Denominator vectors and dimension vectors from triangulated surfaces - Université de Versailles Saint-Quentin-en-Yvelines
Article Dans Une Revue Journal of Algebra Année : 2024

Denominator vectors and dimension vectors from triangulated surfaces

Résumé

In a categorification of skew-symmetric cluster algebras, each cluster variable corresponds with an indecomposable module over the associated Jacobian algebra. Buan, Marsh and Reiten studied when the denominator vector of each cluster variable in an acyclic cluster algebra coincides with the dimension vector of the corresponding module. In this paper, we give analogues of their results for cluster algebras from triangulated surfaces by comparing two kinds of intersection numbers of tagged arcs.
Fichier principal
Vignette du fichier
2305.08097v2.pdf (328.05 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04439601 , version 1 (30-05-2024)

Identifiants

Citer

Toshiya Yurikusa. Denominator vectors and dimension vectors from triangulated surfaces. Journal of Algebra, 2024, 641, pp.620-647. ⟨10.1016/j.jalgebra.2023.12.002⟩. ⟨hal-04439601⟩
67 Consultations
14 Téléchargements

Partager

More