
HAL Id: hal-04430630
https://hal.uvsq.fr/hal-04430630

Submitted on 31 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Future Projections of Global Plastic Pollution: Scenario
Analyses and Policy Implications

Huijie Yan, Mateo Cordier, Takuro Uehara

To cite this version:
Huijie Yan, Mateo Cordier, Takuro Uehara. Future Projections of Global Plastic Pollution: Scenario
Analyses and Policy Implications. Sustainability, 2024, 16 (2), pp.643. �10.3390/su16020643�. �hal-
04430630�

https://hal.uvsq.fr/hal-04430630
https://hal.archives-ouvertes.fr


Citation: Yan, H.; Cordier, M.;

Uehara, T. Future Projections of

Global Plastic Pollution: Scenario

Analyses and Policy Implications.

Sustainability 2024, 16, 643. https://

doi.org/10.3390/su16020643

Academic Editor: Quan Wang

Received: 6 November 2023

Revised: 6 January 2024

Accepted: 8 January 2024

Published: 11 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Future Projections of Global Plastic Pollution: Scenario Analyses
and Policy Implications
Huijie Yan 1, Mateo Cordier 1,2 and Takuro Uehara 3,*

1 Research Centre Cultures–Environnements–Arctique–Représentations–Climat (CEARC),
Université de Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 11 Boulevard d’Alembert,
78280 Guyancourt, France; yanhan@hotmail.fr (H.Y.); mateo.cordier@uvsq.fr (M.C.)

2 Centre d’Etudes Economiques et Sociales de l’Environnement-Centre Emile Bernheim (CEESE-CEB),
Faculté Solvay Brussels School—E.M., Campus du Solbosch—CP 140/01, Université Libre de Bruxelles,
Avenue F.D. Roosevelt, 50, 1050 Bruxelles, Belgium

3 College of Policy Science, Ritsumeikan University, 2-150 Iwakura-cho, Ibaraki City 567-8570, Osaka, Japan
* Correspondence: takuro@fc.ritsumei.ac.jp

Abstract: Plastic pollution has attracted the attention of the media, public, and government world-
wide. Analysis of the inverted U-shaped environmental Kuznets curve (EKC) relationship between
economic development and plastic pollution is crucial because economic growth is a critical driver
of plastic pollution. In this study, for the first time, we (i) used the stochastic impacts of regression
on population, affluence, and technology (STIRPAT) model to investigate the EKC relationship;
(ii) performed a comprehensive analysis of the effects of sociodemographic factors on plastic pol-
lution; and (iii) used a panel dataset of 128 countries for empirical analyses. The STIRPAT model
was used to conduct scenario analyses to explore the impacts of sociodemographic driving forces on
future plastic pollution by 2050 on a national (217 countries) and global scale. The empirical results
confirmed the EKC relationship and revealed that changes in population structure and urbanization
could substantially affect plastic pollution. Global plastic pollution was projected to reach 66.1 MT/y
by 2050 under the business-as-usual scenario. Low-income countries and sub-Saharan Africa are
projected to become major contributors to plastic pollution, leading to a global trend of increasing
plastic pollution. These findings will help policymakers identify targets to effectively reduce future
global plastic pollution.

Keywords: plastic pollution; environmental Kuznets curve; STIRPAT model; scenario analysis;
urbanization; population structure; economic development; pollution forecasting; sociodemographic

1. Introduction

Plastic pollution is a serious problem worldwide [1–3], and global plastic production
increased from 2 to 380 million metric tons between 1950 and 2015 [4] (all tons mentioned
hereinafter are metric tons, MT), representing a 190-fold increase. The increased use of
plastic products, shift to single-use plastics, and inappropriate disposal of plastic waste
have led to excessive accumulation of plastic litter in the natural environment (e.g., oceans
and waterways) and caused extensive environmental damage [1,3]. Plastic products can
take 20 to 500 years to decompose [5]. Persistent marine plastic pollution endangers human
health by damaging ecosystems and reducing biodiversity [1,6–9]. These detrimental effects
have attracted significant attention from the media, public, and government in terms of
initiatives and policymaking to reduce plastic waste generation [1,10]. Accordingly, we
focused on the factors driving plastic pollution and the extent of their impact.

Studies on plastic pollution drivers, including economic growth, make projections
of plastic pollution in the future. ENVLinkages and the Organisation for Economic Co-
operation and Development (OCED) have predicted global plastic pollution under two
policy scenarios—regional action and global ambition—using a multisectoral, multiregional,
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dynamic, and computable general equilibrium model [11]. Barnes [1] analyzed the impact
of economic development on mismanaged plastic waste using cross-sectional data from
151 countries in 2010 and found evidence regarding the environmental Kuznets curve
(EKC) relationship between income per capita and mismanaged plastic waste, with the
turning points ranging from USD 1931 to USD 2141 per capita (2010 prices). The author [1]
highlighted the role of technology in reducing plastic pollution. The EKC is based on the
hypothesis that there exists a relationship between economic growth and environmental
degradation [12]; it has been applied to diverse environmental issues such as CO2 emissions
and energy consumption. Chen et al. [13] applied a compositional Bayesian regression to
estimate waste generation by composition and treatment for every country as a function of
economic development. They observed that the growth rate of total waste decreased with
economic development, but there was no clear EKC pattern as countries became richer [13].
Cordier et al. [14] conducted a cross-sectional regression analysis of the socioeconomic
drivers of inadequately managed plastic waste. Their results supported the EKC hypothesis
for plastic pollution, with a high turning point of USD 18,601 per capita (2011 prices in
purchasing power parity, PPP) [14]. The authors [14] identified economic development,
corruption control policies, and education as major determinants of inadequately managed
plastic waste. Owing to the lack of consensus on the existence of the EKC relationship
and unstable turning points, further empirical studies employing different models and
datasets are needed to investigate the existence of the EKC relationship and guide effective
policymaking to reduce plastic pollution. The novelty of our study lies in that our model is
different from the models used in previous studies and was applied to analyze the latest
dataset to validate previous findings.

This study contributes to the literature in the following three ways. First, it is the
first to use the stochastic regression on population, affluence, and technology (STIRPAT)
model as a theoretical and analytical framework to investigate the EKC relationship be-
tween economic development and plastic pollution in a country. This model has been
widely used to reveal the effects of human activities on the environment and drivers of
environmental changes because of its high applicability [15–17]. However, to the best
of our knowledge, no previous study has used this model to investigate the emission of
plastic pollutants. Previous applications of STIRPAT included the analysis of carbon emis-
sions [18–20], ecological footprint [21,22], sulfur oxide emissions [23,24], and particulate
matter (PM)2.5 [25,26]. The model used in the current study incorporated the key features
of environmental changes induced by anthropogenic activities [15] and allowed for the
functional specification of relationships between drivers and environmental impacts [17,27].
Furthermore, our model facilitated the analysis of several sociodemographic variables
neglected by Barnes [1], Chen et al. [13], and Cordier et al. [14], which may have resulted
in the omission of variable biases.

Second, this study comprehensively clarified the effects of demographic changes on
plastic pollution, providing reliable information for policymaking and urban planning. The
world is experiencing an important demographic transition characterized by population
size, age composition, and rapid urbanization changes. This transition has been potentially
accelerated by the COVID-19 pandemic through a disruption in mortality, fertility, and
migration trends [28]. Thus, understanding the implications of demographic changes on
plastic pollution is necessary. Researchers have focused on the demographic changes that
contribute to environmental pollution in terms of population size, age, and density, as
well as urbanization level and patterns [19,29–33]. However, previous studies have mostly
over-simplified or fragmentarily treated the demographic changes, without providing a
multidimensional assessment of the effects of population on environmental pollution. Addi-
tionally, extant empirical studies have indicated that the relationship between demographic
changes and environmental pollution remains unclear [31]. Thus, further investigation is
required to clarify whether demographic factors are robustly linked to plastic pollution.

Finally, in this study, we used a previously unapplied panel model technique to
investigate the drivers of plastic pollution. This technique facilitates the simulation of
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dynamic changes in variables over time [34]. It enabled us to control unobserved country-
specific effects that were ignored in a single cross-sectional regression, which created an
omitted variable bias wherein the unobserved country-specific effects were correlated with
the included explanatory variables [34]. Such panel model techniques can be used for more
advanced research designs to obtain consistent estimates.

The main objectives of this study were to (i) empirically evaluate the EKC relationship
between economic development and plastic pollution using the STIRPAT model and a
panel dataset of 128 countries during 1993–2017, (ii) comprehensively analyze the effects of
sociodemographic factors on plastic pollution, and (iii) perform scenario analyses using
the optimal STIRPAT model to further clarify the influence of driving forces identified in
the model on plastic pollution by 2050 on a national and global scale. This study provides
comprehensive information about the sociodemographic changes affecting plastic pollution,
which can be used by policymakers and urban planning authorities to achieve sustainable
development on a national and global scale.

2. Materials and Methods
2.1. Empirical Model

This study hypothesized that there is an EKC relationship between economic devel-
opment and plastic pollution. The STIRPAT model, proposed by Dietz and Rosa [15],
was adopted as a theoretical and analytical framework to identify the factors affecting
plastic pollution. Although this model has been commonly used to study the impact of
anthropogenic activities on the environment [18], the present study is the first to apply it
to plastic pollution. STIRPAT is a stochastic form of the IPAT identity, which states that
environmental impacts (I) are the multiplicative product of three key drivers—population
(P), affluence (A), and technology (T). IPAT was developed in the early 1970s to investi-
gate the principal driving forces underlying anthropogenic environmental impacts [17,35].
The IPAT identity has been criticized for its simplicity and limitations. For example, it
cannot directly test the effect of each factor on environmental pollution [20]. Further-
more, it assumes that the elasticities of the environmental impact on the driving forces
are unitary [20], implying that environmental impact changes proportionately with the
changes in one factor when the other factors are constant [36]. Thus, the IPAT identity
does not allow for the assessment of non-monotonic effects of the driving forces, such as
an inverted U-shape, on the income–environment relationship. Unlike the IPAT identity,
the STIRPAT model is not an accounting equation and can be used to empirically test the
hypotheses for the contribution of each factor to the environment [17,36]. Furthermore,
the STIRPAT model accounts for the non-monotonic or non-proportional effects of driving
forces [17,35]. Therefore, it is a flexible model for alternative functions and can be extended
to meet various research needs [15,17,37]. Additional factors, encompassing comprehensive
demographic and economic information, can be added to the basic STIRPAT model if they
are conceptually appropriate for its multiplicative specification [17]. The basic form of the
STIRPAT model is as follows:

Iit = aPb
it Ac

itT
d
iteit (1)

The logarithmic form of this model is

lnIit = a + blnPit + clnAit + dlnTit + eit (2)

where I denotes the environmental impact; P, A, and T refer to the population, affluence,
and technology, respectively; b, c, and d are the parameters of P, A, and T, respectively, and
indicate the elasticities of each variable to the environmental impact; a is a constant term;
eit is the error term; and i and t represent the units of analysis and time, respectively.

The variables tested in this empirical study using the STIRPAT model (as shown in
Equation (2)) were selected based on previous studies and data availability. To test whether
an EKC was established for plastic pollution, the square term A was introduced into the
basic STIRPAT model in accordance with the studies by Ji et al. [24], Salim et al. [38],
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Shafiei and Salim [36], and Wang et al. [39]. Cordier et al. [14] also tested this term (GDP
per capita) in their non-STIRPAT-type econometric models on plastic pollution. Various
demographic variables, such as population age, population density, urbanization level,
and urbanization patterns, previously considered to affect environmental pollution, were
incorporated to comprehensively understand the effect of demographic changes on plastic
pollution [19,20,33,36,40,41]. As described by Shi [42], the T term was decomposed into the
proportions of the manufacturing and service sectors in the economy. Although no single
operational measure of T exists [17], the economic production structure and energy intensity
have been widely used in the literature as proxies for T [19,20,26]. However, Shi [42] noted
that differences in the economic structure of each country can explain the differences in
energy intensity. Therefore, energy intensity was not included in the estimation. Corruption
was included in the model to control omitted variable bias; Leitão [43] emphasized that the
existence of different income–pollution paths across countries depends on the degree of
corruption in the country. Based on the panel nature of the data in this study, the STIRPAT
model in our study can be expressed as follows:

lnPPit = β0 + β1lnGDPPCit + β2[lnGDPPCit]
2 + β3lnPOPit + ∑8

h=4 βhlnDFith+
β9lnMANit + β10lnSERit + β11lnCORit + εit

(3)

where PP represents plastic pollution; GDPPC is the gross domestic product (GDP) per
capita; POP denotes population size; DF represents the set of demographic factors, in-
cluding population age (AGE1564 and AGE65), population density (PDEN), urbanization
level (URB), and urban primacy (UPRI); MAN and SER denote the proportions of the
manufacturing and service sectors in the economy, respectively; COR is the control of
corruption; ε is the error term; i and t represent the units of analysis and time, respectively;
and β j (j = 1, 2, . . . , 11) is the coefficient to be estimated. The symbol “ln” denotes a
natural logarithm.

2.2. Data and Variables

Based on the availability of data for the variables considered in this study, an un-
balanced panel dataset of 128 countries from 1993 to 2017 was constructed. Detailed
definitions, units of measurement, and data sources for all the variables are provided in
Table 1.

Table 1. Definition of variables.

Variable Definition Unit of Measurement Data Source

Plastic pollution (PP)

Annual discard of plastic waste
inadequately managed; waste treatment

categories consist of waste dumped
openly, discarded in waterways and

marine areas, “unaccounted for” (waste
for which the treatment category is not

specified), and “others” (a treatment type
that does not fall into any of the
categories defined by the World

Bank [44])

Metric ton World Bank [44,45]

Gross domestic product (GDP)
per capita (GDPPC)

Gross domestic product: 2010 constant
price divided by midyear population USD World Development

Indicators (WDI)
Population size (POP) Midyear population Number WDI

Population age group 1
(AGE1564)

Percentage of population aged
14–64 years in the total population Percent WDI

Population age group 2
(AGE65)

Percentage of population aged 65 and
over in the total population Percent WDI

Population density (PDEN) Number of people residing per square
kilometer of land area

Number of
people/square kilometer WDI
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Table 1. Cont.

Variable Definition Unit of Measurement Data Source

Urbanization level (URB) Proportion of urban population in the
total population Percent WDI

Urban primacy (UPRI) Percentage of the largest city’s
population in the urban population Percent WDI

Manufacturing sector (MAN)
Value-added output of the

manufacturing sector (percentage
of GDP)

Percent WDI

Service sector (SER) Value-added output of the service sector
(percentage of GDP) Percent WDI

Control of corruption (COR) Perceptions of the extent to which public
power is exercised for private gain

Percentile rank, ranging
from 0 (corruption is not

controlled) to 100
(corruption is

well-controlled)

WDI

PP was measured using inadequately managed plastic waste; this was the annual
plastic waste generated under waste treatment categories such as waste dumped openly,
discarded in waterways and marine areas, unaccounted for, and others [44]. The World
Bank [44] assumed that waste in the “unaccounted for” category was dumped and that
waste in the “others” category was also dumped because it is inadequately managed in low-
and middle-income countries. The inadequately managed plastic waste was calculated
using data from the World Bank [44,45].

Affluence was represented by GDPPC at constant prices (USD in 2010). The population
level was measured using the POP. The population age was divided into the following two
variables: the percentage of the population aged 14–64 years (AGE1564) and ≥65 years
(AGE65) in the total population. The World Development Indicators (WDI) defined PDEN
as the number of people residing per square kilometer of land area [46]. The URB was
measured as the percentage of the population residing in urban areas, whereas the UPRI,
defined as the percentage of the urban population in the largest city, was used to de-
scribe urbanization patterns. The value-added MAN and SER, as percentages of the GDP,
were considered proxies for the contribution of the manufacturing and service sectors,
respectively, to the GDP. The corruption level of a country was measured by controlling
the corruption index. The Worldwide Governance Indicators defined corruption as the
perception of the extent to which public power is exercised for private gain, including
petty and grand forms of corruption, and “capture” of the state by elites and private
interests [46]. The statistical descriptions of the aforementioned variables are shown in
Table S1 in Supplementary S1.

Pearson’s correlation coefficient was used to detect potential multicollinearity among
independent variables. The results (Table S2 in Supplementary S1) showed that all absolute
correlation coefficients were well below 0.8 [47]. Variance inflation factor (VIF) tests were
performed to further check for multicollinearity; the results (Table S3 in Supplementary S1)
showed that the mean VIF was 2.59 and that the VIF values for all independent variables
were less than the empirical value of 10, suggesting that multicollinearity is unlikely to be a
major problem in the dataset [48].

2.3. Estimation Methods

Equation (3) was estimated using the pooled ordinary least squares (POLS), fixed
effects (FE), and random effects (RE) models, which are three commonly used panel data es-
timation techniques. Panel data are better than cross-sectional data because they have more
information, greater variability, less collinearity among variables, and higher efficiency [49].
The POLS model neglects unobserved country-specific effects and potentially leads to
inappropriate parameter estimates [50]; hence, it was used in the baseline and reference
cases. The FE model assumes that unobserved country-specific effects are constant over
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time, whereas the RE model assumes that unobserved country-specific effects are randomly
distributed [51].

Three robustness tests were conducted to choose the best empirical model: the F-test,
Breusch–Pagan Lagrange multiplier (LM) test, and Hausman test [49]. The F-test was
used to determine whether the POLS or FE models were appropriate. The FE model was
preferred when the F-test rejected the null hypothesis of no significant differences between
the individual intercepts at a specific significance level. An LM test was conducted to
compare the POLS and RE models. The RE model was selected when the LM test rejected
the null hypothesis of no random effects intercepted at a specific significance level. The
Hausman test was used to compare the FE and RE models. If the Hausman test rejects the
null hypothesis, it implies that the RE model provides consistent and efficient estimates at
a specific significance level and the FE model is then chosen. The statistical software Stata
15.0 (StataCorp LLC, USA) was used for the data analysis.

2.4. Model Selection for Scenario Analyses

The optimal model for the scenario analyses was selected based on out-of-sample
information criteria, including the root mean squared forecast error (RMSFE) and mean
absolute error (MAE) [49]. The measures of out-of-sample forecasting accuracy were used as
a model selection criterion because in-sample fitness criteria, such as Akaike’s information
criterion (AIC) and the Bayesian information criterion (BIC), are more suitable for in-sample
predictions as their calculations are based on the in-sample fitness of the regressions.

3. Results
3.1. Empirical Findings

Table 2 presents the empirical results of the RE model for the entire sample. The F-test
and LM test results indicated that the FE and RE models outperformed the POLS model.
Additionally, the Hausman test indicated that the RE model was superior to the FE model.
Considering a large panel of countries with different levels of development and income,
the heterogeneous impacts of population, affluence, and technology on environmental
pollution were further investigated across different development stages. This issue was
addressed by dividing the total sample into low- and high-income groups. Low- and
high-income countries had average per capita GDP lower and higher than the median
GDP per capita of the entire sample, respectively. Supplementary S2 lists the countries in
each group considered in this study. The POLS and RE estimation results for the low- and
high-income groups with their interpretations are shown in Tables S4 and S5, respectively
(Supplementary S1).

Table 2. Determinants of plastic pollution in the random effects (RE) regression (entire sample).

Variable
Model Specification

(1) RE (2) RE (3) RE (4) RE (5) RE (6) RE

lnGDPPC 6.508 ***
(1.398)

6.512 ***
(1.406)

5.755 ***
(1.551)

5.2 ***
(1.478)

7.73 ***
(1.523)

5.063 **
(1.983)

(lnGDPPC)2 −0.375 ***
(0.079)

−0.375 ***
(0.079)

−0.328 ***
(0.084)

−0.322 ***
(0.081)

−0.444 ***
(0.087)

−0.3 ***
(0.105)

lnPOP 0.948 ***
(0.104)

0.948 ***
(0.105)

0.945 ***
(0.098)

0.931 ***
(0.104)

1.15 ***
(0.186)

1.052 ***
(0.173)

lnPDEN 0.007
(0.131)

0.06
(0.149)

lnAGE1564 5.072 **
(2.224)

5.578 **
(2.458)

lnAGE65 −1.486 ***
(0.328)

−1.387 ***
(0.354)

lnURB 1.444 ***
(0.553)

0.824
(0.671)

lnUPRI 0.986 **
(0.425)

0.657 *
(0.392)
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Table 2. Cont.

Variable
Model Specification

(1) RE (2) RE (3) RE (4) RE (5) RE (6) RE

lnMAN −0.237
(0.316)

−0.238
(0.318)

0.283
(0.311)

−0.424
(0.321)

−0.252
(0.374)

−0.069
(0.379)

lnSER −0.114
(0.886)

−0.129
(0.94)

1.084
(0.882)

−0.252
(0.874)

−0.571
(1.031)

0.557
(1.093)

lnCOR −0.657 **
(0.288)

−0.657 **
(0.289)

−0.52 *
(0.272)

−0.581 **
(0.285)

−0.515 *
(0.29)

−0.41
(0.275)

Constant −28.58 ***
(6.818)

−28.56 ***
(6.845)

−50.33 ***
(8.48)

−26.04 ***
(6.811)

−39.03 ***
(8.307)

−53.65 ***
(9.994)

Turning point 5866 5902 6458 3213 6033 4619
Coefficient of determination

(R2) 0.5491 0.5493 0.6266 0.5637 0.4605 0.5657

Akaike’s information criterion
(AIC) 1.412 1.423 1.233 1.396 1.429 1.266

Bayesian information criterion
(BIC) 1.539 1.569 1.399 1.542 1.591 1.509

Mean absolute error (MAE) 1.343 1.344 1.262 1.339 1.309 1.201
Root mean squared forecast

error (RMSFE) 3.787 3.786 3.088 3.681 3.746 3.015

Observed 174 174 170 173 148 148

Test statistics:
F-test (POLS vs. FE) 4.89 *** 4.83 *** 3.88 *** 5.11 *** 5.19 *** 4.19 ***

LM test (POLS vs. RE) 45.28 *** 44.16 *** 40.25 *** 48.12 *** 43.95 *** 39.3 ***
Hausman test (FE vs. RE) 4.49 4.9 3.4 7.9 2.97 8.76

Note: Standard errors are in parentheses. *, **, and *** denote significance at the 10%, 5%, and 1% levels,
respectively. LM: Lagrange multiplier, POLS: pooled ordinary least squares, and FE: fixed effects.

The lnGDPPC coefficients were consistently significant, with a positive sign for income
and a negative sign for its square. This supports the EKC hypothesis, indicating an inverted
U-shaped relationship between income and plastic pollution. Several explanations exist for
the EKC hypothesis [52]; for example, environmental quality is a luxury good that becomes
a high-income priority [53,54]. The relative effects of scale, composition, and technique
over time have also contributed to the inverted U-shaped relationship between economic
development and environmental quality [55]. The displacement of pollution-intensive
industries from developed to developing economies also validates the EKC hypothesis [53].
Based on these coefficients, the estimated income turning point for the inverse U-curve
ranged from USD 3213 to USD 6458, and these estimates are higher than those reported
by Barnes [1] but lower than those reported by Cordier et al. [14]. However, these turning
points remained relatively stable across different model specifications.

The panel results (Table 2) suggested that lnPOP influenced plastic pollution, support-
ing the Malthusian view that population growth is crucial for environmental degradation.
The subsample results presented in Tables S4 and S5 suggest that the impact of population
size on plastic pollution varies across countries with different income levels and becomes
more pronounced in high-income countries.

Regarding other demographic factors, the coefficients of lnPDEN were not statistically
significant, suggesting a non-significant effect of densely populated areas on plastic pollu-
tion during the study period. These findings align with those of Dikareva and Simon [56],
who found no relationship between PDEN and microplastic abundance. lnAGE1564 and
lnAGE65 showed highly significant positive and negative effects, respectively. The age
structure of the population is considered important because the consumption patterns
of people vary according to their life stages [57]. The working-age population was more
involved in socioeconomic activities; therefore, their lifestyle is more plastic-intensive
than that of elderly people. The observed effects of the population age composition also
align with the results of previous studies, in which older people were more engaged in
pro-environmental behaviors than younger people [58,59].

The coefficients for lnURB were significantly positive for the low-income group
(Table S4) but were not uniformly significant for all the countries (Table 2) and the high-
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income group (Table S5). These results are consistent with the findings of previous studies
that urbanization may worsen environmental quality and support the argument of the
ecological modernization theory that societies prioritize economic development over envi-
ronmental quality at the initial development stages. Notably, the coefficient of lnURB for
high-income countries (2.58) was considerably higher than that for low-income countries
(0.61; Column 5 in Tables S4 and S5). This supports the observation of the urban environ-
mental transition theory that the consumption patterns and lifestyles of cities in developed
countries are more resource-intensive than those of cities in developing countries [20].
Additionally, lnUPRI positively affected both the entire sample and low-income countries
but not high-income countries. A potential reason for this positive effect is that high pri-
macy typically indicates over-concentration and inefficient urbanization and may cause
substantial urban environmental issues when adequate urban infrastructure support is
lacking, particularly in developing countries [33].

The economic structure variables were not statistically significant for the entire sample
or the two subsamples. Plastic-intensive inputs are widely used in various manufactur-
ing industries and can aggravate plastic pollution. However, the lnMAN coefficient was
negative for certain specifications. These results do not support the generally accepted
perspective of the eco-friendly service sector. In fact, the service sector is a broad cate-
gory that includes activities that have a weak environmental impact (e.g., banking and
consulting) and those that generate a large amount of plastic waste (e.g., catering and
tourism). Therefore, these two opposing forces may have an insignificant impact on the
lnSER coefficient. Another reason for this is the following limitation of our study: the data
from the global database of the World Bank (2012, 2018) [44,45] used to design the models
in this study only include quantitative information on municipal solid waste generated
by households. Thus, the designed models did not include the plastic waste generated by
manufacturers or the service sector.

Finally, lnCOR emerged as a negative and statistically significant determinant of plas-
tic pollution in most of the specifications for the entire sample of countries (Table 2) and
the high-income group (Table S5). These findings are consistent with the theoretical and
empirical evidence and are supported by Leitão [43] and Cordier et al. [12]. These findings
confirm that high levels of corruption may delay governmental intervention in environ-
mental quality issues and prevent the implementation of environmental regulations [43,54].

3.2. Scenario Analyses: Projections of Plastic Pollution

Scenario analyses were conducted to project plastic pollution based on the model
specification denoted as “(6) RE” in Table 2. Specifications were chosen according to the
optimal regression model for the projections based on the out-of-sample information criteria.
As presented in Table 2, both MAE and RMSFE showed that the model specifications were
optimal in terms of out-of-sample fitness because the two error values in the chosen
model specification outperformed their corresponding values in the other regressions. The
projection period in this study was from 2022 to 2050.

3.2.1. Scenario Description

Scenario analyses were conducted to clarify the manner through which the driving
forces identified in the model selection could influence future plastic pollution [60]. Al-
though scenario analysis has been used in studies to project future trends in global plastic
pollution based on various factors, such as economic growth, plastic use, and waste man-
agement [3,6,7,14,61–66], our study selected the set of factors based on the model. Notably,
these analyses did not intend to estimate future projections owing to the high uncertainties,
and they do not provide predictions or forecasts [67]. The following five scenarios were
established to investigate the changes in plastic pollution under different scenarios:

• Business-as-usual (BAU) scenario: All explanatory variables increase with the same
linear trend from 1996 to 2021 if their projections are unavailable. Furthermore, for
countries where the explanatory variable values exceed a reasonable range and were
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considered outliers, an exponential trend or a limit is applied to obtain reasonable
projections based on the consensus of authors. The same rule is applied to the other
variables in all scenarios;

• Scenario A (slow GDP): GDP per capita grows at half the average annual rate of the
BAU scenario for 2022–2050;

• Scenario B (change in population structure): The 15–64 age group grows twice as
quickly compared to the average annual rate of the BAU scenario for 2022–2050;

• Scenario C (high-speed urbanization): The percentage of the population residing in
urban areas doubles compared to the average annual rate of the BAU scenario for
2022–2050;

• Scenario D (high-speed urban primacy): The percentage of the urban population
residing in the largest city of the country doubles compared to the average annual rate
of the BAU scenario for 2022–2050.

The impact of changes in population structure, urbanization, and urban primacy
had not been studied in the scenario analysis of global plastic pollution. These scenar-
ios analyzed the differences based on GDP, population structure, URB, and UPRI. They
demonstrated the sensitivity of the projections to the changes in assumptions. For Scenarios
A–D, except for the specific variables mentioned (e.g., GDP per capita), all other variables
changed according to the BAU scenario. In scenario analyses, the data recently updated by
the World Bank were used rather than those used in model estimates. Although some data
used for model estimation and scenarios were not identical, all the results presented in this
study are replicable and verifiable.

3.2.2. Projections

Figures 1 and 2 show the key projections of the annual plastic pollutant emissions.
Figure 1 shows the global population and groups by income level. The income level is
crucial in this model because it determines the EKC relationship. Figure 2 includes large
economies, the largest polluters, and regions, providing further implications for global
plastic pollution.

Global Scale

The BAU scenario estimated that the global annual emissions of plastic pollution
reached 50.5 MT/y in 2023 and would reach 66.1 MT/y by 2050 (Figure 1a). Plastic
pollution may continue to increase from 2022 to 2050 but more slowly than that from
1996 to 2015. This result is consistent with those obtained using other global models
published recently with low estimates [3,11,14,63]. Cordier et al. [14] and Lau et al. [3]
estimated the BAU scenario to produce plastic pollution between 61.2 and 110.2 MT/y by
2050 and 71.9 and 147.6 MT/y by 2040 (no simulation had been performed beyond 2040),
respectively; however, our projection was 62.8 MT/y by 2040. According to Lebreton and
Andrady [63], the low, mid, and high estimates of plastic pollution by 2050 were 137.3,
187.1, and 226.2 MT/y, respectively. An OECD study projected plastic pollution to be
131.9 MT/y by 2050 [11].

Some differences existed between previous approaches, and these led to different
projections. For example, Cordier et al. [14] adopted econometric models, including the
EKC relationship, as in this study; however, they were built on a cross-sectional dataset
rather than on a panel dataset. The current model can be considered reliable because it
accounted for evolution over time. Cordier et al. [14] applied each model to a set of three
statistical equations that were multiplied to estimate the inadequately managed plastic
waste but did not consider the interactions between the explanatory variables from those
three equations. Furthermore, they focused on corruption and lack of education, whereas
these models were built on the STIRPAT framework, which is more comprehensive. The
study by Lau et al. [3] differs from the current study in the following ways. First, they
designed their model based on municipal solid waste data for each country provided by the
World Bank (2018) [44]; however, the World Bank (2012) [45] database was included in the
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design of the STIRPAT model in our study to enrich the dataset and apply it to a panel data
model. Second, they assumed that per capita waste generation increased with per capita
income and stabilized at 120 kg/y at a per capita income level of USD 40,000; however, our
model included the EKC relationship. Third, the factors were comprehensively included in
our study based on the STIRPAT framework, which was lacking in the study by Lau et al. [3].
Fourth, they included primary microplastic emissions in their estimations, whereas only
macroplastics emissions were included in the current study. Finally, similar to Lebreton and
Andrady [63], the authors [3] included individual littering (plastic waste directly dumped
into waterways and coastal waters by residents), unlike our study, and this may have
led us to the underestimation of plastic pollution. Although Lebreton and Andrady [63]
used factors that are similar to those in this STIRPAT model (GDP per capita, population
size, and urban vs. rural areas), they used a different database to design their model [68].
Furthermore, rather than applying the EKC relationship using the squared term of GDPPC,
as in this model, Lebreton and Andrady [63] included a negative correlation between
GDPPC and the fraction of unsound disposal.
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These scenarios produced unexpected projections. Scenarios B and C projected more
plastic pollution in 2050 (131.5 MT and 88.1 MT, respectively) than BAU; however, Scenarios
A and D projected less plastic pollution (65.3 MT and 60.7 MT, respectively) than BAU.
A high pollution level was expected, but a low level was not, owing to the signs of the
coefficients in the model (model specification (6) RE in Table 2). The impact of slow GDP
per capita growth (Scenario A) was subtle compared to that of the BAU scenario. Although
Scenario D was expected to lead to more plastic pollution, it was less than that of BAU.
This is because each country was influenced by the scenarios to different degrees and
even in opposite directions. Therefore, the total global value (that is, an aggregate of the
plastic pollution from heterogeneous countries) could be more or less than that in the BAU,
depending on the heterogeneities. This necessitates an investigation of heterogeneity by
country and certain groups, such as income groups, to elucidate policy implications.

Income Level

Global trends in plastic pollution can be explained by heterogeneities in income level.
These trends varied by income level and followed the EKC relationship (Figure 1b–e). Low-
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income countries experienced increased plastic pollution under any scenario (Figure 1b).
Lower-middle-income countries showed mixed projections, with a decline in some coun-
tries under all scenarios but continued to increase under Scenario B (Figure 1c). Upper-
middle- and high-income countries have already started reducing plastic pollution around
2010–2015 (Figure 1d,e). However, the reduction in these countries is outweighed by the
increase in plastic pollution from low- and lower-middle-income countries. Scenario B
exhibited the most extreme differences, resulting in a significant global increase in plastic
pollution. In high- and upper-middle-income countries, a decrease in the 15–64 age group
reduced plastic pollution. In contrast, in low- and lower-middle-income countries, an
increase in the same age group results in increased plastic pollution. Globally, the plastic
pollution in developing countries outweighs the decrease in developed countries, and this
will lead to a sharp increase in plastic pollution by 2050.

Key Countries

The identification of the key polluting countries provided further insights into the level
of plastic pollution. Figure 2 highlights three large economies (the European Union [EU],
the United States of America [USA], and China); the top five polluters as of 2021 (China,
India, Bangladesh, Egypt, and Nigeria); and one subcontinent (sub-Saharan Africa). The
top five polluters accounted for 30% of the total plastic pollution. Although the three large
economies differed in their past trends, all were projected to significantly reduce plastic
pollutant emissions and approach zero. EU countries have reduced plastic pollution since a
quarter of a century ago, whereas the USA began to reduce plastic pollution approximately
15 years ago. China, which was a major polluter as of 2021, has started to reduce plastic
pollution along with the USA. These differ from the projection by the OECD [11] that
a decline in the proportion of mismanaged plastic waste and an increase in its absolute
amount will occur by 2050. The other largest polluters, except for Nigeria, are expected to
decrease their pollution levels before 2050. However, the reduction was below the level
reached by Egypt in 2021 under Scenario A. Notably, the order of the scenarios of the
countries for pollution in 2050 varied even when the countries followed a similar pattern of
reaching a peak in the future (as projected by the EKC relationship). For example, regarding
2050 pollution levels, Scenario C was the worst for India and Bangladesh, whereas Scenario
A was the worst for Egypt. This difference suggests that factors other than the EKC
relationship influence the pollution dynamics. Overall, pollution will continue to increase
in Nigeria, the fifth-largest polluter as of 2021. In particular, pollution in Nigeria could
increase from 2.10 MT in 2021 to 12.69 MT in 2050 under Scenario B because of the rapid
growth of the 15–64 age group. Nigeria is on the sub-Saharan continent (Figure 2h), with
similar or more aggravating patterns (i.e., monotonically increasing pollution under any
scenario). It is the only subcontinent that showed monotonic increases in the future under
any scenario (figures by subcontinent can be created using the PivotTable provided in
the Supplementary Materials). Therefore, the sub-Saharan continent is a major region
contributing to the future increase in global plastic pollution.

4. Discussion

The scenario analyses of the STIRPAT model applied in this study revealed the impact
of socioeconomic driving forces on future projections of plastic pollution on a national and
global scale. This facilitated the identification of the target locations and factors for the
effective prevention of future plastic pollution. Consequently, four policy implications were
proposed. First, low- and lower-middle-income countries, particularly sub-Saharan Africa,
must be targeted because, following the EKC relationship, they may become the main
contributors to plastic pollution, accounting for 66.8% of the world total under BAU by 2050.
Plastic pollutants emitted by high-income countries will be nearly zero in any scenario
by 2050. Accordingly, these countries can achieve the Osaka Blue Ocean Vision shared in
the G20 Summit, which aims to achieve zero additional plastic waste emissions into the
ocean by 2050 [69]. However, this does not imply that high-income countries should not
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prevent plastic pollution, because the target value of zero indicates the emission flow per
year and not the total stock of plastic pollution that accumulates in the environment [70],
and flow is determined by the speed of accumulation. A previous study reported that the
weight of marine plastic waste will exceed that of fish by 2050 [71]. Therefore, all countries,
including high-income countries, should make more urgent efforts to remove plastics from
their environment before they degrade into microplastics, which are even more difficult to
remove. Furthermore, this model did not consider the impact of the plastic waste trade,
mostly from higher- to lower-income countries [72,73], and only exporters are expected
to manage plastic waste; thus, further studies on this aspect will provide more accurate
projections of plastic pollution (e.g., OECD [11]).

Second, Scenario B (change in population structure) was expected to result in more
plastic pollution than BAU, because of the importance of targeting the increasing working-
age population (15–64 age group), especially in low-income, lower-middle-income, and
sub-Saharan countries (Figures 1b,c and 2h). Policymakers should formulate appropriate
policies to change the behavior of these polluting countries. A combination of regulatory,
market-based, and behavioral instruments may be required to induce suitable behavioral
changes [74]. Regulation of the consumer market with, for example, bans on single-use plas-
tic products is a powerful tool in many countries [74,75]. The recent literature emphasized
that behavioral instruments should complement regulatory policies and market-based
measures to produce long-lasting effects on pollutant-emitting behavior [74,76]. There-
fore, government interventions should involve milder informative instruments, such as
awareness campaigns, education programs, and recommended guidelines. Nonetheless,
the effectiveness of these measures may be context-dependent, and effective measures in
one region may not be the same in another [77,78]. For example, measures commonly
used in Europe may not work for the targeted low-income, lower-to-middle-income, and
sub-Saharan countries. Informative measures used in Europe [79] may not be effective in
the targeted countries owing to the pre-existing interest of people in environmental issues
and their willingness to engage in pro-environmental behaviors [80]. As suggested by the
EKC relationship, the interest of people in environmental issues in such countries may be
limited. Although the main targets are low- and lower-middle-income countries, high-
income countries may play a crucial role in technological transfer [81]. The mobilization
of large-scale monumental innovations can play a significant role in achieving a circular
economy with sustainable plastic use [63]. In other words, innovations and their transfer
to low- and lower-middle-income countries could help maintain steady economic growth
and minimize plastic pollution.

Third, Scenario C (rapid urbanization) could reduce future increases in plastic pol-
lution, especially in low-income and sub-Saharan countries (Figures 1b,c and 2h). The
inextricable link between urbanization and plastic waste management increases the ur-
gency to develop effective policy responses to address this challenge [82]. That is, urban
planners should integrate plastic waste management into urban development strategies
by following circular economic principles. A circular economic approach aims to reduce
the use of raw materials, reuse already processed materials, and recycle waste [83]. As
part of a circular economy, plastic waste management requires highly integrated perspec-
tives throughout the life cycle of plastics, from production to consumption to waste and
pollution [84]. Urban spatial planning facilitates circular action by relocating the produc-
ers and consumers of plastic waste to urban areas. Accordingly, infrastructure delivery
is crucial for the socioecological transformation of urban systems [85–87]. For instance,
China has strongly promoted the construction of a new type of urbanization that requires
layout optimization of urban spatial structures [88]. As previously discussed for Scenario B,
high-income countries could play a significant role in helping low-income and sub-Saharan
countries tackle urbanization.

Finally, although the estimations could reveal whether the pollution level in a country
is increasing or declining in accordance with the EKC relationship, policymakers should
not adopt a passive attitude toward plastic pollution control. Therefore, policymakers must
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design sustainable, growth-oriented policies and strategies to reduce plastic pollution. As
previously discussed, the stoppage of annual plastic pollution does not imply the removal
of accumulated plastics since the 1950s.

5. Conclusions

This study developed a STIRPAT model to conduct scenario analyses and investigate
the impacts of sociodemographic driving forces on future plastic pollution by 2050 on
a national (217 countries) and global scale. The empirical findings confirmed the EKC
relationship and demonstrated that population structure and urbanization changes could
substantially affect plastic pollution. Scenario analyses identified the heterogeneity of
impacts according to country, income, and subcontinent levels. For example, high-income
and upper-middle-income countries will significantly reduce plastic pollution, whereas
low-income countries and sub-Saharan Africa are projected to become major contributors
to plastic pollution, leading to a global trend of increasing plastic pollution. Therefore,
understanding these heterogeneities will help policymakers identify targets to effectively
reduce future global plastic pollution.

This study has some limitations and recommendations for policymakers and future
research. First, data availability was a major limitation of the model; therefore, future
research should include additional data panels to provide more reliable estimates. Second,
the findings serve as a basis for advancing our knowledge on the impacts of urbanization;
thus, future investigations should include rural–urban migration, mixed land use, and
monocentric/polycentric urban forms to reveal more detailed information on the effects
of urbanization on plastic pollution. Third, future studies should explore the spillover
effects of plastic regulation policies in developing countries. For example, China imposed
a ban on the import of plastic waste in 2017, leading to a change in the structure of the
international plastic waste trade, thereby making an additional impact on the distribution
of plastic waste pollution [63]. Fourth, this study did not intend to identify an absolute law
but shed more light on the EKC relationship using the STIRPAT model. Therefore, further
studies that consider more factors and involve collaborative effort among stakeholders
are needed. Finally, utilizing recently developed spatiotemporal data to trace plastic
footprints can further refine the policy implications proposed by this study. For example,
the National Aeronautics and Space Administration (NASA) developed a system that can
spatiotemporally detect marine microplastic concentrations [89].
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