjust i’ so that %(m,T) = 0. This shows that for T' < 2,
exact controllability is impossible.
We will study the problem of exact controllability for the general wave
equation and we will show that for 7' > 2 we have a positive answer to the
exact controllability question. Here again, we have an equation with finite

1 1
(z,T) :h'(T—x)+§u6(2+x—T)— §u6(2—x—T).

speed propagation and exact controllability in time T" will require a lower
bound on the time 7.

4. Exact Controllability for the Wave Equation

We will consider here the general problem of exact controllability for the
wave equation set on a domain 2 of RV and we will study extensively the
case of a boundary control on a non empty part I'g of the boundary I' of
Q. Hereafter 2 will be a bounded regular open set of R and we will not
discuss the case of non regular open sets.

4.1. Exact Controllability for Boundary Control

As the wave equation is reversible, exact controllability is equivalent to null
controllability and we will study the null controllability for the following
wave equation,

0%u A Q

oz~ Au= 0 onQx(0,T), (4.1.1)
u=h onTyx(0,7T), (4.1.2)
u=0 onI\Tyx(0,7), (4.1.3)

Ou
u(0) = uo, E(O) = uy. (4.1.4)
We want to find a control h (in a suitable space) such that

w(T)=0 and %(T) =0. (4.1.5)

First of all we have to give a sense to the solution of (4.1.1) which
has non homogeneous Dirichlet data on a part of the boundary and we
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start with properties of the classical wave equation. We consider the wave
equation

0w

ﬁ—Aw—f on O x (0,7), (4.1.6)
w=0 onI x(0,7T), (4.1.7)
w(0) = w, 671;)(0) = wy. (4.1.8)

The following result is classical (see for example [8]).
Theorem 4.1.1. If f € L*(0,T;L?(2)), wo € HY(Q) and wy € L*(Q),
then there exists a unique solution w to (4.1.6) with
0
we O(0, T HY(©), 7 € C([0, T LA(Q). (4.1.9)
Moreover, if we denote the energy by
1 ow
Et)y=< [ (5@ t)*)d
0 =5 [(GHOF +Vu(OR)s
we have
vt € (0,T), E(t) < C(EQ)+|f13:0mr2()) (4.1.10)
In particular, when f =0, the energy is conserved and we have

Vte (0,T), E(t) = E0).

We now have a regularity result for (4.1.6) which is often called hidden
regularity result.

Theorem 4.1.2. When €0 is regular enough and if v denotes the unit nor-
mal vector on T' external to Q, when f € L*(0,T; L*(Q2)), wo € HY(Q) and
wy € L%(Q), then we have

‘Z—lj € L*(0,T; L*(T)) (4.1.11)

and the mapping

0
(frwowr) = 5

is linear continuous from L1 (0, T; L*(Q)x H} (Q) x L*(Q) to L*(0,T; L*(T)).

Proof. In order to prove this result we use the so-called multiplier method.
We denote by (-,-) the scalar product in L2(2).
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Lemma 4.1.3. Let m € CY(Q;RY) be a multiplier. Then we have the
following identity

22 1), m - V() — (22(0), m - Tuw(0)) (1.112)
ot ot
1 ow a om,; Ow Ow
+*/ divm(]—(t)* — [Vw(t)?) + / J —0x
2 Qx(0.T) (| ot ( )l | ( )| ) iJZZI Qx(0.7) 8931 6932 ow J

1
7§/F>< 0T)|6V ( )/QX(O,T) f(mvw)

Proof. We have successively (the calculations are done for a set of regular
dense data so that w is regular)

/ 8w ow ow

=(5; (1), m - Vu(T)) = (5,(0),m - Vw(0))

ax(0.1) 02 ot
1/ ow 5
—= m - V(|—
2 Jaxo,1) ( ot )
—(22@),m- () — (22(0),m - V(o)
- at ,m w at ,m w
1 0
+*/ divm|—(t)|?,
2 Joriom el Ol
Jw om; Ow Ow
—Aw m~Vw:f/ (m-Vw)+ / J -
/QX(O,T)( ) I'x(0,T) (91/ ijl Qx(0,T) Oz; Ox; 8.(1,‘j
N
1/ 8 Ow 4
+ 5 (I )
”2::1 2 Q><(O,T)
ow N om; ow Ow
1 1
f/ (m - v)|Vw|?— / divm|Vw(t)|?
2 Jrxo,m 2 Qx(0,T)
1
= */ )(Vw - v)?
2 I'x(0, T)

N

om; Jw Ow
_|_
Z /Qx(o,T) Ox; Ox; 8%

4,j=1

1

ff/ divm|Vw(t)|2.
2 Jaxo,1)

Adding up we obtain (4.1.12). O



Control and Inverse Problems for Partial Differential Equations Downloaded from www.worldscientific.com
by 89.156.182.165 on 01/31/24. Re-use and distribution is strictly not permitted, except for Open Access articles.

Control of Partial Differential Equations: Theoretical Aspects 11

We now go back to the proof of Theorem 4.1.2. Let us choose m as a C!
extension in Q of the normal v, so that m-v = 1 on I'. All the terms
integrated in © x (0,7 are bounded in terms of the energy E or the data
|flLr0,1:22(9)), IVWwolr2 () and |wi|p2(q). Therefore we obtain for a set of
dense regular data

ow 2 2 2 2
—° < I + |V I + I . 4.1.1
/F><(OJ) | v | = C(|f|l/1(0,7; 2(Q)) | wo‘ 2(Q) ‘wl‘ 2(9)) ( 3)

Then we can extend uniquely by continuation the mapping (f, wo,w;) —
%} to a linear continuous mapping from L'(0,T; L?(2) x H}(Q) x L?(2)
to L2(0,T; L3(I")). O

We are now ready to define the solution of (4.1.1) by the transposition
method (see for example [18]).

Theorem 4.1.4. If h € L*(0,T; L*(Ty)), up € L?(Q) and u; € H1(Q),
there exists a unique solution u to (4.1.1) with

0
we C0.THL* (@), 5y € C0, T H ().
Proof. Let us first notice that when h, ug, u; are taken in a dense subspace
of very regular functions, the solution of (4.1.1) is classical and very regular.
For f € LY(0,T;L3(2)), wo € HF() and wy; € L3(Q), let w be the
solution of

9w

oz Aw=f onQx(0,T), (4.1.14)
w=0 onI x(0,7T), (4.1.15)
w(T) = wy, %—Z)(T) = wi. (4.1.16)

This equation can be reduced to (4.1.6) by changing ¢ in T'— ¢. Now,
assuming v is a solution of (4.1.1), let us multiply formally (4.1.1) by w.
We obtain, denoting by (-,-) the duality between H~1(Q) and H}(Q)

ou ow

(G (1)) = (1, w(0) = (u(T), w1) + (o, 5 (0))

+/ uf+/ ua—w =0.
Ox(0,T) I'x(0,T) v

Up to now this is completely formal. Now let us define £ by

ow ow

Cmon) == [ WG w(0) — 0 5 0)
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In view of the results of Theorems 4.1.1 and 4.1.2, the mapping £ is well
defined for f € L*(0,T; L?*()), wo € H () and wy € L?(Q) if the data
satisfy h € L?(0,T; L*(Ty)), up € L*(2) and u; € H~1(Q) and it is linear
continuous. Therefore, from Riesz Theorem, there exist a unique triple
(u,ud ,ul) € L>=(0,T; L3(Q)) x L3(R2) x H~1(Q) such that

V(f,wo,w1), L(f, wo,w1) = /Q o) uf + (ul  we) — (ud,wy).  (4.1.17)

Moreover we have

|ul oo (0,7522(2)) + |15 | 2) + [uf || -1 @)

< C(|hlz20,1522(r0)) + [wolL2() + |utllg-1(0))-

By taking a Cauchy sequence of regular data converging to (h, ug, u1) we can
see that in fact u € C([0,T]; L?(Q2)). Taking various values of (f,wq,w;)
we can interpret (4.1.18) and show that it satisfies (4.1.1) in some weak
sense. It can also be shown (see [18] for a complete proof) that 2%
C([0,T); H=1(Q)) which completes the proof of Theorem 4.1.4. Anyway

the correct mathematical definition of the solution is given by (4.1.17). O

There are several ways to start the study of exact controllability for
(4.1.1). We will here present the Hilbert uniqueness method (HUM) intro-
duced by J.-L. Lions in [18].

For o € H} () and o1 € L3(Q) let ¢ be solution of

2
%Tf “Ap=0 onQx(0,7) (4.1.18)
=0 onIx(0,T), (4.1.19)
8
©(0) = o, (,Tf(o) = ¢1. (4.1.20)

We know that ¢ € C([0,T]; H} () N C*([0,T); L*(R)) and 32 € L*(0,
T; L*(I)).
Now let 9 be the solution of

0%

S —Av=0 onQx(0.7), (4.1.21)
b= aﬁ on Ty x (0,T), (4.1.22)
=0 onD\Tyx (0,T), (4.1.23)
W(T) =0, %(T) = 0. (4.1.24)
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We know that v € C([0,T]; L2(Q)) N C([0,T]; H~1(Q2)) and it depends on
o and 1. If we can find g and ¢ such that

0
Y(0) =up and 8—2{](0) = uy,
then we have solved our exact controllability problem with h = g—f.

Let us call A the operator defined by

Ao, 1) = (52(0), ~(0)).

We want to solve the equation
Find (9, 1) € Hg(Q) x L*(Q), such that A(po, 1) = (u1, —ug). (4.1.25)
It is clear that A is a continuous linear map from H{(Q) x L*(2) to
H=1(Q) x L*(Q).
If we take (@o, p1) € HE(Q) x L2(2) and if we call  the corresponding
solution of (4.1.18), we obtain after multiplication of (4.1.21) by ¢
. Iy Ip
Alpo, ¢1), (0, 1)) = / L 4.1.26
e Gog = [ (4.1.26)

From Lax-Milgram Theorem, if we have

1 1
Ey = §|V<PO|QL2(Q) + §\<P1|2L2(Q) < C{A(po, 1), (0, 1))

=C ¢ 2

rox(o.r) OV

then equation (4.1.25) will have a solution and our exact controllability
problem will be solved.

We then have proved the following result.

Proposition 4.1.5. If we have the observability inequality

3C >0, Y(po, 1) € HH(Q) x L*(Q), (4.1.27)
1 2 1 2 ¢ 5

Z Z < _r

5| VeolLe (o) + 5leilza) <€ ooy B0

then we have exact controllability for equation (4.1.1) in time T with control
acting on T'y.

In fact, it can be proved that having exact controllability with continuity of
the control with respect to the data (ug,u1) is equivalent to the observability
inequality (4.1.27).

The problem is now to find conditions on I'g and T" such that (4.1.27)
is satisfied. Again this can be done using several methods. We will give
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here the result obtained by the multiplier method which has first been
given in [19] and can be found in [18] or [13]. For a variant using rotated
multipliers which provides some extension of the possibilities for Iy, see
also [22].
For zg € RY let us define
Ty ={z €T, (x—x) -v(r) >0} and R(z)= ma%( |z — zg|. (4.1.28)
e

Theorem 4.1.6. If there exists g € RN such that Ty D Ty, and if
T > 2R(xo), then there exists C > 0 such that the observability inequality
(4.1.27) is satisfied.

Proof. We use the multiplier identity for equation (4.1.18) with m(z) =
(x — x0). This gives
1

- T — 2
5 o 0 VG

= ) - )BT~ (=20 -Fo
N 2 2 2
25 [ o Ua o vet s [l
This implies
1 2
o CEERZC T
> (221, (2~ 20)- 7T ~ oo =) )

N -1 1
! )/ 1%y - Vel +3 [ (1222 + 1v4P).
2 Qx(0,T) 2 Jaxo,1)

On the one hand we have conservation of energy which 1mphes
1

5[ (P +IeP) = TE,
Qx(0,T)

On the other hand, multiplying equation (4.1.18) by ¢, we obtain
¢
[ 152P = 96) = (@) ~ (o1, 0.
Qx(0,7)

Therefore we have
0
(GA(T). (= w0) - Vo (T) +

— (1, (x — x0) - Voo + 2

)
1 dy
€T — 2 <= X / 2,
/FO><(O,T)( 0) vl )| | 2 Blwo) FoX(O,T)|a’/|

<

DN | =



Control and Inverse Problems for Partial Differential Equations Downloaded from www.worldscientific.com
by 89.156.182.165 on 01/31/24. Re-use and distribution is strictly not permitted, except for Open Access articles.

Control of Partial Differential Equations: Theoretical Aspects 15

Now for every ¢t € (0,7) and every A > 0 we have

20, (@ —a0)- Vo) + T Do)
< 2122 0) 220y + ol — o) - o) + Doy
But
o 20)- Vo) + Doz,
= lt@ = 20) - O @y + (V= 1) [ (= 20) - V(D)0
12
D o)
= (e~ 20)- Vo) Zam — e 2 T Dz, g,
< |(z —20) - Vo(b)| 720y < B (20)|Vep(t)[72(0)-
Therefore
(20, @~ 20) - vot) + Doy
< 212 1)y + e 1900

Taking A = R(zg) we obtain for every t € (0,7
(N-1)

(P20, o~ 20 Violt) +

ot
We then have

¢(t))| < R(zo)Eo.

1 0¢ 5
T-2 Eo < - 77
(F 2Ry < G [

so that if T' > 2R(xo) we obtain

R(IEO) / Oy 2
o< ——— 77 -
"< ST 2R(w0)) Jryr o) B

and this gives us the observability inequality with explicit constants. ([

Remark 4.1.7. 1) The minimum time T(xg) = 2R(xo) that we obtain
above is not optimal.

2) The above theorem says that T'y has to be large enough.For example,
if Q is a disk for N = 2, we need I'y, to be larger than half the circle.

3) We can also use Carleman estimates to prove the observability in-
equality and this gives the same conditions as the multiplier method.
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4) It has been proved by Bardos-Lebeau-Rauch (see [1]), using microlocal
analysis arguments, that the observability inequality is true when I'y and T
satisfy the so-called Geometric Control Condition (GCC) which says that
for every x € Q, every ray of the geometrical optics travelling at speed 1
(and reflecting on the boundary) meets Tg before time T at a non diffractive
point.

This condition has been proved to be necessary and sufficient by Burq-
Gerard in [4] using defect measures.

It can be seen that if Q is a disk, then (GCC) implies that for each
diameter, at least one extremity is in I'g.

4.2. Case of Distributed Control

We can study the case of distributed control for the wave equation. Let w
be a non empty open subset of €2 and let y,, be the characteristic function
of w. We consider the following wave equation where the control acts on w

0%u

2 Au=hy, onx(0,T), (4.2.29)
u=0 onT x(0,7), (4.2.30)
u(0) = wo, %(0) = u. (4.2.31)

We already know that for h € L%(0,T; L?(w)), up € HE(Q) and uy €

L?(2) there exists a unique solution u satisfying
u e C([0,T]; Hy () N C*([0, T]; L*(2)).
The question of exact controllability (or null controllability) is here to find
h € L?(0,T; L?(w)) such that we have at time 7'
0
u(T) =0 and a—?(T) = 0.

For € > 0 let us define

We,ao = Uzer,, (B(z,€) N Q) (4.2.32)
where T';, is defined in (4.1.28). The following result is proved in [18].

Theorem 4.2.1. Let w be such that there exists xo € RY and € > 0 such
that we z, C w and let T be given such that T > 2R(zo). Then for every
up € HY(Q) and uy € L*(Q), there exists h € L*(0,T; L?(w)) such that the
solution u of (4.2.29) satisfies

ou

uw(T)=0 and E(T):O'
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In fact here exact controllability is a consequence of the following observ-
ability inequality on the adjoint equation (4.1.18). We have to prove that
there exists a constant C' > 0 such that

Yoo € L2(Q), 1€ HHQ), |woliziq) + le1ll-10) < C/ lol?.
wx(0,T)
This proof is technical and uses the observability inequality for the case of
boundary control.
In [1] it is proved that exact controllability holds if w satisfies the Ge-
ometric Control Condition saying that every ray of the geometrical optics
meets w before time T'.

5. Controllability of Schrodinger Equation

We give here a rapid presentation of the controllability for the free
Schrodinger equation in a bounded domain with boundary control. This is
a first step concerning Schrodinger equation as the most relevant problem
consists in controlling the equation via the action of a potential but this is
a bilinear control problem which is quite different and has been the object
of recent studies, for example in [2], [3] or [24].

5.1. Schrodinger Equation

We keep the notations of the previous section and we consider the free
Schrédinger equation with control on a part of the boundary

i%—i—Au:O in Qx (0,7), (5.1.1)
u=h onTyx(0,7), (5.1.2)
w=0 onD\Tyx (0,T), (5.1.3)
u(0) =up in Q. (5.1.4)

Again here using the transposition method we can prove the following
existence result.

Proposition 5.1.1. Let Q be a bounded open set of RN of class C* with
a > 0. For any ug € H Y(Q) and h € L*(0,T; L*(Ty)), there exists a
unique solution w to (5.1.1) with

u e C([0,T]; H Q).
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5.2. Controllability Results

For the study of controllability for (5.1.1) we first remark that here again
the equation is reversible and exact controllability is equivalent to null
controllability. Then using the Hilbert uniqueness method as for the wave
equation, null controllability (with continuity of the control) is equivalent to
an observability inequality for the following adjoint problem. We consider
the solution ¢ to the free Schrodinger equation

?’91& +Ap=0 in Qx(0,7), (5.2.5)
=0 onIx(0,7), (5.2.6)
<p(0) =g in Q. (5.2.7)

We want to prove the following observability inequality

0
050, Yoo e H@), ool <€ [ 1528

5.2.8
o) 3, (5.2.8)

Using the multiplier method in a similar way as it is done for the wave
equation, E. Machtyngier proved in [20] that (4.1.28) is true when I'y con-
tains a set I'y, as defined in (4.1.28) and for any T" > 0. Therefore she
obtains the following result.

Theorem 5.2.1. Let Ty be such that there exists xo € RY such that Tz,
and let T > 0 be given. Then for every ug € H~*(Q), there exists h €
L2(0,T; L*(Ty)) such that the solution u of (5.1.1) satisfies

u(T) = 0.

Using microlocal analysis arguments, G. Lebeau in [16] extended this
result to the case of I'y satisfying the Geometric Control Condition saying
that every ray of the geometrical optics reaches I'y at a non diffractive point
in uniform time.

More recently, in [26], the authors proved that in dimension N = 2 for
the case of a rectangle €2, the exact controllability result holds as soon as
I'g contains at least one interval in each direction of the axis.

6. Controllability of Linear Diffusion Convection Equations

In this section we will study the controllability of linear diffusion convection
equation, the simplest model being the heat equation. These equations are
not reversible and therefore null controllability is no longer equivalent to
exact controllability. On the other hand, for the heat equation for example,
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the solution can become very regular for positive time and the regularity
of the reachable set is very difficult to describe. Therefore the study of
exact controllability is not relevant here and we will restrict ourselves to
the study of exact controllability to trajectories which has been described
earlier. As we deal here with linear operators, this notion is equivalent to
null controllability, but we always have to keep in mind that this is only a
first step towards the study of controllability for nonlinear equations and
in this context, the notion of exact controllability to trajectories seems to
be the good one.

For simplicity of the presentation, we will restrict ourselves to the case
of distributed control.

6.1. Statement of the Problem and Result

Let T > 0 and let Q be a bounded open regular subset of R™Y. We denote
by I the boundary of Q which is supposed to be of class C?*t®. We consider
an operator L, which may depend on time ¢, which is elliptic for each time
t and which is defined by

N9 9z . XL 9
b 2 g ) 2 0 e O

where

Vi,j =1,---,N, a5 € WLOO(Q X (OvT))7 Qij = Qji, (6'1'2)

Vi=1,---,N, bj,a0€ L>*(Qx(0,T7)) (6.1.3)
and the coeflicients a; ; satisfy an ellipticity condition uniformly in ¢
N
3B>0, Y(,t)eQx(0,1), YEERY, Y ai;(z,1)5& > plE*.
ij=1

(6.1.4)
Let w be a non empty open subset of 2 and y,, be its characteristic function.
For each control v € L?(0,T; L?(w)) we consider the following controlled
diffusion-convection equation

O Ly= v mOx(07), (6.1.5)
y=0 onT x(0,7), (6.1.6)
y(x,0) =y°(x) inQ, (6.1.7)

where y° € L?(Q2) and f° € L?(0,T; H=(Q)) for example.
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It is well known (cf. for example [8]) that for every v € L?(0,T; L?(w))
there exists a unique solution y = y(v) to equation (6.1.5) with y €
C([0,T); L2(9) 1 L2(0, T; HE ().

Let us now consider an “ideal” uncontrolled trajectory starting at time
t = 0 from the initial data y° € L2(Q)

dy

EJFLy:fO in Q% (0,7), (6.1.8)
7=0 onT x(0,7), (6.1.9)
7(z,0) =7%(x) in Q. (6.1.10)

Again we have a unique solution for (6.1.8) 3 € C([0,T]; L*(©2)) N
L2(0,T; L?(Q2)). The question of exact controllability to trajectories is then,
for every y° € L2(Q) and 7° € L%(Q), to find v € L?(0,T; L?(w)) such that
y(T) =y(T).

Remark 6.1.1. 1) We have taken here the same right-hand side f° in both
equations (6.1.5) and (6.1.8) for sake of simplicity. We could have taken
in (6.1.8) a right-hand side ?0 £ fO but the conditions we would have to
impose on f9 — ?0 are not easy to state correctly. Nevertheless the proof
will be given with ¢° = f9 —?O # 0.

2) We have taken here the Dirichlet boundary conditions. Other types
of boundary conditions can be considered, for example Neumann conditions
or Fourier conditions, see [11] and [10].

Of course, as already mentioned above, as we deal here with a linear
equation, the problem is equivalent to the following null-controllability one.

Let z be the solution to
0z

5 TLa=v X0 mQx(0.7), (6.1.11)

z=0 onl x(0,7), (6.1.12)

2(x,0) = 2%(x) in Q, (6.1.13)
where 20 € L?(Q). We then look for v € L?(0,T; L*(w)) such that

2(T) = 0. (6.1.14)

The main result of this section is the following

Theorem 6.1.2. Under the previous hypotheses (6.1.2), (6.1.3), (6.1.4),
for every open subset w of Q, for every time T > 0 and for every 2° € L?(2),
there exists a controlv € L?(0,T; L*(w)) such that (6.1.14) holds. Moreover
we can obtain a control v of minimal norm in L*(0,T; L*(w)) among the
admissible controls (such that (6.1.14) is satisfied).
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The proof of Theorem 6.1.2 will require several steps which will be de-
veloped in the next sections. There are various strategies which lead to the
result, all based on Carleman inequalities. The first results were obtained
independently by Lebeau-Robbiano in [15] for the pure heat equation and
by Fursikov-Imanuvilov in [11] for the general case. We will present here
the method of [11] with two different strategies. First of all, we will develop
a method starting from an optimal control problem because it is quite nat-
ural, adaptable to many other situations and also easier to understand. We
will then give a second approach which turns out to be useful for extension
to nonlinear problems.

Remark 6.1.3. For some further extensions such as treating the case of
nonlinear diffusion-convection equations, we sometimes need to obtain a
control v in a smaller space like L™ (O, T; L1()) with r and q larger than
2. We can obtain the previous theorem with this class of controls but this
requires some minor modifications in the proof for example a careful use of
reqularity results for the heat equation.

6.2. An Auxiliary Optimal Control Problem

We now take ¢° € L?(0,T; L?(Q)) for the moment (further conditions will
be needed later on) and we consider the following variant of (6.1.11)

0
a—j+Lz:gO+v-Xw in Q% (0,7), (6.2.15)
2=0 onT x (0,7), (6.2.16)
2(x,0) = 2%(x) in Q. (6.2.17)
Let € be a strictly positive number. We define the functional
1 1
Je(v) = —|2(1)|3 +7/ v[? 6.2.18
)= gkl +5 [ b (6:215)

We want to study in a first step the following optimal control problem

i Je(v). 6.2.19

vera Gy 7<) (6219

This is a natural approximation to our null controllability problem as, for

€ very small, the first term in J (at the minimum) should force the value
z(T') to be small.

Proposition 6.2.1. The optimal control problem has a unique solution
ve € L*(0,T; L (w)).
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If L* is the adjoint operator of L defined by

N N
L = — szzl aij(%gi) - g bi% + aoé, (6.2.20)
this solution v. is characterized by the following optimality system.
a(‘;; +Lze=¢"4+ve-xw inQx(0,7), (6.2.21
22=0 onT x(0,7), (6.2.22
ze(2,0) = 2%x) in Q, (6.2.23
—885; +L*. =0 inQx(0,7),

(

& =0 onT x(0,7), (
&(T) = %ZE(T) in Q, (
(

Ee+tve=0 inwx(0,T).

Proof. The functional J. is well defined, continuous and strictly convex
and therefore, it is classical that the optimal control problem has a unique
solution v. (see [17]). The necessary and sufficient optimality condition
says that

DJ (v))[w] =0, Yw € L*(0,T; L*(w)).

In order to compute the derivative of J. we have to define the derivative of
z with respect to v and we have

Dz(v)[w] = ¢
where 1 satisfies
oy .
e +LYy=w-x, inQx(0,T), (6.2.28)
Y=0 onTl x(0,7T), (6.2.29)
Y(x,0) =0 in Q. (6.2.30)

We now have
1
D] = o)+ [ v
€ wx(0,T)
Multiplying equation for ¢ by &, solution of (6.2.24) we obtain

1
Gemumy= [  eow
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Therefore the optimality condition says that
/ (ve + &) -w, Ywe L*0,T; L*(w)),
wx(0,T)

and this is equivalent to
ve+& =0 inwx(0,T).
This completes the proof of Proposition 6.2.1. O

6.3. Null Controllability Modulo Observability Inequality

Let us now multiply equation (6.2.21) for z. by & solution of (6.2.24). We
obtain

1
E'ZS(T”%?(Q) —/

wx(0,T)

66 *Ve = (Z07§E(O)) +/ gO 'ge-

Qx(0,T)

Notice that we have
_/ EE'UE:\/ |’U€|2:/
wx(0,T) wx(0,T) wx (0
which implies that

1
2J.(ve) = E|ZC(T)|%2(Q) +/

wX

[ AR
T)

)

‘§€|2 = (20756(0)) +/ gO : 56-
,T) Qx(0,T)

Let us introduce a weight p, which will be precisely defined later on, but
which, for the moment, only satisfies p > 0 in Q x (0,7). Using Holder
inequality we obtain provided that

pg’ € L*(0,T; L*()),

1
;Ize(T)IQLz(Qﬁ/ o €] (6.3.31)
wx (0,

N

1 1
< 2(|ZO|2L2(Q) + |PQO|2L2(0,T;L2(Q)))2 (|§e(0)|2L2(Q) + |;§€|2L2(0,T;L2(Q))) .

We would like to deduce from this last inequality a bound for
laomaren = |16l
L2(0,T;L?(w)) wx (0,T)

This will be the case if for some suitable weight p there exists a constant
C' (independent of €) such that we have the following inequality

1
€Oy + | -E ooy < C / &2 (6.3.32)
p wx(0,T)
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Such an inequality will be called an observability inequality and its proof
will be the subject of the next sections. Let us for the moment suppose
that inequality (6.3.32) holds true. Then we easily obtain that for every
e>0

T
oltrorasen = [ [ 16F < COL ey + 10" Bromnan) (6339
w

and
1
E\Ze(T)\%z(Q) < C(12%72() + 109" 1220712 (0))- (6.3.34)

Therefore v, is bounded in L?(0,T; L?(w)) independently of ¢ and for a
subsequence (still denoted by €) we have

ve = v in L?(0,T; L*(w)) weakly.
Consequently, we have for example
ze = z(v) in C([0,T]; L*(R2)) weakly,

where z(v) is the solution of (6.2.15) associated to v. As z.(T) converges
to 0 in L?(w) we must have

z(w)(T)=0

and this completes the first part of Theorem 6.1.2.

Now we know that J,(ve) < Je(v) = % wx (0,T) |v]2, therefore

1 1
IR Y e
2 Jux(o,1) 2 Jux(o.1)

ve = v in L?(0,T; L*(w)) strongly

This implies that

and that if ¥ is another admissible control (such that null controllability is
achieved for 9), then

S RCGEE Y I
2 Juxom) 2 Juxo1)

This completes the proof of Theorem 6.1.2 if we know the observability
inequality (6.3.32). O

Remark 6.3.1. In fact, assuming that the observability inequality (6.3.32)
is valid we have proved a stronger result as we have taken in (6.2.15) g° # 0
but we have to assume that pg® € L*(0,T; L?(12)).
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Now, in order to finish the proof of Theorem 6.1.2, it remains to show the
observability inequality (6.3.32) and to choose of course a suitable weight
p. Such an inequality says that the knowledge of the solution of (6.2.15) on
a small cylinder w x (0,T) governs the (weighted) behaviour of the solution
on the whole domain 2 x (0,7) and its final value (notice that (6.2.15) is
a backward equation so that the final value is z(0)). This must require a
way to propagate the information inside the spacial domain and will be a
consequence of a global Carleman inequality, the proof of which will be the
object of the next section.

6.4. Global Carleman Inequality

Local Carleman estimates have been introduced by Carleman in [5] to study
uniqueness problems, but we will here require global Carleman estimates
following [11]. We first have to define the weight function that we will
use. There are several possible choices and we follow here the 2-parameters
choice of [11] with some slight modification.

6.4.1. Weight Functions

We have to choose a weight which we called p in the last section but this
choice will require long arguments and we have to begin with a basic choice
of weight depending only on the space variables. This weight is fundamental
in the sense that, roughly speaking, information will propagate in space
along the gradient lines of this function.

Lemma 6.4.1. Let wy be an open set such that wg C w (for example wy
can be a small open ball). Then there exists 1 € C*(Q) such that

P(x) >0, Vael,
P(x)=0, Vael,
|V1/)(x)\ #0, YV GQ—OJO.

Proof. This proof is very technical and can be omitted in a first step.

As Q is regular, we can first choose a function § € C?(RY) such that
Q= {x € RY, §(x) > 0} and |VO(z)| # 0, Vo € I. This can be done
locally, and then extended globally using a partition of unity. From Morse’s
density theorem, there exists a sequence of Morse functions () (i.e. such
that their gradients vanishes only at a finite number of points) such that
0 — 0 in C?(Q) when k — +oo () does not necessary vanish on the
boundary). Moreover we can take 6 > 0 as § > 0 on . Let us define
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C = {r € RN, Vl(x) = 0} as the set of critical points of §. As |VO(x)| #
0, Vo € T, there exists an open neighborhood V of I' in RY and § > 0 such
that

VeeV, |Vo(z)| >
Let ¢ € C§°(V) such that p(z) =1,Vx € T and 0 < p < 1. We set
pur () = O () + () (0(x) — Ok ().
)

)+
Then pp(z) =0, Vo € T, pr(z) > 0, Vo € Q and moreover
VeeQ-V, Vug(z)=Vo(z).
Now if x € QN V, we have

Viur(z) = VOi(x) + o(2)(VO(x) — VO(2)) + V() (0(x) — Ok(2))
so that for k > kg , ko large enough we have

[Viw ()] = [VOr()] = 2[[ell 01 @)l10 = Okllcr @
20 = 2llellcr @10 = Okllor @)
1)

> .
2

Let us choose k > ko and set u(x) = pg(z). Then p is a Morse function
because the points where its gradient vanishes are among the points where
V0, vanishes. Moreover we have p(x) =0, Vo € T.

Let now x1, s, -,z be the critical points of y. Then fori=1,--- ,r

we have z; € 2 — V. We can find r disjoint regular paths l1,--- ,l, such
that for i =1,---,r,

I € 0 ([0, 1;RY),

Lt)eQ-V, Vtelo1],

Li(t1) # li(ta), Viti1,t2 €[0,1], t1 # ta,

I;(1)==z; and [;(0) € wo,

Vs, t €10,1], li(s) #1;(t), wheni# j,

and we can find r functions fi,--- , f, such that fori=1,--- ,r
dl;
fi € COO(RN7RN) and ?;(t) = ft(lz(t))v vt € (07 1)
Now, for ¢ = 1,--- ,r we can find open neighborhoods W; of the sets

{l;(t), t €[0,1]} such that
W, cQ—V and W,NW; =0 if i # j.
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Then we take functions e; € D(W;) such that e;(1;(¢)) = 1, Vt € [0,1] and
we set

gi(x) = ei(x) fi(x).
Let us consider the differential equation

4 = g, e 01),

dt

z(0) = x.
We denote by S} : RY — R the operator which maps z to z(t). We then
have

Si((0) =z, i=1,-- .1
We now define

S(x) =81 o8fo- 08 (a).
We can se that if 2 € Q — ({J;_, W;), then S(z) = = and therefore

VeeV, S(z)=uz.
On the other hand, each S is a diffeomorphism from € into itself, so is S
and VS is invertible.
Let us now set

P(z) = p(S(x)).
Then we have ¢(z) = 0, Vo € I'. Moreover, as VS is invertible, if Vi)(z) =
0, this means that S(z) € {z1,---,z,}. But we know that & = Id on
Q2 — W; so that
S(1:(0)) = Si(1:(0)) = .
As S is a diffeomorphism, we see that
S(z) e {z1,- 2} =2 € {L(0),---,1.(0)} = z € wy.
Therefore
Vi(z) =0= z € wy,
and 1 satisfies all conditions of the lemma. This finishes the proof of Lemma

6.4.1.

We will now use the function 1 given by Lemma 6.4.1 to build new
weights. Let us define for A > 0 and for an integer k£ > 1

e (z)+m1)
eAYlLoo (@) +tma) _ pA((z)+ma)
n(xz,t) = T =) , (6.4.36)

where the positive constants m; and msy will be chosen below.
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Remark 6.4.2. For our purpose here, we only need to take k =1 but for
further extensions it happens that we sometimes need to take k > 1 and this
does not make any change in the sequel.

‘We now want to choose the constants m; and ms so that the numerator
of 7 is positive which implies that mg > my and also that we can bound
on

(modulo some constants) FI and gtg respectively by ¢? and 3. A simple

calculation shows that for example, a possible choice of these constants is
mi = |w|Loo(Q) +2; mo = ‘wILoo(Q) + 3. (6437)

We now have for every A > 0 the following properties which will be helpful
for our calculations

Vo =XpVip, Vn=-\pV1, (6.4.38)
T ok 2 T

T
1< (G0 o< (5% o< (M (6.4.39)

a1y 2 0% 2L\ ak-1) 3
| |<kT( ) ©°, \8t2|§k(k+1)T(2) ©°,  (6.4.40)

2
I < (Eprg2, | T0) < hh DTG (64.41)
We can notice that 7 tends to 400 when ¢t — T or ¢t — 0 but that 7 is
uniformly bounded in Q x [0, T — 4] if 6 > 0.
Our final weight will depend on a second positive parameter s and will
be of the form e~*"(#Y) We can see that, for fixed s, this function tends
very rapidly to 0 when ¢t — T or ¢t — 0.

6.4.2. Proof of a Global Carleman Inequality

We want to prove a Carleman inequality for the solution of equation (6.2.24)
but we will take the general case of a parabolic equation. We still consider
a backward equation because (6.2.24) is backward but of course there is no
change for a forward equation. As we will see we only need to consider the
principal part of L* and as the coeflicients a; ; are symmetric it is equivalent
to take the principal part of L that we call Ly. So we define

N

0 ou
Lou=—Y" o (ai,ja—xjy (6.4.42)

1,j=1
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and for g € L2(0,T;L?(Q2)) we consider the solution u of the following
backward parabolic equation

ou

~5p FLou=g inQx(0,7), (6.4.43)
u=0 onT x(0,7), (6.4.44)
u(T) =wup in Q. (6.4.45)

We can now state the global Carleman inequality

Theorem 6.4.3. There exist parameters s > 0 and Ao > 0 and there
exists a constant C > 0 depending only on Q, wg, ¥, on B defined in
(6.1.4) and on the coefficients a; ; such that for every s > T?*sq, for every
A > Ao and for every solution of (6.4.43) we have

1 [T [ e 2 ou o N Pu
- — 4.4
[ + 32 gag; (6.4.46)

T T
+s)\2/ /¢6_2S”|Vu|2dxdt+s3)\4/ /@36_23"|u\2dxdt
0o Ja 0o Ja

T T
SC’(/ /6725"|g|2dacdt+s3)\4/ /@3672S"|u|2dxdt).
0 Q 0 w

Proof. For s > 0 and A > 0 we define

w(z, t) = e "M@y (2, 1). (6.4.47)
We can see that
w(z,0) =w(z,T) =0. (6.4.48)

We now compute in terms of w the operator

51
e‘”’(—% + Lo(eMw)) = e *"g. (6.4.49)
We have
aeMw) 4, Ow on
o~ )
and because of (6.4.38)
0(e”Mw) e Ow oY
— (2
8$j ¢ (831‘] s cpaa:jw)
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so that
%(am 8(;;,?0) | (6.4.50)
- es”(aii (ai,jg;l;) - S)‘wi’j(%% i gigz)
_ swai(ai,jggi)w ~ sXpai; aw 81/) X gw gz '

After minor modifications and using the symmetry of coeflicients a; ; we
then obtain

Pw = Piw 4 Pyw = g, (6.4.51)
where
Piw = ——+2 A Z @azj(;%) SZ
+25\? i:l @ai,jgigiw, (6.4.52)
Pow == Z 3% ”3@
i,j=1
2)2 ]221 ”gd’ g;/’ g:z w, (6.4.53)
s oy oy
Js =€ "g—|—s)\2 ,;1@ ’]3 8x
—s\ Z © 38 (a:; gw) (6.4.54)

We now take the L?-norm of each term in (6.4.51) and we obtain

/ /|P1w| dxdt—i—/ /|P2w| dxdt (6.4.55)
42 / / PywPywdzdt = / / lgs|?dadt.
0 Q 0 Q

We shall now compute the term

T
/ / PrwPywdxdt
0o Ja
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using (6.4.52) and (6.4.53). This computation will give 9 terms I ;. In
the sequel, by C' we mean various constants independent of s, A and T as
we want to keep track of the powers of s, A and T involved. In order to
organize the calculations we will give particular importance to terms of the

order of
T
5)\2/ /<p|Vw|2dxdt
0 Q

T
53)\4/ / O3 |w|*dadt.
0o Ja

We take s > 1 and A > 1 and we denote by
sPA1A

and

all terms which can be bounded by

T
Csf"X]/ /soleP, P<1,g<2 ptqgs2
o Ja
and by
sPAB
the terms which can be bounded by
T
CSPV/ / Qlw|*dwdt, p<3, ¢<4, p+q=<6.
o Ja

These terms will be neglectible as we will see later on. We have the following
successive results,

ow
11712/ / ( 50 )Ydzdt

0 aw
_Z/ /Bt 8m, a”6 dacdt

i,j=1
ow Jw
- Z / /at i 5 By
7,7=1 J
_Z //8a” 8w8wddt
=1 Q at 336] 8901

== Z / / ag;j g;i g;i dxdt, because of (6.4.48).

3,7=1
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Then
L, =T%A4, (6.4.56)
T N
ow oY O
_ 232 ow 2, OV 0¥
1172_“/0 = ‘Zgo I B B, wdzdt
i,j=1
2)\2 aw aw )
= dxdt
/ / i Gy o, ot
1,7=1
2,\2 / / 8aw 2 “Biwﬁw w|?dudt
@i &rj 83:1
4,5=1
2)\22// ngaw w|?dadt.
i,7=1
Because of (6.4.40) we have
Lo = $*N(T? + T** 1B, (6.4.57)

T r owon on a
S/ /Eat / / ot gy ) dudt
= —f/ / el |w| dxdt,

and using (6.4.41)
I3 =sT*2B. (6.4.58)

Before proceeding our calculations we have to notice that, if v is the unit
exterior normal on the boundary I', as 9 and w vanish on I" we have for
zel

Vi(z,t) = (Vi) - )1/ and Vuw(z,t) = (Vw-v)y,

B o dw 9 w
Iy = —2s\ Z / / %) s B (‘3xk( 15 l)dxdt

jkl 1

= —2s)\ Z / / (VY - v)|[Vw.v|? a; jVivjag vgvidydt

’ijl 1

+2502 Z / / 77? 3w)( klgw gw)d dt

z]kl 1

ow Ow
+28>\ Z / / axk Z‘]a ) k’l%%dxdt

i,5,k,l=1
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N T 2
o ow 0w
28\ E ik —— dzdt
e /0 /Qgpa 7 O ak’laxl 0x0x; v

.9k, 1=1

N T
= —sA Z (VY - v)|Vw - V\Qamyiujak,ll/kl/ldvdt
o Jr

i4kl=1

N T
+25)\2 Z /0 /an(a i 8w>( 8—wa—w)dmdt

i m )Gkl
2] 8 5
5 Ox; Ox; Ox
ik 1=1 7o LETR

N T
0 oY Jw Ow
28\ —(a; ;— — —dzdt
s Z /0 /Q(paa:k (24,5 Ox;j )tk Ox; Ox; o

4,5,k 1=1

N T
oY DY dw dw
—sA? Y o g o dadt
: fo s ot

i,k l=1

N T
0 oY ow Ow
—sA / /cp— Qi j7— )0k —drdt
m_%l:zl o Ja &ri( ]&rj) kl@xl oxy,
N T
oY day,; Ow Ow
—sA\ Z /0 /ngaw(,hj 0z, 02, axkdacaft.

i,3,k,1=1

Therefore we have

33

N T
Io 1 = —sA Z / /QD(VI/J -v)|[Vw - 1/|2ai’jViVjakyll/kl/ld"ydt (6.4.59)
o Jr

i4,k,l=1

N T
125\ Z /0 /ng(a % aw)( % o Ydxdt

1,5k, =1 i7j87j87xi amaixlaixk
N T
oY oY ow Ow
—s\? e kg 5 dadt
s ij;:l/o /nga 7 al’j 8.’& ak’lﬁxl al'k .

+sAA,
N T
1272 = —283/\3 Z / /(pga 61/) aw aiaiwdxdt
0 Q

A A Okl
o J Oxj Ox; Ox; Oxy,
1,5,k,l=1

N T
oY 0 oy O
333 3 oy 2
= Z /0 /QLP i al’j 3$Z(|w| )ak’laxl oxy, drdt

i,5,k, =1

N T
oY oY oY o
_ 314 3 YvY 2
= 35°\ E /0 /ng a;j or; pr ak’liaxl pr w|*dxdt

3,7,k l=1
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00w
3413 A
To7A Z / / ’Jax)’”axla

zgkl 1
oY 0 8¢ o
+53\3 // a;j———(ag
”;1 Q ! 0z O L dx; Oz,
so that
oY 31/} 3111 oY
314 b
T22 = 35°A Z// ’]8%—8:@ 8:108
i,7,k,l1=1
+s°\°B
oY dw On
6.2
Iy = 2.9)\”21// 3 5 O B wdzdt
2
= SAZ//Q ,Ja a w|?dxdt

1,7=1

_SQAQZ/ / ng 1/’\ ?dxdt

Y ) w|Pdudt,

w|?dxdt (6.4.60)

i,j=1
2)\21221/ aé: ”aalff gw |2d dt
+52A”21/ / g’z ai ,j(ii)wﬁdxdt,
so that
Lz = s?\2T%-1B, (6.4.61)
Iyy = —2s)\2 J; 1/ / ”g;i gi aik (aklg)“;)dxdt
_QSxal]; j / Jgig;/’gi klg—u;wdxdt
—5—23)\2”; 1/ / 8xk ,ng g;/i) kzgfwwdwdt
+2s\? Z / / ’jg;/;gf g—zg—:d dt

i,7,k,l=1
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and we have

I3 = 25)\2 Z / / KW, a—wa—wd dt  (6.4.62)

e ’J&cjﬁz L) Dy

+s\3T2*V/ AB.
Now we directly get

ha= 20 3 / [ s g G g g udsd,

Yd B; By By D
i,5,k,l=1
(6.4.63)
and
24,2 4 817 o oY 2 2\ 22k—1
I3 = =25\ ; Q(pa . o —)|w|*dxdt = s°\°T B. (6.4.64)

Grouping all different terms Ij,; we obtain

/ / PiwPywdzdt

SA+A2T2]€)A+( 3)\3+$2/\4T2k+82)\2T2k 1 +ST4k 2)B

o aw ow Ow
2 —r -
+28\ Z / / i o, B 4 5 B dzdt

zykl 1

314 oY O oY 0P
42 Z //Q s g ke G e

’L]k‘l 1

—25)\ Z / / (Vep - v)|Vw - v|? a; jvivjagvpvdydt

,]kl 1

oY Ow 81/} ow
4s)\? § Qi dxdt.
T / / jaxj 8%)( 63:1 8mk)
4,5k, =1
We know that Vi) - v < 0 on I" so that the boundary integral (with the —

sign) is positive. Using (6.1.4) we then have, writing
A5\ T) = (31 X2T%) 4
and
B(s, \,T) = (A3 + 2\IT2% 4 2)2726—1 | gpik=2)p.

T
2/ / PiwPywdzdt > A(s,\,T) + B(s,\,T) (6.4.65)
0 Q

T T
—|—25}\262/ /Lp|V1p\2\Vw\2dxdt+2s3)\464/ /@3|V1/J|4|w\2dacdt.
0 Q 0 Q
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Because |Vi| # 0 on  —wp (see Lemma 6.4.1), there exists ¢ > 0 such

that
BIVY| > 6 on Q — wy,

T T
2/ /lePzwdxdt+25)\252/ / o|Vw|?dadt
o Ja 0 Jwo

T
+2$3)\454/ / O lw|*dxdt
0 wo

T T
> 25)\262/ /@|Vw|2dxdt+233/\464/ /<p3|w|2dmdt
0o Ja o Jao
+A(s,\,T)+ B(s,\,T).

We also have

T T
/ / |gs[dadt < / / e 2| g|>dadt + B(s,\, T),
o Ja 0o Ja

T T
/ /|P1w\2dxdt+/ /|P2w|2da:dt
0 Q 0 Q

T T
—|—2s)\262/ /¢|Vw|2dxdt+2$3)\454/ /cpg|w\2da:dt
0o Ja 0o Ja

T T
g/ /6_25’7\9\2dmdt+2s)\252/ / o|Vw|?dzdt
0 Q 0 wo

T
+253 1164 / / O*|w|?dxdt + A(s, \,T) + B(s,\, T).
0 wo

so that

so that

Because of the form of A(s,\,T") and B(s,\,T), we can eliminate them by
choosing s and A sufficiently large, say s > (T2F + T%=1)s5 and A > Ag
where so and \g are independent of T.. Therefore we have for s > (T2F +
T? 1) 55 and A > Ao

T T
/ /|P1w|2dxdt+/ /\P2w|2dxdt (6.4.66)
o Ja 0o Ja

T T
+s)\262/ /<p|Vw|2dxdt+53)\454/ /gpg|w|2dxdt

0o Jo o Jo

T T
§/ /6_2S"|g|2dxdt—|—2s)\252/ / ©|Vw|?dxdt
0 Q 0 wo

T
+253/\4(54/ / ©*|w|?dxdt.
0 wo



Control and Inverse Problems for Partial Differential Equations Downloaded from www.worldscientific.com
by 89.156.182.165 on 01/31/24. Re-use and distribution is strictly not permitted, except for Open Access articles.

Control of Partial Differential Equations: Theoretical Aspects 37

Now we want to get rid of the term 2s\2§2 fOT s, #IVw|*dzdt in the right-
hand side of (6.4.66). To this aim let us introduce a cut-off function 6 such
that

eDw), 0<0<1, H(x)=1 Va€uw. (6.4.67)
We multiply P,w by p#?w which gives

T
/ / Pywpb?wdzdt

ow Ow
— 2,02
——s/ /Q —w b dxdt—!—/ / g i g~ 3 dedt
/ / E awa 8 ww@dwdt

,Jl

+)\/ / Z a” Ow 31/} 92dxdt

3,7=1

22 292 .
AA/Z ,]a a dzdt

1,7=1
Therefore, using (6.1.4) we have

T
/ / ©0*|Vw|*dzdt
0 w

T T
< C(/ / Powpb?wdzdt + X / ¢%9|Vw|<p%wdxdt
0 w

+(s2A2 4 5T 1 / / w?dxdt).

We then obtain for s > (T% + T~ D55 and A > Ao,

257252 / / o|Vw|?dxdt
wo

T
< 2/ /\P2w|2dxdt+Cs3>\4/ /<p3w2dxdt.
0 w

From (6.4.66) this gives

T T
/ /\P1w|2dxdt+/ /|P2w|2dxdt (6.4.68)
0o Ja o Ja
T - T -

+5)\2/ /¢|Vw|2dxdt+53)\4/ /¢3|w|2dxdt

0o Jo 0o Jo

T T
_C(/ /e_2s"|g\2d$dt+33)\4/ /(p?’\w|2dxdt).

0 Q 0 w
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We want to give this inequality in terms of w instead of w. We know that
w = e *"y. Therefore we have

T T
/ /<p3\w|2dxdt=/ /4,036728"|u|2da:dt
0 Q 0 Q

and because of

Vu = e*"(Vw — sApVyw),

T T T
/ / e 2| Vu|2dadt < C’(/ / ¢|Vw|2dxdt+82)\2/ / O lw|dxdt).
0o Ja 0o Jo o Ja

This immediately gives one part of (6.4.46). In order to obtain the complete
inequality (6.4.46), we use the explicit form of Pyw and Pyw which from
(6.4.68) give for s > (T?* + T?k~1)s5 and A > \g

1
/ / 8w / / —25mg|2 dmdt+83/\4/ /apg|w|2dxdt),
Q@ w

//f'zaxz Sl

T T
C(/ /6_23”|g|2dxdt+s3>\4/ /<p3|w|2dxdt).
0 Q 0 w

Developing the expression ZZ =1 D30 (ai’j%(%)) and using again esti-
i J

mate (6.4.68), s > (T%F + T?¢~1)sy and A > Ay, we obtain

// (0035 ()

C(/ /672‘"’|g|2dxdt+s3>\4/ /¢3|w|2dxdt).
0 Q 0 w

Using elliptic regularity results in {2, we obtain from this last inequality
dxdt
/ / Z axzax] )|

T
C(/ /6_23”|g|2dxdt+53)\4/ /<p3|w|2dxdt).
0 Q 0 w



Control and Inverse Problems for Partial Differential Equations Downloaded from www.worldscientific.com
by 89.156.182.165 on 01/31/24. Re-use and distribution is strictly not permitted, except for Open Access articles.

Control of Partial Differential Equations: Theoretical Aspects 39

2
M(%) together with (6.4.68), s > (T?* +

T#~1sg and A > \g gives now
1T 1,8 0w
7/ /*(Z|a > - ) dadt
s Jo QP i,j=1 LiOTj

T T
C’(/ /6725”|g|2d33dt+s3)\4/ /<p3|w|2dxdt).
0 Q 0 w

We know that

Using the development of

ou  O(eMw) ow on

a- o G e
and
Pu 9% (eFw)
O0x;0x; N O0x;0x;
0w oY dw Oy Ow
— 57 - - -
c (8,@»83@ SA(p(@xj ox; Ox; &Uj)

2
Lo P o DO gy, O DY
AN o, Y TN o TN o o

We then obtain

A dadt

T
C(/ /6_25"|g\2dmdt+33/\4/ /@36_25"|u\2dmdt),
0 Q 0 w

with C independent of s, A and T and this finishes the proof of Theorem
6.4.3.

6.4.3. Case of a General Diffusion-Convection Operator

For the moment we have proved a Carleman inequality for a solution of
(6.4.43) where only operator Ly is considered. If we take the general case
of operator L* like in (6.2.24) we can obtain a similar inequality. Let us
consider the general problem

—% +Lw=h inQx(0,7T), (6.4.69)

u=0 onT x(0,7T), (6.4.70)
w(T) =wup in Q. (6.4.71)
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We write

laoloo = |ao]re(o) and [blo = _max |bi] Loo ()5 (6.4.72)
and we have the following result corresponding to Theorem 6.4.3.

Theorem 6.4.4. Let sg, A\g be defined as in Theorem 6.4.3. There exists
a constant C > 0 depending on Q, wg, ¥, on 8 defined in (6.1.4) and on
coefficients a; j such that, if

2
51 = C(1+ |aold + |b|%), (6.4.73)

for every s > T?* s, 4+ T? =15y, for every A > \g and for every solution of
(6.4.69) we have

1 [T [ e 2m ou o N Pu
- — dxdt A4.74
s [ =0 + 3 Igage; 02 (6.4.74)
T T
+s)\2/ /¢6725”|Vu|2dxdt+53)\4/ /<p3672s’7|u|2dxdt
o Jo 0o Jo

T T
< C(/ / e 25 h|*dxdt + 53)\4/ / ©Pe ™2 |u|?dxdt).
0 Q 0 w

Proof. It is a simple consequence of the previous result. In fact let us define

N
ou
=h bi— — . 6.4.75
9 —l—; o apu ( )
Then the solution of (6.4.69) is solution of (6.4.43) with g defined by
(6.4.75). We can then apply Theorem 6.4.3 and obtain (6.4.46) for s >

(T2k + T2k—1)$0 and \ > \g.
On the other hand the value of g gives immediately

T T
/ / e 2| g2 dadt < C(/ / e 21| h|? dxdt
o Jo 0o Jo

T T
+|b|goT2k/ /<pe_25”|Vu|2dxdt+|a0|§oT6k/ /@36_2‘9"|u\2dwdt),
o Ja 0o Ja

and therefore

1 (T [ e 2 du 9 N Pu
- — dxdt
5/0 /Q ¥ (|3t‘ Jr”Z::l‘ami@mj')z

T T
+s)\2/ /cpe_2s”|Vu|2dxdt+53)\4/ /@36_23”|u\2d$dt
0o Ja o Jo
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T T
< C’(/ / 6725”|h|2dxdt+33/\4/ / ©Pe 25yl dxdt)
0 Q 0 w

T T
+C|b|goT2k/ /we_25"|Vu|2dxdt+C\ao\ioT%/ /<p3e_23”|u|2dxdt.
0o Ja 0o Ja

Therefore by choosing
2
s1 = so + C%|agl% + C|p|%, (6.4.76)
taking s > T?ksy + T% =155 and A > N\, we can absorb both of the two

last terms in the right-hand side of the previous inequality by the left hand
side. This gives immediately the result of Theorem 6.4.4.

6.5. Observability Inequality

In order to complete the proof of Theorem 6.1.2 which gives the result
of exact controllability to trajectories, we need to prove the observability
inequality (6.3.32) with a suitable weight function p.

Directly from (6.4.74) we have for s > T?ks; + T =155 and X > A,

T T
83)\4/ / 2”2 u|?drdt < C(/ / e 25 b2 dadt (6.5.77)
0 (9] 0 Q

T
—|—s3)\4/ / e u|? dxdt).
0 w

Now we can fix parameters s and A in the admissible range and for example
we take, in order to simplify notations, for C' large enough,
1
T
We shall now only keep track of the dependence of the constants on T,
lao|.. and |b|so.

On a time interval (

2
5 =CT?*(1 +|ao|3 + |b|% + A= \o.

%, 3T we have

4

2
n < o that e~257 > ¢~ C(+laolX+(bI%+ )

T2k’

and

© > C
— T2k'

From the last inequality (6.5.77), we have

3T T
/4 /|u|2dasdt§C’(T,|a0\oo,\b|oo)/ /6*28’7|h|2dxdt (6.5.78)
T Ja o Ja

T
(T, |a0|oo,|b|oo)T6k'/ /@36_23"|u\2da:dt,
0 w
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where
2
C(T, |ao|os, [bloc) = CeC U Hlaol&+PE A7) (6.5.79)
Let us consider a cut-off function of time ¢ 6 such that

pec=(0.1), 0<om <1 [TWI<s, viepT)

o) =1, Ve, g], 0(t) =0, Vie [%,T}.
We define
a(x,t) = 0(t)u(z,t).
Then u satisfies the following equation
—% + L*u = 6h — %u in Q x (0,7), (6.5.80)
©=0 onT x(0,7), (6.5.81)
@WT)=0 in Q. (6.5.82)

We now use a classical energy estimate for w. We have to notice that

@(x,t) = u(z,t) on [0, 2] and that % =0on [0,Z] U [2L,T]. Multiplying

the previous equation by @ and integrating over (¢,7T) for t € (0,7, we
easily find that

T oF
|@(t)[7 20 +6/ / |Va|2dxdt < c/ / |h|2dxdt
t Q t Q

T &
+C(\ao|oo+|b\§o)/ /\a|2dxdt+%/ /|u|2dxdt.
t JQ T z Q

From Gronwall’s Lemma, we therefore have

s L
()20 gce0<\ao\m+\bli>T(/ /|h|2d:cdt+ﬁ/ /|u|2dxdt).
0 Q £ Ja

Using (6.5.78) we obtain in particular

Proposition 6.5.1. For every solution u of (6.4.69), we have the following
observability inequality.

3T
(0) 220 £0e0<‘ao\oo+\blio>T(/ ' /|h|2dxdt (6.5.83)
0 Q
T
+C(T, Iaoloo,|b\oo)(/ /e*zsn\hﬁdxdt
0 Q

T
+T6k_2/ / <,03e_2‘”7|u|2d:13d1f))7
0 w

where C(T, |ap| oo, |bloo) s defined by (6.5.79).
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Applying (6.5.83) to & which is solution to (6.2.24) or to (6.4.69) with
h = 0, we easily obtain one part of the desired observability inequality
(6.3.32), namely

T
|fe(0)|2Lz(Q) SC’T%_%K(T’W‘)“"’"Z’I”)/ /@36_2S”|§E\2dxdt, (6.5.84)
0

w
where

2 1
K(T, |ao|oos |bloc) = C(1 + |ao| + |b|% + Tlaolee + T)b|% + 7). (6.5.85)

This completes the proof of Theorem 6.1.2 in the case ¢° = 0 as it is
announced. Here we have been keeping track of the dependence of the
constants on T, |ag|e and |b|o in order to treat nonlinear problems later
on.

Let us now for simplicity forget about this dependence and define

T
n(x,t), iftels,

T},
2

- (6.5.86)

5]

nw@ 3), ifte o,

and

T
90(1;7t)a ift e [gvT}v
G(x,t) = (6.5.87)
T . T
QO(ZL',g), 1ft€ [0,5]

We obtain from the above inequalities and from Carleman estimate

T
o)|2L2(Q)+/0 /Q<,53e_2s’7\u|2dxdt (6.5.88)

T T
SC’/ /6725ﬁ|h|2d$dt+0/ /@36725ﬁ|u|2d:cdt.
0 Q 0 w

This gives the desired observability inequality (6.3.32) with the weight

esN

p:

[N

@
This completes the proof of Theorem 6.1.2 in the case we have a right-hand
side g satisfying

S

g € L*(0,T; L*(Q)).

e

ASY
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6.6. Another Strategy

We will present here the original strategy given by [11] which can be use-
ful for applications to the controllability of nonlinear parabolic equations.
With this strategy we will obtain exponentially decreasing controls and
solutions for the null controllability problem.

Let us define

Xo={weC®Qx[0T]), w=0 onTl x(0,7)}. (6.6.89)

On X, we define the bilinear form
! N i
a(w, W) z/ 6725"(—£+L*w)(—fw+L*u~))+/ GPe 25 .
Qx(0,T) ot ot wx(0,T)
(6.6.90)

Because of Carleman inequality and the observability inequality we have

Vue Xo, WO+ [ G ul < Calw,w).

Qx(0,T)

Therefore a(-,-) is a scalar product on Xy. Let us define X to be the
completion of Xy with respect to this scalar product. Then of course X is
a Hilbert space for this scalar product and we have

Yw € X, \w(0)|2L2(Q) +/ PPe 2 Mw? < Calw,w).  (6.6.91)
Qx(0,T)
Let us now define the linear form ! on X by
Vi€ X, (I,w) = (2°,%(0)) +/ g%w. (6.6.92)
Qx(0,T)

Then if 2° € L?(Q2) and “1g0 € L2(0,T; L?(2)), I is a continuous linear
@2

form on X. From Lax-Milgram Theorem, it follows that there exists a

unique solution w € X to the following variational problem

a(w,w) = (l,w), Ve X. (6.6.93)

Let us now call
z = 6_2”7(—%: + L*w), (6.6.94)
h=—@e 2y, (6.6.95)

Then we have, because a(w,w) < +00,

/ ez < 400 (6.6.96)
Qx(0,T)
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and

e2sﬁ
/ —|h|* < +o0. (6.6.97)
wx(0,T) ¥

(Notice the + sign in the exponential weight.)
Moreover, (z, h) satisty the following equation

s
Yo € X, z(——w+L*w) = (ZO,’LZJ(O))-F/ g%+/ hab.
Q% (0,T) ot Q% (0,T) wx(0,T)

This can now be extended to all functions w such that (—% + L*w) €
L?(0,T; L?(Q2)) such that @(T) = 0 and this shows that z is the (unique
!) solution defined by transposition of problem (6.2.15). But we know that
this problem has a solution in C([0,T7]; L*(Q)) N L2(0,T; H}(Q)) so it must
be the same solution.

Now we have (6.6.96) which implies

2(T)=0

and which shows that the solution z decreases exponentially to 0 when
t — T. We also obtain from (6.6.97) an exponentially decreasing control h.
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