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In this article, we construct explicit meromorphic solutions of first order linear 
q-difference equations in the complex domain and we describe the location of 
all their zeros and poles. The homogeneous case leans on the study of four 
fundamental equations, providing the previous informations in the framework of 
entire or meromorphic coefficients. The inhomogeneous situation, which stems from 
the homogeneous one and two fundamental equations, is also described in detail. We 
also address the case of higher-order linear q-difference equations, using a classical 
factorization argument. All these results are illustrated by several examples.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY-NC-ND license (http://

creativecommons .org /licenses /by -nc -nd /4 .0/).

1. Introduction

The study of q-difference equations in the complex domain has experienced great interest in recent 
decades not only due to its inherent interest and numerous applications, but also motivated by and leaning 
on different previous theories.

On the one hand, one can point out different works based on Nevanlinna value distribution theory treating 
meromorphic solutions to q-difference equations. In [25] (see also its references) certain properties of the 
image of q-difference operators acting meromorphic functions guarantee injectivity of the operator. In [26], 
estimates on the growth of the solutions to nonlinear q-difference equations are provided. Other recent 
advances based on Nevanlinna theory are [4,11,21].

On the other hand, the study of solutions to (systems of) ordinary differential equations in the complex 
domain has also been considered in the q-analog framework. We only give some examples of trends and 
topics under study in this direction. This is the case of q-Gevrey asymptotic expansions and summability 
(see [13,14,20,23] among many others), Newton polygon techniques (see the recent work [2] and the references 
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therein), summability techniques and tools such as q-analogs of Laplace transform to be applied in a Borel-
Laplace methodology for providing analytic solutions to q-difference equations from formal ones [18], or 
the asymptotic study of q-difference-differential equations (see [6,7,19,22] among others, and the references 
therein) have also been achieved. We also refer to the work [3] where the author describes a procedure to 
provide meromorphic solutions to linear q-difference equations with rational coefficients of any positive order 
by means of q-analogs of Borel and Laplace transformations. Note that in [10], the existence of meromorphic 
solutions of general linear q-difference equations with meromorphic coefficients in C∗ is proved via theoretical 
tools.

In the present work, we focus on the latter and we propose to build explicit solutions for them.
First, we consider the case of first-order equations of the form

y(qx) = g(x)y(x) + r(x), (1.1)

where g(x) and r(x) are two meromorphic functions on C∗ (Section 2). We start by determining explicit 
meromorphic solutions of six fundamental equations (Eqs. (2.1)-(2.6), Section 2.1). This allows, by means 
of the Weierstrass Factorization Theorem and the Birkhoff Decomposition, to provide explicit meromorphic 
solutions of Eq. (1.1) in the homogeneous case, that is when r(x) ≡ 0 (Theorem 2.6 and Corollaries 2.9
and 2.11, Section 2.2). In particular, we prove that the location of the zeros and poles of such solutions is 
depending on their distance at the origin. The inhomogeneous case is treated in Section 2.3 by means of a 
convenient change of variable and a Laurent-type series decomposition.

In Section 3, we conclude with some words on the consideration of linear q-difference equations of higher 
order, where the factorization known in the literature (see for instance [1,8,17]) allows to attain positive 
results. A complete study of such equations is left for a future research.

Some illustrative examples are also provided.

Notation 1.1. All along this work, we consider a nonzero complex number q ∈ C∗ with |q| > 1, and we use 
the following notations:

• N (resp. N∗) the set of all the nonnegative (resp. positive) integers;
• Z (resp. Z∗) the set of all the integers (resp. nonzero integers);
• C (resp. C∗) the set of all the complex (resp. nonzero complex) numbers;
• O(C) the set of all the entire functions;
• M(C) (resp. M(C∗)) the set of all the meromorphic functions on C (resp. C∗);
• qZ the discrete q-spiral {qn; n ∈ Z};
• qN (resp. qN∗ , q−N , q−N∗) the discrete q-half-spiral {qn; n ∈ N} (resp. N∗, −N, −N∗);
• Zg (resp. Z∗

g ) the set of all the zeros (resp. nonzero zeros) of a meromorphic function g;
• Z∗

g,�ρ (resp. Z∗
g,>ρ) with ρ > 0 the set, possibly empty, of all the zeros a ∈ Z∗

g such that |a| � ρ (resp. 
|a| > ρ);

• Pg (resp. P∗
g ) the set of all the poles (resp. nonzero poles) of a meromorphic function g;

• P∗
g,�ρ (resp. P∗

g,>ρ) with ρ > 0 the set, possibly empty, of all the poles a ∈ P∗
g such that |a| � ρ (resp. 

|a| > ρ);
• Pg,a(x), with a ∈ Pg, the principal part of g at a, that is the polynomial in 1/(x − a) without constant 

term such that g(x) − Pg,a(x) has a removable singularity at a;
• μg,a the order of multiplicity of a ∈ Z∗

g ∪ P∗
g .
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2. Linear q-difference equations of order 1

2.1. Six fundamental equations

In this section, we are interested in the following six equations

y(qx) = xy(x) (2.1)

y(qx) = ay(x) with a ∈ C∗ (2.2)

y(qx) =
(
1 − x

a

)
y(x) with a ∈ C∗ (2.3)

y(qx) = eh(x)y(x) with h(x) ∈ O(C), h(0) = 0 (2.4)

y(qx) = y(x) + α with α ∈ C∗ (2.5)

y(qx) = y(x) + r(x) with r(x) ∈ M(C) analytic at 0 and r(0) = 0 (2.6)

For each of them, we make explicit one meromorphic solution on C∗ and we describe the set of all its poles. 
For the first four equations, we also describe the set of all its zeros.

Before stating our various results (see Propositions 2.2, 2.3 and 2.4), let us start by proving the following 
technical lemma.

Lemma 2.1. Let 
∑
n�1

anx
n be a convergent power series with radius of convergence 0 < R � +∞. Then, the 

power series ∑
n�1

an
qn − 1x

n

is convergent and its radius of convergence R′ is given by R′ = |q|R.

Proof. Lemma 2.1 is a direct consequence of the Cauchy-Hadamard Theorem and operations on the limits 
superior. Indeed, we have

lim
n→+∞

|an|1/n = 1
R

and lim
n→+∞

|qn − 1|1/n = |q|;

hence, lim
n→+∞

∣∣∣∣ an
qn − 1

∣∣∣∣1/n = 1
|q|R . �

Let us now denote by Θq the Jacobi q-theta function (see [12]):

Θq(x) =
∑
n∈Z

(−1)nq−
n(n−1)

2 xn.

This function is holomorphic on C∗ and satisfies the Jacobi Triple Product Formula [5]:

Θq(x) =
∏
k�0

(1 − pk+1)(1 − xpk)(1 − x−1pk+1) with p = q−1.

In particular, its zeros are simple and located at the elements of qZ. Moreover, it satisfies the functional 
relation
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Θq(qx) = −qxΘq(x).

From these various classical properties, one can easily derive the following result.

Proposition 2.2 ([16]).

(1) Equation (2.1) admits the function

Θ2
q(x)

qxΘq(−x)

as solution. It is meromorphic on C∗. Its zeros are double and are located at the elements of qZ; its 
poles are simple and are located at the elements of −qZ.

(2) Equation (2.2) admits the function

Θq(x)
Θq(a−1x)

as solution. It is constant equal to 1 if a = 1 and meromorphic on C∗ otherwise. In the latter case, its 
zeros and poles are simple and are respectively located at the elements of qZ and aqZ.

In the case of Eqs. (2.3) and (2.4), the situation is much more simpler since the origin x = 0 is no longer 
a singular point. In particular, we can make explicit entire solutions as shown in the following.

Proposition 2.3.

(1) Equation (2.3) admits the function

fa(x) =
∑
n�0

1
(q; q)n

(x
a

)n

with

(q; q)0 = 1 and (q; q)n =
n∏

k=1

(1 − qk)

as solution. It is entire on C. Its zeros are simple and located at the elements of aqN∗ . Moreover, 
fa(x) = f1

(x
a

)
.

(2) Equation (2.4) with h(x) =
∑
n�1

hnx
n admits the function

eGh(x) with Gh(x) =
∑
n�1

hn

qn − 1x
n

as solution. It is entire on C and has no zero.

Proof. (1) Looking for the solution fa in the form 
∑
n�0

anx
n with a0 = 1, we get the recurrence relation

(qn − 1)an = −1
an−1;
a
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hence, the identity an = 1/((q; q)nan) for all n � 1.
The function fa defines obviously an entire function on C and, from the functional equation

fa(qx) =
(
1 − x

a

)
fa(x), (2.7)

it is clear that all the elements of aqN∗ are zeros of fa. To prove that fa has no other zero, it is sufficient 
to observe that if b /∈ aqN

∗ is a zero of fa, then the identity

fa(x) =
(

1 − q−1x

a

)
...

(
1 − q−nx

a

)
fa(q−nx),

implies that all the elements bq−n for n � 0 are also zeros of fa, which is impossible. Indeed, the sequence 
(bq−n)n�0 being convergent to 0, this would imply fa(0) = 0, that is 1 = 0.

We are left to prove that the zeros aqn for n � 1 are simple. Deriving relation (2.7) with respect to x, 
we get

qf ′
a(qx) = −1

a
fa(x) +

(
1 − x

a

)
f ′
a(x);

hence, the identities ⎧⎨⎩qf ′
a(aq) = −1

a
fa(a)

qf ′
a(aqn+1) = (1 − qn)f ′

a(aqn) for all n � 1
.

Since fa(a) �= 0, we conclude by recursion on n that f ′
a(aqn) �= 0 for all n � 1, which ends the proof of the 

first point.

(2) By calculation, we easily check that Gh(qx) = h(x) +Gh(x) and, consequently, that eGh(x) is a solution 
of Eq. (2.4). We conclude by observing that Lemma 2.1 implies that Gh defines an entire function on C. �

For the last two equations (2.5) and (2.6), the situation is more complicated. Indeed, if we can always 
display a meromorphic solution on C∗, we cannot have a priori only information on its poles.

Proposition 2.4.

(1) Equation (2.5) admits the function

αx
Θ′

q(x)
Θq(x)

as solution. It is meromorphic on C∗ and its poles are simple and located at the elements of qZ.
(2) Equation (2.6) admits the function

∑
n�1

r(pnx) with p = q−1

as solution. It is meromorphic on C. Its poles are located at the elements of aqN∗ with order μr,a for 
any a ∈ Pr. In particular, it is analytic in a neighborhood of the origin and vanishes at 0.
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Proof. (1) The first point is straightforward from the two functional relations Θq(qx) = −qxΘq(x) and 
qΘ′

q(qx) = −qΘq(x) − qxΘ′
q(x).

(2) To prove the second point, let us first observe that, for all n � 1, the poles of x �−→ r(pnx) are the aqn’s 
for any pole a ∈ Pr of r. Consequently, setting P =

⋃
a∈Pr

aqN
∗ , it is clear that if x /∈ P, then pnx /∈ P for 

all n � 1. Observe also that the sequence (pnx)n�1 tends to 0 for any x ∈ C since |p| < 1.
The function r being analytic in a neighborhood of the origin and satisfying r(0) = 0, there exists a 

positive constant C > 0 such that |r(x)| � C |x| for all |x| < ε with a convenient small enough ε > 0. From 
this, it follows that the series is normally convergent on all the compact sets of C\P (indeed, if K is such 
a compact set, then there exist N � 1 and MK > 0 such that |r(pnx)| � C |pnx| � CMK |p|n for all x ∈ K

and all n � N). The series defines then a meromorphic function on C with poles in P, and we can easily 
check by a direct calculation that it is indeed a solution of Eq. (2.6). Moreover, the order of each of its poles 
is clearly the one appearing in the statement of Proposition 2.4, (2). �
2.2. The homogeneous case

In this section, we consider a general homogeneous linear q-difference equation of the form y(qx) =
g(x)y(x) with g(x) ∈ M(C∗). The case g ≡ 0 being trivial (the null function is obviously a solution), we 
assume in the sequel g �≡ 0.

Since a meromorphic function on C∗ is the quotient of two holomorphic functions on C∗ and since 
the Birkhoff Decomposition tells us that any holomorphic function on C∗ can be written as a product 
h0(x)h∞(1/x) with two convenient entire functions h0(x), h∞(x) ∈ O(C) (see Proposition 2.10 below for 
more details), the study of this equation is essentially reduced to the case where g(x) ∈ O(C)\{0}. For such 
an equation, Theorem 2.6 below provides an explicit meromorphic solution and describes the set of all its 
zeros and poles.

Before stating it, let us start by recalling a classical result on homogeneous linear q-difference equations 
which will be very useful to us.

Lemma 2.5. Let g1(x), g2(x) ∈ M(C∗) be two meromorphic functions on C∗ and H1(x), H2(x) ∈ M(C∗)
two meromorphic functions on C∗ satisfying the relation

H1(qx) = g1(x)H1(x) and H2(qx) = g2(x)H2(x).

Then,

(1) the function H(x) = H1(x)H2(x) ∈ M(C∗) is a meromorphic solution on C∗ of the q-difference equation 
y(qx) = M(x)y(x) with M(x) = g1(x)g2(x).

(2) the function H̃(x) = H1(x)/H2(x) ∈ M(C∗) is a meromorphic solution on C∗ of the q-difference 
equation y(qx) = M̃(x)y(x) with M̃(x) = g1(x)/g2(x).

Proof. By calculations, we have

H(qx) = H1(qx)H2(qx) = g1(x)H1(x)g2(x)H2(x) = M(x)H(x);

hence, the first point. The second point is proved in a similar way and is left to the reader. �
We are now able to state the main result of this section.
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Table 1
Localization of zeros and poles in the holomorphic case on C.

zeros located at the elements 
of...

poles located at the elements 
of...

α = 1 • qZ with order 2μh,0

• aqN
∗

with order μh,a for any 
a ∈ Z∗

h

• −qZ with order μh,0

α �= 1 • qZ with order 2μh,0 + 1
• aqN

∗
with order μh,a for any 

a ∈ Z∗
h

• −qZ with order μh,0

• αqZ with order 1

Theorem 2.6. The equation

y(qx) = h(x)y(x) with h(x) ∈ O(C)\{0} (2.8)

admits an entire solution if h(0) = 1, and a meromorphic solution on C∗ otherwise. Moreover, denoting by 
μh,0 ∈ N the order of 0 as zero of h and setting α = x−μh,0h(x)|x=0, the zeros and poles of this solution are 
as stated in Table 1.
An explicit writing of such a solution is also given in the constructive proof below.

Observe that α = h(0) if and only if μh,0 = 0. Observe also that, in the case α = −1, the poles of the 
solution are of order μh,0 + 1.

Proof. The proof is based on the Weierstrass Factorization Theorem. Recall that, since h �≡ 0, the Isolated 
Zeros Principle implies that the set Zh of all the zeros of h is either empty, or finite, or countable. In all 
that follows, the constants α and μh,0 that appear in the decompositions of the function h are those defined 
in the statement of Theorem 2.6.

� First case: Zh = ∅. In this case, the function h is written as h(x) = αeg(x) with g(x) ∈ O(C) an entire 
function satisfying g(0) = 0. Applying then Propositions 2.2 and 2.3 and Lemma 2.5, we deduce that the 
function

Θq(x)
Θq(α−1x)e

Gg(x)

is a meromorphic solution of (2.8). More precisely,

• if α = 1, it is reduced to eGg(x); it is therefore entire on C and has neither zero nor pole;
• if α �= 1, it is meromorphic on C∗; its zeros and poles are simple and are respectively located at the 

elements of qZ and αqZ.

� Second case: Zh = {0}. In this case, the function h is written as h(x) = αxμh,0eg(x) with g(x) ∈ O(C)
an entire function satisfying g(0) = 0. Applying again Propositions 2.2 and 2.3 and Lemma 2.5, we deduce 
that the function

Θ2μh,0+1
q (x)

qμh,0xμh,0Θμh,0
q (−x)Θq(α−1x)

eGg(x)

is a meromorphic solution on C∗ of (2.8). Moreover,

• if α = 1:
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– its zeros are located at the elements of qZ with order 2μh,0;
– its poles are located at the elements of −qZ with order μh,0.

• if α �= 1:
– its zeros are located at the elements of qZ with order 2μh,0 + 1;
– its poles are located at the elements of αqZ with order 1 and at the elements of −qZ with order μh,0.

� Third case: Zh finite and Z∗
h �= ∅. Let us denote by a1,..., an with n � 1 the nonzero zeros of h, and by 

v1,..., vn their respective order of multiplicity. Then, the function h is written as

h(x) = αxμh,0

(
1 − x

a1

)v1

...

(
1 − x

an

)vn

eg(x)

with g(x) ∈ O(C) an entire function satisfying g(0) = 0. Applying as before Propositions 2.2 and 2.3 and 
Lemma 2.5, we deduce that the function

Θ2μh,0+1
q (x)

qμh,0xμh,0Θμh,0
q (−x)Θq(α−1x)

fv1
a1

(x)...fvn
an

(x)eGg(x)

is a meromorphic solution of (2.8). More precisely,

• if h(0) = 1, then (α, μh,0) = (1, 0) and, consequently, the solution is reduced to fv1
a1

(x)...fvn
an

(x)eGg(x); 
it is therefore entire on C and its zeros are located at the elements of akqN

∗ with order vk for all 
k ∈ {1, ..., n};

• if h(0) �= 1, the solution is meromorphic on C∗ and its zeros and poles are as follows:
– case α �= 1 and μh,0 = 0:

∗ its zeros are located at the elements of qZ with order 1 and at the elements of akqN
∗ with order vk

for all k ∈ {1, ..., n};
∗ its poles are simple and located at the elements of αqZ.

– case α = 1 and μh,0 �= 0:
∗ its zeros are located at the elements of qZ with order 2μh,0 and at the elements of akqN

∗ with order 
vk for all k ∈ {1, ..., n};

∗ its poles are located at the elements of −qZ with order μh,0.
– case α �= 1 and μh,0 �= 0:

∗ its zeros are located at the elements of qZ with order 2μh,0 + 1 and at the elements of akqN
∗ with 

order vk for all k ∈ {1, ..., n};
∗ its poles are located at the elements of −qZ with order μh,0, and at the elements of αqZ with order 

1.

� Fourth case: Zh countable. We denote by (an)n�1 the set of all the nonzero zeros of h, each being counted 
with its order of multiplicity. According to the Isolated Zeros Principle (recall that h �≡ 0), the sequence 
(|an|)n�1 tends to infinity. Then, applying the Weierstrass Factorization Theorem, the function h is written 
as

h(x) = αxμh,0eg(x)
∏
n�1

Epn

(
x

an

)

with g(x) ∈ O(C) an entire function satisfying g(0) = 0, (pn)n�1 a sequence of nonnegative integers such 
that
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∑
n�1

(
r

|an|

)pn+1

< +∞ for all r > 0, (2.9)

and with Em(x) the Weierstrass’ elementary factors defined by

E0(x) = 1 and Em(x) = (1 − x) exp
(

m∑
k=1

xk

k

)
for all m � 1.

Let us now define the entire functions Ẽm(x) by

Ẽ0(x) = 1 and Ẽm(x) = f1(x) exp
(

m∑
k=1

xk

k(qk − 1)

)
for all m � 1,

so that Ẽm(qx) = Em(x)Ẽm(x) for all m � 0 and all x ∈ C. Applying then Lemma 2.7 below, there exist 
two positive constants C1, C2 > 0 such that, for any r > 0, the following estimate∣∣∣∣1 − Ẽpn

(
x

an

)∣∣∣∣ � C1

(
C2

∣∣∣∣ xan
∣∣∣∣)pn+1

� C1

(
C2r

|an|

)pn+1

(2.10)

holds for all n � 1 and all |x| � r, as soon as |an| � r, inequality valid except at most for a finite number 
of n. Therefore, thanks to the assumption (2.9) on the sequence (pn)n�1, we deduce from (2.10) that the 
series

∑
n�1

∣∣∣∣1 − Ẽpn

(
x

an

)∣∣∣∣
is normally convergent on all the compact sets of C. Consequently, the function f defined by the infinite 
product

f(x) =
∏
n�1

Ẽpn

(
x

an

)

is entire on C and satisfies the functional relation

f(qx) =

⎛⎝∏
n�1

Epn

(
x

an

)⎞⎠ f(x)

for all x ∈ C. From this, Propositions 2.2 and 2.3 and Lemma 2.5, we finally derive that the function

Θ2μh,0+1
q (x)

qμh,0xμh,0Θμh,0
q (−x)Θq(α−1x)

eGg(x)
∏
n�1

Ẽpn

(
x

an

)

is a meromorphic solution of (2.8). Observing then that

Ẽpn

(
x

an

)
= f1

(
x

an

)
exp

(
pn∑
k=1

xk

k(qk − 1)akn

)
= fan

(x) exp
(

pn∑
k=1

xk

k(qk − 1)akn

)

for all x ∈ C, we get more precisely the following:
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• if h(0) = 1, then (α, v) = (1, 0) and, consequently, the solution is reduced to

eGg(x)
∏
n�1

Ẽpn

(
x

an

)
;

it is therefore entire on C and its zeros are located at the elements of anqN
∗ for all n � 1;

• if h(0) �= 1, the solution is meromorphic on C∗ and its zeros and poles are as follows:
– case α �= 1 and μh,0 = 0:

∗ its zeros are located at the elements of qZ with order 1 and at the elements of anqN
∗ for all n � 1;

∗ its poles are simple and located at the elements of αqZ.
– case α = 1 and μh,0 �= 0:

∗ its zeros are located at the elements of qZ with order 2μh,0 and at the elements of anqN
∗ for all 

n � 1;
∗ its poles are located at the elements of −qZ with order μh,0.

– case α �= 1 and μh,0 �= 0:
∗ its zeros are located at the elements of qZ with order 2μh,0 + 1 and at the elements of anqN

∗ for 
all n � 1;

∗ its poles are located at the elements of −qZ with order μh,0, and at the elements of αqZ with order 
1.

This ends the proof of Theorem 2.6. �
Lemma 2.7. There exist two positive constants C1, C2 > 0 such that the following estimate holds for all 
m � 0 and all |x| � 1:

|1 − Ẽm(x)| � C1(C2|x|)m+1. (2.11)

Proof. Inequality (2.11) is valid for any C1, C2 > 0 when m = 0. Let ϕm(x) = 1 − Ẽm(x). Then, for all 
m � 1,

ϕ′
m(x) = −Ẽ′

m(x)

= −
(
f ′
1(x) + f1(x)

m−1∑
k=0

xk

qk+1 − 1

)
exp

(
m∑

k=1

xk

k(qk − 1)

)

= −

⎛⎝∑
n�0

(n + 1)xn

(q; q)n+1
+

m−1∑
k=0

⎛⎝∑
n�k

xn

(qk+1 − 1)(q; q)n−k

⎞⎠⎞⎠ exp
(

m∑
k=1

xk

k(qk − 1)

)
.

According to the technical Lemma 2.8 below, all the terms in xj in the first factor are zero when j ∈
{0, ..., m − 1}. Indeed,

m−1∑
k=0

m−1∑
n=k

xn

(qk+1 − 1)(q; q)n−k
=

m−1∑
n=0

(
n∑

k=0

1
(qk+1 − 1)(q; q)n−k

)
xn

= −
m−1∑
n=0

(n + 1)xn

(q; q)n+1
.

Therefore, we can write ϕ′
m(x) as
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ϕ′
m(x) = −

⎛⎝∑
n�m

(n + 1)xn

(q; q)n+1
+

m−1∑
k=0

⎛⎝∑
n�m

xn

(qk+1 − 1)(q; q)n−k

⎞⎠⎞⎠ exp
(

m∑
k=1

xk

k(qk − 1)

)
.

Since all the series which occur define entire functions on C, we derive from this the following estimates for 
all m � 1 and all |x| � 1:

|ϕ′
m(x)| � |x|m

⎛⎝∑
n�m

(n + 1)
(q; q)′n+1

+
m−1∑
k=0

⎛⎝∑
n�m

1
(|q|k+1 − 1)(q; q)′n−k

⎞⎠⎞⎠ exp
(

m∑
k=1

1
k(|q|k − 1)

)

� |x|m
⎛⎝∑

n�0

(n + 1)
(q; q)′n+1

+
m−1∑
k=0

⎛⎝ 1
|q| − 1

∑
n�m−k

1
(q; q)′n

⎞⎠⎞⎠ exp
(

m

|q| − 1

)

� |x|m
⎛⎝∑

n�0

(n + 1)
(q; q)′n+1

+ m

|q| − 1
∑
n�1

1
(q; q)′n

⎞⎠ exp
(

m

|q| − 1

)

� m|x|m
⎛⎝∑

n�0

(n + 1)
(q; q)′n+1

+ 1
|q| − 1

∑
n�1

1
(q; q)′n

⎞⎠ exp
(

m

|q| − 1

)

� |x|m
⎛⎝∑

n�0

(n + 1)
(q; q)′n+1

+ 1
|q| − 1

∑
n�1

1
(q; q)′n

⎞⎠ exp
(

m|q|
|q| − 1

)
,

where the (q; q)′n are the positive constants defined by

(q; q)′n =
n∏

k=1

(|q|k − 1) for all n � 1.

Consequently,

∣∣∣1 − Ẽm(x)
∣∣∣ =

∣∣∣∣∣∣
x∫

0

ϕ′
m(t)dt

∣∣∣∣∣∣ � C1(C2|x|)m+1,

for all |x| � 1, where the positive constants C1 and C2 are respectively defined by

C1 =

⎛⎝∑
n�0

(n + 1)
(q; q)′n+1

+ 1
|q| − 1

∑
n�1

1
(q; q)′n

⎞⎠ exp
(
− |q|
|q| − 1

)

and

C2 = exp
(

|q|
|q| − 1

)
.

This completes the proof. �
Lemma 2.8. The following identity holds for all n � 0:

n + 1
(q; q)n+1

= −
n∑ 1

(qk+1 − 1)(q; q)n−k
.

k=0
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Proof. Let us consider the function ϕ defined by

ϕ(x) = f1(x) exp

⎛⎝∑
n�1

xn

n(qn − 1)

⎞⎠
Since |q| > 1 and

∑
n�1

xn

n
= − ln(1 − x)

for all |x| < 1, we conclude from Lemma 2.1 that ϕ(x) is well-defined and holomorphic on the disc |x| < 1. 
Moreover, according to Proposition 2.3, it satisfies the functional relation ϕ(qx) = ϕ(x). Consequently, 
ϕ(x) = 1 for all |x| < 1 (indeed, this function is the unique q-invariant function which is analytic in a 
neighborhood of the origin). From this, we get ϕ′(x) = 0 for all |x| < 1; hence, the identity

f ′
1(x) = −f1(x)

∑
n�0

xn

qn+1 − 1

that is

∑
n�0

(n + 1)xn

(q; q)n+1
= −

∑
n�0

(
n∑

k=0

1
(qk+1 − 1)(q; q)n−k

)
xn

for all |x| < 1, which ends the proof of Lemma 2.8. �
As a consequence of Theorem 2.6, the two following Corollaries 2.9 and 2.11 provide explicit meromorphic 

solutions, as well as the complete description of all their zeros and poles, of the general equation y(qx) =
g(x)y(x) with g(x) ∈ M(C)\{0} or g(x) ∈ M(C∗)\{0}.

Corollary 2.9. The equation

y(qx) = g(x)y(x) with g(x) ∈ M(C)\{0} (2.12)

admits a meromorphic solution on C if 0 is not a pole of g and g(0) = 1, and a meromorphic solution on 
C∗ otherwise. Moreover, denoting by

• μg,0 ∈ Z the order of 0 at zero (if μg,0 � 0) or pole (if μg,0 < 0) of g;
• α = x−μg,0g(x)|x=0,

the zeros and poles of this solution are as stated in Table 2 (case μg,0 � 0) and in Table 3 (case μg,0 < 0).
An explicit writing of such a solution can also be obtained by means of Theorem 2.6.

Proof. Since g(x) ∈ M(C)\{0}, then g is written as g(x) = αxμg,0h1(x)/h2(x) with h1(x), h2(x) ∈ O(C)
two entire functions satisfying h1(0) = h2(0) = 1. Doing so, the nonzero zeros (resp. poles) of g are the 
zeros of h1 (resp. h2). From Theorem 2.6, there exist two entire functions H1(x), H2(x) ∈ O(C) such that 
H1(qx) = h1(x)H1(x) and H2(qx) = h2(x)H2(x), the zeros of H1 (resp. H2) being obtained from those of 
h1 (resp. h2). Applying then Proposition 2.2 and Lemma 2.5, we deduce that the function

Θ2μg,0+1
q (x)

μg,0 μg,0 μg,0 −1 × H1(x)

q x Θq (−x)Θq(α x) H2(x)
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Table 2
Localization of zeros and poles in the meromorphic case on C with μg,0 � 0.

zeros located at the elements 
of...

poles located at the elements 
of...

α = 1 • qZ with order 2μg,0

• aqN
∗

with order μg,a for any 
a ∈ Z∗

g

• −qZ with order μg,0

• aqN
∗

with order μg,a for any 
a ∈ P∗

g

α �= 1 • qZ with order 2μg,0 + 1
• aqN

∗
with order μg,a for any 

a ∈ Z∗
g

• −qZ with order μg,0

• αqZ with order 1
• aqN

∗
with order μg,a for any 

a ∈ P∗
g

Table 3
Localization of zeros and poles in the meromorphic case on C with μg,0 < 0.

zeros located at the elements 
of...

poles located at the elements 
of...

α = 1 • −qZ with order −μg,0

• aqN
∗

with order μg,a for any 
a ∈ Z∗

g

• qZ with order −2μg,0

• aqN
∗

with order μg,a for any 
a ∈ P∗

g

α �= 1 • −qZ with order −μg,0

• aqN
∗

with order μg,a for any 
a ∈ Z∗

g

• qZ with order −2μg,0 − 1
• αqZ with order 1
• aqN

∗
with order μg,a for any 

a ∈ P∗
g

is a meromorphic solution of (2.12) on C∗. The description of the zeros and of the poles of this solution 
follows from Theorem 2.6. This ends the proof. �

When g is a general meromorphic function on C∗, the situation is much more complicated and is based 
on the following multiplicative Birkhoff Decomposition.

Proposition 2.10 (Birkhoff Decomposition).

(1) Let h(x) ∈ O(C∗)\{0} be a nonzero holomorphic function on C∗.
Then, for all ρ > 0, there exist two constants αρ ∈ C∗ and vρ ∈ Z, and two entire functions 
h0,ρ(x), h∞,ρ(x) ∈ O(C) satisfying h0,ρ(0) = h∞,ρ(0) = 1 such that the following two conditions hold:
(a) the zeros of h0,ρ(x)) (resp. h∞,ρ(1/x)) are the elements of Z∗

h,>ρ (resp. Z∗
h,�ρ) with same order of 

multiplicity;
(b) h(x) = αρx

vρh0,ρ(x)h∞,ρ(1/x) for all x ∈ C∗.
(2) Let g(x) ∈ M(C∗)\{0} be a nonzero meromorphic function on C∗.

Then, for all ρ, ρ′ > 0, there exist two constants αρ,ρ′ ∈ C∗ and vρ,ρ′ ∈ Z, and two meromorphic 
functions g0,ρ,ρ′(x), g∞,ρ,ρ′(x) ∈ M(C) without pole at 0 and satisfying g0,ρ,ρ′(0) = g∞,ρ,ρ′(0) = 1 such 
that the following three conditions hold:
(a) the zeros of g0,ρ,ρ′(x)) (resp. g∞,ρ,ρ′(1/x)) are the elements of Z∗

g,>ρ (resp. Z∗
g,�ρ) with same order 

of multiplicity;
(b) the poles of g0,ρ,ρ′(x)) (resp. g∞,ρ,ρ′(1/x)) are the elements of P∗

g,>ρ′ (resp. P∗
g,�ρ′) with same order 

of multiplicity;
(c) g(x) = αρ,ρ′xvρ,ρ′ g0,ρ,ρ′(x)g∞,ρ,ρ′(1/x) for all x ∈ C∗.

Observe that the distribution of the initial zeros and poles of h(x) and g(x) in the two decompositions 
above are totally arbitrary and are therefore left to a free choice.
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Proof. Since g(x) ∈ M(C∗)\{0} is the quotient of two nonzero holomorphic functions on C∗, it is sufficient 
to prove the first point. We reproduce below the proof provided to us by A. Ancona and whom we wish to 
thank warmly here.

So, let us consider a holomorphic function h(x) ∈ O(C∗)\{0} and let us start by considering the set Z∗
h

of all its nonzero zeros.

• When Z∗
h,>ρ �= ∅, its elements have no accumulation point in C and, from the Weiestrass Theorem (see 

for instance [15, Théorème 15.9 page 282]), there exists an entire function f0,ρ(x) ∈ O(C) whose zeros 
are the elements of Z∗

h,>ρ with same order of multiplicity.
When Z∗

h,>ρ = ∅, we choose for f0,ρ the function f0,ρ ≡ 1.
• When Z∗

h,�ρ �= ∅, its elements a may have 0 as accumulation point (and it is the only one possible!). 
Therefore, the set of all their inverse 1/a has no accumulation point in C and, applying again the 
Weierstrass Theorem, there exists an entire function f∞,ρ(x) ∈ O(C) whose zeros are the elements 1/a
for any a ∈ Z∗

h,�ρ with same order of multiplicity than a. In particular, f∞,ρ(1/x) ∈ O(C∗) and its 
zeros are the elements of Z∗

h,�ρ with same order of multiplicity.
When Z∗

h,�ρ = ∅, we choose for f∞,ρ the function f∞,ρ ≡ 1.

According to our assumptions on f0,ρ and f∞,ρ, the function kρ defined by

kρ(x) = h(x)
f0,ρ(x)f∞,ρ(1/x)

is holomorphic on C∗ and without zero in C∗. Therefore, the function kρ(ex) is entire without zero in C
and, consequently, there exists an entire function ϕρ(x) ∈ O(C) such that

kρ(ex) = eϕρ(x) for all x ∈ C.

Let us now observe that x �−→ kρ(ex) is 2iπ-periodic; hence, ϕρ(x + 2iπ) − ϕρ(x) ∈ 2iπZ for all x ∈ C. 
Since the function x �−→ ϕρ(x + 2iπ) − ϕρ(x) is also continuous, we deduce there exists an integer vρ ∈ Z

such that

ϕρ(x + 2iπ) − ϕρ(x) = 2iπvρ for all x ∈ C.

Therefore, the function ψρ(x) = ϕρ(x) − vρx is 2iπ-periodic and we have

kρ(ex) = evρxeψρ(x) for all x ∈ C.

Going back to the function k itself, we get the identity

kρ(x) = xvρeψρ(ln(x)) for all x ∈ C∗,

where, accordingly the 2iπ-periodicity of ψρ, the composition x �−→ ψρ(ln(x)) is holomorphic univalent 
on C∗. In particular, it can be decomposed into a Laurent series at 0: there exist two entire functions 
ψ0,ρ(x), ψ∞,ρ(x) ∈ O(C) such that

ψρ(ln(x)) = ψ0,ρ(x) + ψ∞,ρ

(
1
x

)
for all x ∈ C∗.

Hence, the identity
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Table 4
Localization of zeros and poles in the meromorphic case on C∗ with vρ,ρ′ � 0.

zeros located at the elements 
of...

poles located at the elements 
of...

αρ,ρ′ = 1 • qZ with order 2vρ,ρ′

• aqN
∗

with order μg,a for any 
a ∈ Z∗

g,>ρ

• aq−N with order μg,a for any 
a ∈ P∗

g,�ρ′

• −qZ with order vρ,ρ′

• aqN
∗

with order μg,a for any 
a ∈ P∗

g,>ρ′

• aq−N with order μg,a for any 
a ∈ Z∗

g,�ρ

αρ,ρ′ �= 1 • qZ with order 2vρ,ρ′ + 1
• aqN

∗
with order μg,a for any 

a ∈ Z∗
g,>ρ

• aq−N with order μg,a for any 
a ∈ P∗

g,�ρ′

• −qZ with order vρ,ρ′

• αρ,ρ′qZ with order 1
• aqN

∗
with order μg,a for any 

a ∈ P∗
g,>ρ′

• aq−N with order μg,a for any 
a ∈ Z∗

g,�ρ

h(x) = xvρf0,ρ(x)f∞,ρ

(
1
x

)
eψ0,ρ(x)eψ∞,ρ(1/x)

for all x ∈ C∗. The choices

h0,ρ(x) = f0,ρ(x)eψ0,ρ(x)

f0,ρ(0)eψ0,ρ(0) ∈ O(C)

h∞,ρ(x) = f∞,ρ(x)eψ∞,ρ(x)

f∞,ρ(0)eψ∞,ρ(0) ∈ O(C)

αρ = f0,ρ(0)f∞,ρ(0)eψ0,ρ(0)eψ∞,ρ(0)

complete the proof. �
Corollary 2.11. Let ρ, ρ′ > 0 be two positive real numbers and g(x) ∈ M(C∗)\{0} a meromorphic function 
on C∗ written in the form

g(x) = αρ,ρ′xvρ,ρ′ g0,ρ,ρ′(x)g∞,ρ,ρ′(1/x)

as in Proposition 2.10. Then, the equation

y(qx) = g(x)y(x) (2.13)

admits a meromorphic solution on C∗ whose the zeros and poles are as stated in Table 4 (case vρ,ρ′ � 0) 
and in Table 5 (case vρ,ρ′ < 0).

Proof. Applying Corollary 2.9, there exist two meromorphic functions

M0,ρ,ρ′(x),M∞,ρ,ρ′(x) ∈ M(C)

such that

M0,ρ,ρ′(qx) = g0,ρ,ρ′(x)M0,ρ,ρ′(x) and

M∞,ρ,ρ′(qx) = g−1
∞,ρ,ρ′(x)M∞,ρ,ρ′(x).

Then, according to Proposition 2.2 and Lemma 2.5, the function
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Table 5
Localization of zeros and poles in the meromorphic case on C∗ with vρ,ρ′ < 0.

zeros located at the elements 
of...

poles located at the elements 
of...

αρ,ρ′ = 1 • −qZ with order −vρ,ρ′

• aqN
∗

with order μg,a for any 
a ∈ Z∗

g,>ρ

• aq−N with order μg,a for any 
a ∈ P∗

g,�ρ′

• qZ with order −2vρ,ρ′

• aqN
∗

with order μg,a for any 
a ∈ P∗

g,>ρ′

• aq−N with order μg,a for any 
a ∈ Z∗

g,�ρ

αρ,ρ′ �= 1 • −qZ with order −vρ,ρ′

• aqN
∗

with order μg,a for any 
a ∈ Z∗

g,>ρ

• aq−N with order μg,a for any 
a ∈ P∗

g,�ρ′

• qZ with order −2vρ,ρ′ − 1
• αρ,ρ′qZ with order 1
• aqN

∗
with order μg,a for any 

a ∈ P∗
g,>ρ′

• aq−N with order μg,a for any 
a ∈ Z∗

g,�ρ

Θ2vρ,ρ′+1
q (x)

qvρ,ρ′xvρ,ρ′ Θvρ,ρ′
q (−x)Θq(α−1

ρ,ρ′x)
×M0,ρ,ρ′(x)M∞,ρ,ρ′

( q

x

)
is a meromorphic solution of (2.13) on C∗, and the description of the zeros and poles follows from Corol-
lary 2.9. �

We end this section with some examples.

Example 2.12.

(1) As a first example, let us consider the equation

y(qx) = (1 − x3)y(x), (2.14)

with a polynomial coefficient. Since (1 − x3)|x=0 = 1 and since its zeros are simple and located at the 
cubic roots 1, j = −1/2 + i

√
3/2 and j2 of the unit, we easily derived from Theorem 2.6 that Eq. (2.14)

admits an entire solution. More precisely, observing that 1 −x3 = (1 −x)(1 −x/j)(1 −x/j2), it is given 
by the function

f1(x)fj(x)fj2(x)

with fa(x) as in Proposition 2.3, and its zeros are simple and located at the elements of qN∗ , jqN∗ and 
j2qN

∗ .
(2) Let us then consider the equation

y(qx) = sin(x)y(x). (2.15)

From the Weierstrass Factorization Theorem, we have

sin(x) = x
∏
n�1

(
1 − x

nπ

)(
1 + x

nπ

)
for all x ∈ C.

Applying then Theorem 2.6, we deduce that a meromorphic solution on C∗ of Eq. (2.15) is given by 
the function

Θ2
q(x)

qxΘq(−x)
∏

fnπ(x)f−nπ(x).

n�1
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Moreover,
• its zeros are located at the elements of qZ with order 2 and at the elements of nπqN∗ with order 1

for all n ∈ Z\{0};
• its poles are simple and located at the elements of −qZ.

(3) Let us now consider the equation

y(qx) = Γ(x)y(x). (2.16)

The function Γ is meromorphic on C and, from the Weierstrass Factorization Theorem, we have

Γ(x) = e−γx

x
∏
n�1

(
1 + x

n

)
e−x/n

for all x ∈ C\(−N).

Consequently, Theorem 2.6 and Corollary 2.9 tell us that a meromorphic solution on C∗ of Eq. (2.16)
is given by the function

qxeγx/(1−q)Θq(−x)
Θ2

q(x)
∏
n�1

f−n(x)ex/(n(1−q))
.

Moreover,
• its zeros are simple and located at the elements of −qZ;
• its poles are located at the elements of qZ with order 2 and at the elements of −nqN

∗ with order 1
for all integer n � 1.

(4) As a final example, let us consider the equation

y(qx) = sin
(

2
x

)
y(x). (2.17)

We have sin(2/x) ∈ O(C∗) ⊂ M(C∗) and, for its Birkhoff decomposition, we choose the one provided 
by the Weierstrass Factorization Theorem:

sin
(

2
x

)
= 2x−1h∞

(
1
x

)
where h∞(x) is the entire function defined by

h∞(x) =
∏
n�1

(
1 − 2x

nπ

)(
1 + 2x

nπ

)
for all x ∈ C.

In particular, the zeros of h∞(1/x) are the nonzero zeros of sin(2/x): they are simple and located at 
the elements 2/(nπ) with n ∈ Z∗. Using then Corollary 2.11, Table 5, we deduce that Eq. (2.17) admits 
a meromorphic solution on C∗, whose zeros and poles are as follows:
• its zeros are simple and located at the elements of −qZ;
• its poles are located at the elements of qZ with order 3, at the elements of 2qZ with order 1, and at 

the elements of 2
q−N with order 1 for all integer n ∈ Z∗.
nπ
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2.3. The inhomogeneous case

In this section, we are interested in the general inhomogeneous linear q-difference equation

y(qx) = g(x)y(x) + r(x) with g(x), r(x) ∈ M(C∗). (2.18)

The cases g ≡ 0 and r ≡ 0 being trivial (the first one provides the meromorphic solution r(x/q) and the 
second one coincides with the linear case), we assume in the sequel g �≡ 0 and r �≡ 0.

From Corollary 2.11, there exists a meromorphic solution M(x) ∈ M(C∗) of the equation y(qx) =
g(x)y(x). Applying then the change of unknown function y(x) = M(x)z(x), Eq. (2.18) becomes

z(qx) = z(x) + R(x) with R(x) = M−1(qx)r(x) ∈ M(C∗). (2.19)

Proposition 2.15 below provides a meromorphic solution on C∗ of this equation, as well as the com-
plete description of all its poles. The construction of such a solution is based on the following additive 
decomposition of R(x) which generalizes the Laurent series decomposition.

Proposition 2.13. Let R(x) ∈ M(C∗) be a meromorphic function on C∗.
Then, for all ρ > 0, there exist a constant αρ ∈ C and two meromorphic functions R0,ρ(x), R∞,ρ(x) ∈ M(C)
without pole at 0 and satisfying R0,ρ(0) = R∞,ρ(0) = 0 such that the following three conditions hold:

(1) the poles of R0,ρ(x) (resp. R∞,ρ(1/x)) are the elements of P∗
R,>ρ (resp. P∗

R,�ρ);
(2) for each a ∈ P∗

R,>ρ (resp. P∗
R,�ρ), the principal part of R0,ρ(x) (resp. R∞,ρ(1/x)) at a coincides with 

the principal part of R(x) at a;
(3) R(x) = R0,ρ(x) + αρ + R∞,ρ(1/x) for all x ∈ C∗.

Proof. When P∗
R = ∅, the function R is holomorphic on C∗ and the decomposition stems obvious from the 

decomposition of R into Laurent series at 0. In particular, the functions R0,ρ(x) and R∞,ρ(x) are entire.
Let us now suppose P∗

R �= ∅.

• When P∗
R,>ρ �= ∅, its elements have no accumulation point in C and, from the Mittag-Leffler Theorem 

[9] (see also [15, Théorème 15.13 page 285]), there exists a meromorphic function f0,ρ(x) ∈ M(C) whose 
poles are the elements of P∗

R,>ρ and whose principal part at each a ∈ P∗
R,>ρ is PR,a(x). In particular, 

this function is analytic in a neighborhood of the origin.
When P∗

R,>ρ = ∅, we choose for f0,ρ the null function.
• When P∗

R,�ρ �= ∅, the previous reasoning does not apply anymore because 0 may be an accumulation 
point (and it is the only one possible!). To get around this difficulty, we therefore consider, not the set 
of elements a ∈ P∗

R,�ρ, but the set of their inverse 1/a (which is well-defined since all the poles of R(x)
are nonzero). By construction, this new set has no accumulation point in C. For any a ∈ P∗

R,�ρ, we 
denote by P1/a(x) the unique polynomial in 1/(x − 1/a) without constant term such that the principal 
part of P1/a(1/x) at a, that is the polynomial in 1/(x − a) without constant term, is PR,a(x). Then, 
applying again the Mittag-Leffler Theorem, there exists a meromorphic function f∞,ρ(x) ∈ M(C) whose 
poles are the elements 1/a for any a ∈ P∗

R,�ρ and whose principal part at each point 1/a is P1/a(x). In 
particular, this function is analytic in a neighborhood of the origin. Moreover, the function f∞,ρ(1/x)
is meromorphic on C∗, its poles are the elements of P∗

R,�ρ and the principal part at each a ∈ P∗
R,�ρ is 

PR,a(x).
When P∗

R,�ρ = ∅, we choose for f∞,ρ the null function.
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According to our assumptions on f0,ρ and f∞,ρ, the function R(x) −f0,ρ(x) −f∞,ρ(1/x) is holomorphic on C∗

and can then be decomposed into a Laurent series at 0: there exist two entire functions h0(x), h∞(x) ∈ O(C)
such that

R(x) − f0,ρ(x) − f∞,ρ(1/x) = h0(x) + h∞(1/x)

for all x ∈ C∗. The choices

R0,ρ(x) = f0,ρ(x) + h0(x) − f0,ρ(0) − h0(0) ∈ M(C)

R∞,ρ(x) = f∞,ρ(x) + h∞(x) − f∞,ρ(0) − h∞(0) ∈ M(C)

αρ = f0,ρ(0) + h0(0) + f∞,ρ(0) + h∞(0)

complete the proof. �
Remark 2.14.

• Unlike the Laurent series decomposition, the decomposition obtained in Proposition 2.13 is not unique, 
even for a fixed ρ > 0, since it depends on the choice of the two meromorphic functions f0,ρ(x) and 
f∞,ρ(x).

• As in the case of the Birkhoff Decomposition (see Proposition 2.10), the distribution of the initial poles 
of R(x) in the above decomposition is still completely arbitrary and is therefore left to a free choice.

We are now able to solve Eq. (2.19).

Proposition 2.15. For all ρ > 0, the equation

y(qx) = y(x) + R(x) with R(x) ∈ M(C∗) (2.20)

admits a meromorphic solution on C∗ whose the poles are located at the elements of

• qZ with order at most 1;
• aqN

∗ with order μR,a for any a ∈ P∗
R,>ρ;

• aq−N with order μR,a for any a ∈ P∗
R,�ρ.

Moreover, an explicit writing of such a solution is given in the constructive proof below.

Proof. Let us write R(x) in the form R(x) = R0,ρ(x) +αρ+R∞,ρ(1/x) with αρ ∈ C and R0,ρ(x), R∞,ρ(x) ∈
M(C) as in Proposition 2.13. Applying Proposition 2.4, we get the following solutions:

• the equation z(qx) = z(x) + αρ admits the function

zαρ
(x) = αρx

Θ′
q(x)

Θq(x)

as solution. It is entire if αρ = 0 and meromorphic on C∗ otherwise. In the latter case, its pole are 
simple and located at the elements of qZ;

• the equation z(qx) = z(x) + R0,ρ(x) admits the function

z0,ρ(x) =
∑

R0,ρ(pnx) with p = q−1
n�1
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as solution. It is meromorphic on C and its poles are located at the elements of aqN∗ with order μR,a

for any a ∈ P∗
R,>ρ;

• the equation z(qx) = z(x) −R∞,ρ(x) admits the function

z∞,ρ(x) = −
∑
n�1

R∞,ρ(pnx)

as solution. It is meromorphic on C and its poles are located at the elements of 1
a
qN

∗ with order μR,a

for any a ∈ P∗
R,�ρ.

Since z∞,ρ(q/x) is a meromorphic solution on C∗ of the equation

z(qx) = z(x) + R∞,ρ(1/x)

with poles located at the elements of aq−N with order μR,a for any a ∈ P∗
R,�ρ, we deduce from the 

Superposition Principle that the function

z0,ρ(x) + zαρ
(x) + z∞,ρ(q/x) =

∑
n�1

R0,ρ(pnx) + αρx
Θ′

q(x)
Θq(x) −

∑
n�0

R∞,ρ

(
pn

x

)

is a meromorphic solution on C∗ of Eq. (2.20). The full description of its poles follows from the previous 
ones. �
Corollary 2.16. Let ρ, ρ′, ρ′′ > 0. Then, the equation

y(qx) = g(x)y(x) + r(x) with g(x), r(x) ∈ M(C∗)\{0} (2.21)

admits a meromorphic solution on C∗ whose poles are located at:

(1) Case g(x) ∈ M(C)\{0}:
• ±qZ and αqZ;
• aqN

∗ for any a ∈ P∗
g ∪ P>ρ;

• aq−N for any a ∈ P�ρ,
where we set
• α = x−vg(x)|x=0 with v the order of 0 at zero/pole of g;
• P = P∗

r ∪ {aqN ; a ∈ Z∗
g};

• P�ρ = {a ∈ P; |a| � ρ};
• P>ρ = {a ∈ P; |a| > ρ}.

(2) Case g(x) ∈ M(C∗)\{0}:
• ±qZ and αρ′,ρ′′qZ;
• aqN

∗ for any a ∈ P∗
g,>ρ′′ ∪ P>ρ;

• aq−N for any a ∈ Z∗
g,�ρ′ ∪ P�ρ,

where we set
• αρ′,ρ′′ as in Corollary 2.11;
• P = P∗

r ∪ {aqN ; a ∈ Z∗
g,>ρ′} ∪ {aq−N∗ ; a ∈ P∗

g,�ρ′′};
• P�ρ = {a ∈ P; |a| � ρ};
• P>ρ = {a ∈ P; |a| > ρ}.
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Proof. From the calculations made at the beginning of Section 2.3, we deduce from Proposition 2.15 that 
a meromorphic solution on C∗ of Eq. (2.21) is given by the function

M(x)

⎛⎝∑
n�1

R0,ρ(pnx) + αρx
Θ′

q(x)
Θq(x) −

∑
n�0

R∞,ρ

(
pn

x

)⎞⎠ , (2.22)

where

• M(x) is a meromorphic solution on C∗ of the equation y(qx) = g(x)y(x) as in Corollary 2.9 when 
g(x) ∈ M(C) and as in Corollary 2.11 when g(x) ∈ M(C∗);

• αρ ∈ C and R0,ρ(x), R∞,ρ(x) ∈ M(C) are the elements of the decomposition of R(x) = M−1(qx)r(x)
given by Proposition 2.13.

Since the poles of R(x) are given by the set of all the zeros of M(qx) and poles of r(x), the complete 
description of the poles of (2.22) follows from Corollaries 2.9 and 2.11 and from Proposition 2.13. �
3. Linear q-difference equations of order n

In this section, we are interested in linear q-difference equations of higher order. Using the classical method 
of factorization [24, Lemme 9], and, for more details [8, Section 3.1] (see also [1,17]), it is well-known that 
their study can be reduced to that of first order equations. For the sake of readability of the present work, 
we briefly recall in the next section this method and we illustrate it with two examples.

3.1. A constructive method for meromorphic solutions

Let us consider a q-difference equation of order n � 2 of the form

δy(x) = 0, δ = g0(x) + g1(x)σq + ... + gn(x)σn
q , (3.1)

where σq stands for the q-difference operator σqy(x) = y(qx), the coefficients gj(x) ∈ M(C) are meromorphic 
functions on C for all j = 0, ..., n, and where g0gn �≡ 0.

For every 0 � j � n, let us set Δj = {(j, val(gj) +t) : t � 0} ⊆ R2, where val(g) stands for the valuation of 
g at 0. Then, defining the Newton polygon associated to (3.1) as the convex hull of 

⋃
0�j�n Δj , and denoting 

by −∞ < k1 � k2 � ... � kn < +∞ the increasing sequence of its slopes counted with their respective 
multiplicities (recall that the multiplicity of a slope is the length of the projection of the corresponding edge 
on the horizontal axis), one can prove that there exists a factorization of the operator δ of the form

g′0(x)(xk1σq − α1)g′1(x)(xk2σq − α2)g′2(x) · · · (xknσq − αn)g′n(x),

where g′j(x) ∈ M(C) and αj ∈ C� for all j = 1, ..., n.
The algorithmic procedure for the factorization is described in detail in [8, Section 3.1] (see also [1,17]). 

We illustrate below this method with two examples.

Example 3.1. A first simple example is the linear q-difference equation

y(q2x) + (−qk − 1)y(qx) + qky(x) = 0,
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for some positive integer k. Following the previous algorithm of factorization one has that n = 2, with g′2(x)
being a constant, g′1(x) ≡ g′0(x) ≡ 1 and k1 = k2 = 0, due to the Newton polygon has no slopes. It is 
straight to check that the factorization of the previous equation is then given by(

σq − qk
)
(σq − 1) y = 0.

We first consider the first order q-difference equation L1z = 0, with L1 = σq − qk. From Proposition 2.2 one 

has that z(x) = Θq(x)
Θq(qkx) = q−

k(k+1)
2 x−k is a solution of this equation. Second, we take equation L2y = z(x), 

with L2 = σq − 1. The procedure stated in Section 2.3 determines that R0,ρ(x) ≡ 0, αρ = 0 and R∞,ρ(x) =
q

k(k+1)
2 xk. Therefore, we have that z∞,ρ(q/x) = −1

(qk−1)q
k2−k

2

1
xk . The study of poles and zeros is straight in 

this example.

Example 3.2. Let us now consider the second order linear q-difference equation

y(q2x) − (qx sin(2qx) + cos(x))y(qx) + x cos(x) sin(2x)y(x) = 0. (3.2)

Since it can be factorized into

(σq − cos(x))(σq − x sin(2x))y(x) = 0,

a meromorphic solution of Eq. (3.2) is given by a meromorphic solution of the first order inhomogeneous 
linear q-difference equation

y(qx) = x sin(2x)y(x) + r(x),

with r(x) a meromorphic solution of y(qx) = cos(x)y(x).
Let us now observe that, accordingly to Theorem 2.6, we can first choose for r(x) an entire function (we 

have indeed cos(x) ∈ O(C) and cos(0) = 1). On the other hand, a brief study of the zeros of x sin(2x) shows 
that

• the origin x = 0 is a double zero of x sin(2x) with x sin(2x)
x2 |x=0 = 2;

• the nonzero zeros of x sin(2x) are located at the points nπ/2 for all n ∈ Z∗.

Denoting then by P the set

P =
⋃

n∈Z∗

nπ

2 qN ,

we derive from Corollary 2.16 that, for any ρ > 0, Eq. (3.2) admits a meromorphic solution on C∗ whose 
the poles are located at the elements of

• ±qZ and 2qZ:
• aqN

∗ for any a ∈ P>ρ;
• aq−N for any a ∈ P�ρ.

In particular, choosing ρ ∈]0, π/2[, the poles of such a solution are located at the elements of

• ±qZ and 2qZ:
• nπ qN

∗ for any n ∈ Z∗,
2
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and there is no half-spiral of poles with 0 as accumulation point.

3.2. Conclusion and directions for further research

In Section 2, we have built a meromorphic solution for any first order linear q-difference equation with 
meromorphic coefficients in C∗. Combining then this result with the factorization of linear q-difference op-
erator, we have shown in the previous Section 3.1 that this procedure allows to make explicit a meromorphic 
solution of any linear q-difference equation of order n � 2 with meromorphic coefficients in C. However, 
C. Praagman proved in [10] that such an equation admits a basis of meromorphic solutions in C∗. So, a 
possible direction of our further researches is to provide an explicit construction of such a basis.

Another direction of research is related to the factorization of linear q-difference operator: in the procedure 
detailed by F. Marotte and C. Zhang in [8, Section 3.1] to prove the existence of such a factorization, the 
authors use the fact that the equation under consideration admits an analytic solution, which provides 
thus a non-constructive proof of the existence of the factorization. Consequently, we can ask the following 
question: can we explain a constructive algorithm for determining the factorization of any linear q-difference 
operator?
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