Denominator vectors and dimension vectors from triangulated surfaces - Université de Versailles Saint-Quentin-en-Yvelines
Journal Articles Journal of Algebra Year : 2024

Denominator vectors and dimension vectors from triangulated surfaces

Abstract

In a categorification of skew-symmetric cluster algebras, each cluster variable corresponds with an indecomposable module over the associated Jacobian algebra. Buan, Marsh and Reiten studied when the denominator vector of each cluster variable in an acyclic cluster algebra coincides with the dimension vector of the corresponding module. In this paper, we give analogues of their results for cluster algebras from triangulated surfaces by comparing two kinds of intersection numbers of tagged arcs.
Fichier principal
Vignette du fichier
2305.08097v2.pdf (328.05 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-04439601 , version 1 (30-05-2024)

Identifiers

Cite

Toshiya Yurikusa. Denominator vectors and dimension vectors from triangulated surfaces. Journal of Algebra, 2024, 641, pp.620-647. ⟨10.1016/j.jalgebra.2023.12.002⟩. ⟨hal-04439601⟩
55 View
11 Download

Altmetric

Share

More