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Abstract

The Paris agreement in 2016 marks a global effort to limit the increase in temperature. In that spirit, the Federal Government
of Canada introduced a carbon tax to reduce greenhouse gas emissions. The main goal of this paper is to define the correct
approach to carbon pricing. Following the method, introduce by Goutte and Chevalier (2015), we define the carbon price as
the necessary tax to incite electricity producers to switch from coal to natural gas. The novelty of this paper is that we use this
method for Alberta and North America. In addition, we consider the case of switching from natural gas to wind as a potential
new approach to carbon pricing. After reviewing the two methods, we model prices under three stochastic procedures: Lévy
Normal Inverse Gaussian (NIG), Lévy Normal and Heston model. Finally, we generalize our empirical technique to oil, natural
gas and coal individually. The main finding of this article is that the Lévy NIG outperforms the Lévy Normal and Heston as
it is able to take into account the jumpy and volatile nature of energy prices.
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1 Introduction

In October 2016, the federal government of Canada pub-
lished ”The pan-Canadian approach to pricing Carbon
Pollution”. The main goal of this act is to reduce green-
house gas (GHG) emissions by taxing fossil fuels respon-
sible for releasing carbon in the atmosphere. Over the
years, fossil fuels, namely, coal, natural gas, and oil, have
been seen as the main cause of temperature disruptions
and extreme weather events. Climate specialists predict
that temperatures could rise up to 5 degrees Celsius in
2100 (Chesney and Taschini, 2012). As fossil fuels con-
tain carbon, once burnt, they allow energy to be gen-
erated, which in turn is important for health, educa-
tion, political power and economic status (Sneideman,
2015). The Canadian consensus is in line with the cli-
mate agreement reached in Paris in 2016 where countries
have agreed to a common effort to limit temperature in-
crease to 1.5 degrees. Furthermore, developed countries
are to provide help during extreme weather events and
slow-onset such as the sea level rise. Finally, financial
support should be given to developing countries in order
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to invest in clean energy (UNFCC, 2016).

If a consensus has been reached regarding efforts to pro-
tect the earth, the implementation of a carbon pric-
ing scheme divides the fiercest economists, especially in
Canada. Two systems are currently in place: cap and
trade, and taxation. On the one hand, a cap and trade
give an initial number of permits to emit CO2 to a com-
pany based on its activity. If an enterprise emits less
than what the number of permits allows them, they can
freely trade the number of permits in excess to another
entity that wishes to pollute more. Economically more
efficient, this approach gives an incentive to a company
to reduce its pollution level in order to sell their permit.
On the other hand, a taxation approach taxes every unit
of carbon emitted at a fixed rate. As one can see, firms
do not have an incentive to pollute less under the lat-
ter system. In Canada, Québec and Ontario adopted a
cap and trade system, where the carbon price is $18 per
tonne on average for the Québec Province (Tombe and
Rivers, 2017). However, the western provinces of British
Columbia and Alberta opted for a taxation system. The
current carbon price in Alberta is $30 per tonne. The
introduction of carbon pricing is said to have different
impacts among regions. A case study of the province of
Saskatchewan, whose economy is based on the extrac-
tion of natural resources, shows that GHG emissions are

Preprint submitted to IAEE 2019 21 June 2019

Electronic copy available at: https://ssrn.com/abstract=3408174



reduced but its economy is bound to shrink as the fuel-
switching opportunities are rare (Liu et al, 2018). How-
ever, the BC example shows promising results. Introduc-
ing its carbon tax in 2008, Yamazaki (2017) found ev-
idence that the system in place proved to be beneficial
for the employment rate of the province.

This paper focuses on Alberta who introduced the car-
bon tax in 2017. Alberta is currently the biggest coal
producer alongside British Columbia as they provide
85% of Canadian coal. The use of this fossil fuel cur-
rently generates 10% of the country’s electricity. More-
over, the province supplies 71% of Canada’s natural gas
(NRCAN, 2018). In 2018, the carbon tax increased by
50% to reach $30 per tonne. Households electricity bills
are expected to rise by $150 (Tombe, 2017). The main
concern raised by economists is that the tax is going to
affect poor households, and this, in turn, could lead to an
increase in inequalities (Ambasta and Buonocore, 2018).
Hence, a correct approach to carbon pricing is essential
for the Albertan economy and its residents.

In this paper, we introduce an approach to carbon pric-
ing based on the European energy market experience.
Following the method introduced by Goutte and Cheval-
lier (2015), we define the carbon price as the necessary
price to incite companies to switch from coal to natural
gas. Since the latter is less carbon intensive, this measure
would considerably reduce GHG emissions. Besides, we
also examine the case of switching from natural gas to
wind. The economic content of this paper gives a detailed
explanation of the fuel-switching and energy-switching
processes. Moreover, we intend to generalize our statis-
tical approach to the North American market and other
energy indicators. In addition to the fuel-switching and
energy-switching prices, we look at coal, natural gas, and
oil individually. In order to model the prices, we consider
three types of stochastic models: Lévy Normal Inverse
Gaussian (NIG) process, Lévy Normal, and the Heston
model.

The paper is structured in the following way. Section 2
provides the necessary economic background to under-
stand how the fuel-switching price is defined. Section 3
presents the data used and gives the first insight into
the Albertan energy market. Section 4 is concerned with
the methodology and can be dissected into two parts:
stochastic modeling and parameters estimation. Section
5 shows the empirical results found. Section 6 discusses
the potential shortcomings of the paper and topics for
further research and summarizes the main results.

2 Energy Economics and Energy-Switching

Energy markets depend on micro and macroeco-
nomic factors and influence fuel-switching and energy-
switching. The aim of this section is to first give the
dynamic driving energy prices. Secondly, the notion

of energy-switching is defined as well as the necessary
conditions for it to happen and the potential problems
arising from it. Thirdly, the carbon pricing formula is
presented and reveals when companies have an incen-
tive to pass from coal to natural gas (or natural gas to
wind) and vice-versa based on current market condi-
tions. Finally, we examine the factors influencing the
price of wind.

Prices in the energy sector depend on political decisions
and economic aspects. Competition among fossil fuel
users and from alternative sources to generate energy,
such as renewables, is a key factor in defining prices. In-
deed, energy markets are often controlled by a monopo-
list who has sufficient power to dictate prices. Moreover,
subsidies given by governments to clean-technologies can
play an important role in the competitiveness of the in-
dustry. In addition to the competition facet, national
allocation plans, which covers the initial number of per-
mits (CO2 allowances) and a penalty level, are identi-
fied as the main cause of price jumps. Furthermore, the
volatility of the price of fossil fuels is also an element
to take into consideration. In fact, coal prices are gen-
erally more stable than natural gas prices and, conse-
quently, are more attractive for a company looking to re-
duce risks. Other variables potentially influencing prices
are weather conditions and economic growth (Sjim et al,
2006; Seifert et al, 2008; Carmona et al, 2009).

Another influence omitted from the list above is fuel-
switching, which represents the possibility to pass from
a coal-fired plant to a natural gas plant, and vice-versa.
Coal is generally cheaper and thus preferred by com-
panies, even though it emits more CO2. Therefore, in
order for a switch to happen two conditions must be
met. First, the carbon price (tax or current permit price)
must be high enough and natural gas price low enough.
Since natural gas emits less CO2, a high carbon price
favors its use. Second, there has to be the physical pos-
sibility to switch. During the winter season, the demand
for electricity is typically higher than in the summer,
and it is not unlikely that all plants are working at their
maximum capacity, regardless of the type of fossil fu-
els used (Delarue, D’haeseleer, 2007). The fuel-switching
process is a good start to model the carbon price since
traditional abatement measures tend to invite produc-
ers to use cleaner energy than coal. However, as noted
by Chesney and Taschini (2012), fuel purchasers tend to
sign contracts with a long maturity and this impedes the
fuel-switching process to be fully flexible. Consequently,
this paper chooses to consider weekly fuel prices, rather
than daily.

Electricity prices depend on the physical capacity to
generate power, the presence of potential substitute and
other economic factors. Therefore, an adequate formula
must take into account the various aspects mentioned so
far. This paper follows the method defined by Chevallier
and Goutte (2015). Prices are defined by the marginal
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generation of technology and are expressed as the ratio
between the fuel cost, FC, and the plant efficiency, η,
which represents the necessary amount of energy needed
to produce electricity:

MC =
FC

η

Introducing a price on carbon requires the equation
above to be revised. Considering that fossil fuels have a
different impact on the environment, an emission factor,
EF , based on C02 intensity is added as well as an emis-
sion cost, EC, per unit of carbon emitted. The revised
formula reads:

MC =
FC

η
+
EF

η
EC

Fuel-switching occurs if the use of one fossil fuel to gen-
erate energy is cheaper than the other option. There-
fore, by equalizing the marginal costs, one can define the
minimum carbon price necessary for a switch to occur.
Indeed, the only factor which is common to both fossil
fuels is EC.

ECswitch =
ηcoalFCgas − ηgasFCcoal
ηgasEFcoal − ηcoalEFgas

If the carbon tax defined by the Albertan government
is lower than this price, then coal plants are said to be
more profitable than gas plants.

The idea behind energy-switching based on wind follows
the same formula. However, the factors influencing wind
prices are quite different. Indeed, the use of wind de-
pends on seasonal factors and its price depends on tech-
nological aspects, such as electricity storage. The Cana-
dian Wind Energy Association (CanWea) provides fur-
ther explanation regarding this topic. Moreover, wind is
discussed in greater details in the next section.

3 Data

The data used in this project were gathered from vari-
ous sources, such as NRG Stream, Bloomberg, Energy
Information Association (EIA), Market Insider, Jem En-
ergy, the city of Winnipeg and CanWea. This section
provides insight into the distribution and evolution of
energy prices over time, as well as the justification for
the time period considered.

Following the formula of the fuel-switching (energy-
switching) prices from the previous section, the different
variables employed were retrieved from various data
sources. When fuel-switching is considered, we need
data regarding the fuel cost, efficiency parameters and
emission factors as mentioned in the previous section.
Prices of coal (in $/tonne) and prices of natural gas (in

$/MMbtu) were retrieved from NRG Stream (Alberta
data), EIA (natural gas North America data) and Mar-
ket Insider (coal North America data). The emission fac-
tor component, EF , is expressed in kgCO2eq/MWhp.
Financial data from the city of Winnipeg show that
EF is equal to 210 for natural gas and 320 for coal.
Similar to previous findings, coal is more harmful to the
environment than natural gas. A 2004 study from JEM
Energy calculated the efficiency of coal and natural gas
plants in Alberta. The average efficiency for a coal and
natural gas plant is respectively 32.6% and 31.1%. (
Also 32% and 43% respectively in North America case,
according to EIA.)

In order to compute the EC price, the unit of the data
were changed from $/MMbtu and $/tonne to $/Mwh.
Furthermore, weekly data were chosen as opposed to
monthly data. Fuel and energy-switching are technically
more likely to happen on a monthly basis, however, since
we failed to obtain large time series data for the energy
markets, we opted for a weekly approach. The next fig-
ures below (Fig. 1 and Fig. 2), represent the evolution
of coal, natural gas, oil and fuel switching for both the
Albertan and North American markets.

The results for the North American market were ob-
tained using Bloomberg (oil), Market Insider (coal) and
EIA (Henry Hub natural gas). In recent years, the prices
for coal and natural gas have became extremely close to
natural gas being even cheaper at times. Consequently,
it is not surprising that we observe the fuel-switching
price to have gone negative. The main implication is that
pricing carbon using fuel-switching is not appropriate
anymore. Regarding oil, we note that the financial crisis
may have triggered a high-spike in its price. By looking
at the three figures, we conclude that energy prices are
characterized by high-spike and quick mean reversion,
which justify our approach to use pure jumps methods.
Additionally, it is apparent that prices go through peri-
ods of calm and stress, this, in turn, could imply that a
stochastic volatility model, such as Heston model, yields
better results than a classic geometric Brownian motion.
Finally, it is indisputable that fuel-switching has become
obsolete, therefore, we decide to model carbon under our
energy-switching approach.

In recent years, renewable energies, wind in particular,
have become an important source of electricity genera-
tion. A 2016 study by CanWea showed that wind power
accounts for 50% of Denmark’s electricity generation
system and was the largest source of new Energy in
Canada. The emission factor, associate to wind is equal
to zero and it’s efficiency ranges from 32-37% according
to the EIA. Moreover, the cost of Wind is estimated to
lie somewhere between 37.5$ and 42.5$ per MWh. Since
data regarding wind cost is difficult to estimate, we gen-
erated a random uniformly distributed process to obtain
the price of wind. The next figure shows the necessary
price to switch from natural gas to wind. If the carbon
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Fig. 1. Alberta Market. Prices are expressed in CAD/MWh.

tax is under the line, then natural gas plants are said to
be more efficient than wind plants. The energy-switching
price is quite high and reflects the current low price of
natural gas in Alberta.

So far, our results have indicated that fuel-switching,
considering the large drop in the natural gas price, is
no longer an adequate approach. Moreover, the prices
are characterized by jumps and mean-reversion and this
confirms what has previously been observed in the liter-
ature. Therefore, the last step prior to stochastic mod-
eling is to determine the empirical distribution of our
data.

The distribution of returns is a good indicator of the
problems that can arise when simulating prices under a
geometric Brownian approach. Financial data, as illus-
trated by oil and energy-switching, depart from a Nor-
mal distribution. Indeed, extreme returns are more likely
to happen than what the Normal predicts. Moreover,
we notice that returns are generally skewed. Hence, the
use of a NIG may be a more appropriate approach when
simulating energy prices.

Fig. 2. North American Market. Prices are expressed in
USD/MWh for the natural gas, coal and the fuel-switching
price. The price of oil is given in USD/barrel.

4 The stochastic Model

In this part, we are considering a panel of continuous
mean reverting stochastic processes and the Heston
model. The estimation methodology of parameters in
mean-reverting stochastic processes is inspired from
Chevalier and Goutte (2015).

4

Electronic copy available at: https://ssrn.com/abstract=3408174



Fig. 3. Energy Switching based on wind for Alberta. Prices
are expressed in CAD/MWh.

Let (Ω, F, P ) be a probability space and in this paper, we
assume all the stochastic models are under this probabil-
ity space. We now consider three models: a continuous
process with a Brownian motion, Lévy-driven Ornstein-
Uhlenbeck process and Heston model. Then we fit each
of them to our energy and fuel switching price and com-
pare the result we have in the next part.

4.1 Mean-reverting process

To introduce two mean-reverting processes, we first
need the definition of Lévy process. This section and
the mathematical propositions that follow are inspired
from Chevalier and Goutte (2015).

Definition 1: A Lévy process {Xt}t≥0 is a stochastic
process that it satisfies following properties:
1.X0 = 0.
2.For any s > 0 and t > 0, we have that Xt+s − Xt

has the same distribution with Xs. i.e. It has stationary
increments.
3. For 0 ≤ t0 < t1 < ... < tn, Xti −Xti−1

are indepen-
dent for all i. i.e. It has independent increments.

Fig. 4. Empirical Distribution of Returns

4. The path of a Lévy process are right continuous and
admit left limit. i.e. Xt has càdlàg path.

One can treat the Lévy process as a combination of
continuous process and discontinuous process. So two
simple example of Lévy process will be Brownian Mo-
tion and Poisson Process. Next, we will give two mean
reverting process, one is a continuous process with
a browian motion and the other one is Lévy-driven
Ornstein-Uhlenbeck processes.

Definition 2: Let t ∈ [0, T ], (Xt) be the solution to a
stochastic differential equation:

dXt = κ(θ −Xt)dt+ σdYt

with parameters κ,θ in R, σ ∈ R+ and Yt is another
stochastic process.

If the Yt is a standard Brownian motion then (Xt) is
called continuous Ornstein-Uhlenbeck process.

Otherwise if Yt is a Lévy process, we call (Xt) as a
Lévy-driven Ornstein-Uhlenbeck process.

5
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Remark 1: In this model, κ denotes the mean-reverting
rate, θ denotes the long-run mean and σ denotes the
volatility.

Remark 2: The Lévy process L can follow a panel of
distributions for example the Variance Gamma distribu-
tion and Normal Inverse Gaussian distribution. In this
paper we assume that it follows a Normal Inverse Gaus-
sian(NIG) distribution, which has the probaility density
function

αδ

π
exp(δ

√
α2 − β2+β(x−µ))

K1(αδ
√

1 + (x− µ)2/δ2)√
1 + (x− µ)2/δ2

where δ > 0,α ≥ 0, γ ≥ 0 and Kv is a Bessel function of
the third kind with index v. This family of distribuiton
was introduced by Barndorff-Nielsen(1998) and it is a
continuous probability distribution that is defined as
the Normal variance-mean mixture where the mixing
density is the inverse Gaussian distribution.

Now we already have the model we want to fit, but we
need to estimate the parameters in it based on the data
we have. Next section gives an introduction to a param-
eter estimation method.

4.2 Parameter Estimations of mean reverting stochas-
tic process

In this section we consider a two step parameter es-
timation method for the parameters in Lévy-driven
Ornstein Uhlenbeck process. In Chevalier and Goutte
(2015), they developed a least square method which
minimize the empirical variance to obtain the parame-
ter for Brownian motion and they used a constrained
maximum likelihood method for estimating the NIG
random variable.

Before estimating parameters, we first need to discretiza-
tion the model. In practice, we observe the price at fixed
times 0 = t0 < t1 < ... < tn = T , with ∆t = tk+1 − tk
constant. Thus we can first solve the stochastic differ-
ential equation and discretize the solution by:

Xtk+1
= Xtke

−κ∆t +

∫ tk+1

tk

κθe−κ(tk+1−s)ds

+

∫ tk+1

tk

σe−κ(tk+1−s)dLs

Rearrange the solution, we obtain:

Xtk+1
−Xtk = m− aXtk + sεtk

with m = (1 − e−κ∆t)θ, a = 1 − e−κ∆t and sεk =∫ tk+1

tk
σe−κ(tk+1−s)dLs

If the model is mean reverting process with Brownian
motion, then the process L is Brownian motion and εk
follows N(0, 1). Moreover, If the model is Lévy-driven
Ornstein-Uhlenbeck processes with Lévy process follows
a NIG distribution, then the process L follows a NIG
distribution with expectation 0 and variance 1. Thus we
assume that the parameters of NIG distribution in this
model are α, β, δ and µ. This means that at last, we
need to estimate a set of parameters {m, a, s, α, β, δ, µ}

4.2.1 Parameter Estimation procedure: step one

We estimate the subset of parameter {m, a, s} at first
using a least square method that minimize the empirical
variance of the noise:

V ar[sε] ≈ 1

n

n−1∑
k=0

(Xk+1 − (1 + a)Xk −m)2

where n is the amount of data we have.

Now he solutions to is given by:[
m̂

1− â

]
= (A′A)−1A′B

Where A=


1 Xn−1

... ...

1 X0

 and B=


Xn

...

X1

. And the estimator

of s is directly followed by

ŝ2 = ŝ2V ar[ε] = V ar[ŝε] =
1

n

n−1∑
k=0

(Xk+1−(1+â)Xk−m̂)2.

4.2.2 Parameter Estimation procedure: step two

In this step we propose a constrained maximum likeli-
hood method to estimate the parameter {α, β, δ, µ}. So
far we assume that we have n+1 observations (the prices)
(X0, X1, ..., Xn) such that, for k = 0, 1, ..., n− 1,

ε̃k = Xk+1 − (1− â)Xk = m̂+ ŝεk

is followed by the non-centered and unnormalized NIG
distributionNIG(α̃, β̃, δ̃, µ̃). Now, we are willing to esti-
mate these parameters based on the likelihood function
of NIG distribution.
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Proposition 1: SupposeX1, X2, ..., Xn ∼ NIG(α̃, β̃, δ̃, µ̃),
then log-likelihood function is given by

nlog(
α̃δ̃

π
) + nδ̃γ̃ +

n−1∑
k=0

[β̃δ̃τk − log ck + logK1(α̃δ̃ck)]

where τk = Xk−µ̃
δ , ck =

√
1 + τ2

k , γ̃ =

√
α̃2 + β̃2.

Proposition 2: If X ∼ NIG(α, β, δ, µ), then for any
a ∈ R+ and b ∈ R, we have

Y = aX + b ∼ NIG(
α

a
,
β

a
, aδ, aµ+ b)

Proposition 3: The first four central moments of the
NIG distribution are:

m1 = µ+ δβγ−1,m2 = δα2γ−3,

m3 = 3δβα2γ−5,m4 = 3δα2(α2 + 4β2)γ−7

By proposition 1, we can estimate the parameters
{α̃, β̃, δ̃, µ̃} by maximize the log likelihood under con-

strains γ̃ > 0 and δ̃ > 0. Due to complicated form of
the density of NIG distribution, obtain a estimators for
our parameters is a difficult task and so we need special
numerical method to solve it.

Once the parameter set {α̃, β̃, δ̃, µ̃} has been estimated,
we then use proposition 2. We know that

εk =
ε̃k
ŝ
− m̂

ŝ
∼ NIG(ŝα̃, ŝβ̃,

δ̃

ŝ
,
µ̃− m̂
ŝ

).

So the true estimates of the parameters {α, β, δ, µ} are:

α = ŝα̃, β = ŝβ̃, δ =
δ̃

ŝ
, µ =

µ̃− m̂
ŝ

.

Recall in previous we want the expectation of εk to be 0
and variance to be 1. Thus according to proposition 3,

we also need E[εk] = µ+ δβ
γ = 0 and V ar[εk] = δα2

γ3 = 1.

Combine with the four equation above, we can conclude
that we only have two free parameters (α, β).

At last, since we are using special numerical method to
maximize the log-likelihood function, we need to give our
method some good initial values. Under this situation,
we find out the first to forth sample moments based on
Xi and then solve the initial value of these parameters.
Now let

µ1 = µ̃+ δ̃β̃γ̃−1, µ2 = δ̃α̃2γ̃−3

µ3 = 3δ̃β̃α̃2γ̃−5, µ4 = 3δ̃α̃2α̃2 + 4β̃2γ̃−7

where µk = 1
n

n−1∑
j=0

(ε̃j − X̄)k, k = 1, 2, 3, ... is the kth

sample moment.

Solving these four equation we obtain four initial choices
of our parameters,

ˆ̃γ =
3

S̄
√

3γ̄2 − 5γ̄1
2
,

ˆ̃
β =

γ̄1S̄ ˆ̃γ2

3

ˆ̃
δ =

S̄2 ˆ̃γ3

ˆ̃
β2 + ˆ̃γ2

, and ˆ̃µ = X̄ − ˆ̃
β

ˆ̃
δ

ˆ̃γ

where X̄ and S̄ are the sample mean and variance re-
spectively and γ̄1 = µ3

µ
3
2
2

, γ̄2 = µ4

µ2
2
− 2.

4.3 Heston Model

A common characteristic of energy and financial markets
is the change of volatility over periods of time. Indeed, fi-
nancial markets are known to have periods of stress with
high volatility as can happen in a crisis when uncertainty
reigns and calm periods where prices do not vary much.
Energy markets are similar to that respect. Elections,
changes in the national allocations of permits, discussion
of a plant’s shutdown or even cartel decision such as the
OPEC crisis of 1973 can create temporary uncertainty
in energy prices and cause panic among investors and
other stakeholders. Considering the stochastic nature of
the volatility, we decide to model prices using a Heston
model as an alternative to the other two processes.

Definition 5: (Heston model) Under the risk-neutral
probability measure Q the Heston model is given by:

dS(t) = rS(t)dt+
√
V (t)S(t)dWs(t)

dV (t) = κ(θ − V (t))dt+ σ
√
V (t)dWv(t)

where Ws(t) and Wv(t) are two Brownian motions with
correlation coefficient ρ (Heston, 1993).

4.3.1 Calibration of the Heston Model

We apply the Euler-Maruyama (Begin et Al, 2014)scheme
to the two equations defined above in order to discretize
the process.

Algorithm 1:. Let X̂ and V̂ denote discrete-time
approximations of X and V respectively. The Euler-
Maruyama scheme applied to the above equation is
given by

X̂(h(i)) = X̂(h(i− 1)) + (r − 1

2
V̂ (h(i− 1)))h

+
√
V (h(i− 1))Zx

√
(h)
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V̂ (h(i)) = V̂ (h(i− 1)) + κ(θ − V (h(i− 1)))h

+ σ
√
V (h(i− 1))Zv

√
(h)

where Zx and Zy are standardized Gaussian random
variables such that corr(Zx, Zy) = ρ.

As one can see, the volatility equation is a Ornstein-
Uhlenbeck process, therefore we use our least squares
approach to estimate its parameters. Regarding the risk-
free rate r. it is arbitrarily initiated at zero. The starting
value of the process is the mean of the energy price as
opposed to the initial price of the time series. Since,
the stock price equation does not take into account the
average long term price, we concluded that using the
mean as a starting point yelds better results.

5 Empirical Analysis

This section provides the main findings of this article.
First, we begin by comparing the general statistic of our
data with the empirical estimation of our parameters.
Second, the simulations obtained are displayed. Third,
the goodness of fit of the data is assessed.

5.1 Parameter Estimation

Table 1 below presents a summary of the main informa-
tion regarding energy prices. Table 2 provides the esti-
mated least squares parameter for the Lévy-pure jump
and Brownian motion processes. Table 3 displays the es-
timates using the simulate the NIG.

The data section of this article presented the real price of
each energy stock and demonstrated that they were sub-
ject to high spikes and jumps. Table 1 confirms our past
impression. It is clear that prices of oil vary quite sub-
stantially with a minimum value of 17.72$/barrel and a
high of 145.18$/barrel. This can potentially be explained
by the power of cartels to dictate prices. Moreover, the
skewness and kurtosis measurement indicate departures
from the Normal as previously assumed by looking at the
distribution of prices. Indeed, a positive kurtosis means
that extreme events are more likely than if the data came
from a Normal distribution. Consequently, we expect the
flexibility provided by the NIG to improve performance
with regards to a traditional Brownian motion approach.

Table 2 describes the result of three energy prices. This
paper chose to focus on Energy-switching, oil, and fuel-
switching as they are the main focus of this paper. κ
represents the speed of mean-reversion of the process. As
hinted by the plots in the previous section, we observe
that mean-reversion speed of energy-switching is faster
than the oil one. Additionally, we note that θ, the average
price of the process, is almost equal to the actual mean.
Therefore, calibrating the processes using least squares
gives satisfactory results. Regarding the Heston model,

Table 1. Summary Statistics

Energy Energy-Switching Oil Coal Natural Gas Fuel-Switching

Mean 61.11 62.05 57.75 4.67 2.55

Median 62.17 59.38 58.02 4.03 2.97

Standard Deviation 16.20 26.89 10.11 2.25 3.98

Min 15.10 17.72 39.50 1.59 -7.16

Max 97.04 145.18 79.50 18.48 14.88

Period 14-18 00-18 10-18 00-18 14-19

Observations 223 992 425 947 1272

Skewness -0.76 0.36 0.08 1.66 0.050

Kurtosis 0.75 -0.79 -0.47 3.94 2.45

parameter estimates are not presented in this section
since they are hardly comparable with the other two
processes, however, the simulation section presents an
extensive explanation of the model.

Table 2. Least Squares Parameter Estimates for Lévy Pro-
cesses

Parameter Energy-Switching Oil Fuel-Switching

κ 0.1095921 0.007238064 0.008600791

θ 63.45765 64.84073 1.10466

σ 7.408024 3.064373 0.4007405

Table 3. NIG Parameter Estimates

Parameter Energy-Switching Oil Fuel-Switching

α 1.393878 1.099928 0.60614414

β 0.1155199 -0.1857707 -0.13472828

δ 1.059834 0.9967635 0.10518010

µ -0.3104575 0.1708004 0.03343841

Table 4. Heston Model Parameter Estimates

Parameter Energy-Switching Oil Fuel-Switching

κ 0.5166925 0.6575034 0.2253708

θ 0.008760746 0.0004417604 1.198215

σ 0.01109988 0.0007746965 2.930622
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5.2 Simulation Results

Prices were simulated using the software R and various
packages from the CRAN library. As an example, we
choose to present the result for energy-switching (main
focus) and oil (larger dataset available). As one can see
in the plots that follow, the Lévy NIG process incorpo-
rates high-spike and larger volatility when compared to
the Normal. If it appears clear that the NIG is better to
simulate the energy-switching price, the results for oil
are harder to assess. Moreover, the Heston model does
not seem to fit our data correctly. A possible explana-
tion is that the weekly volatility is not distributed as a
χ2. Therefore, the next part of this section reviews the
goodness of fit test for the Normal and NIG processes,
in order to confirm our visual interpretation.

Fig. 5. Simulation Results for Energy-Switching: Albertan
Data, sources: NRG Stream and CanWea. Prices are ex-
pressed in CAD/MWh.

Fig. 6. Simulation Results for Oil, North American Data,
source: Bloomberg. Prices are expressed in USD/barrel.
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5.3 Goodness of Fit Test

The Kolmogorov-Smirnov test is a common approach to
estimate the goodness of fit of the data. A p-value larger
than five percent indicates that the specified model and
the empirical data come from the same distribution. Ta-
ble 4 gives the p-values for the selected energy prices.
The p-values of the Kolmogorov-Smirnov test were cal-
culated based on the parameter estimated and the distri-
bution of the residuals. According to this method, both
the NIG and Normal distribution are adequate to model
the data. However, we cannot conclude that one method
provides stronger results, even though the p-values of
the NIG are higher. One must interpret the outcome of
the test with caution. Indeed, the p-values appear to be
quite high. Inflated p-values are not uncommon since the
parameters were estimated directly using the residuals.
Nonetheless, the Kolmogorov-Smirnov test remains the
best approach to assess the goodness of fit of the data.
We address this issue in greater details in the shortcom-
ings. Hence, we need additional proof to show that the
NIG outperforms the Normal.

First, as one can see in the Q-Q plot below for oil, the
distribution of the data appears to be normal for the
most part, but extreme events are more likely to happen
than what the normal predicts. Therefore, we obtain
better results when using a NIG approach.

Table 5. Kolmogorov-Smirnov Test

P-value Energy-Switching Oil Fuel-Switching Coal Natural Gas

Normal 0.3677 0.8609 0.3868 0.704 0.9136

Normal Inverse Gaussian 0.4484 0.869 0.7987 0.762 0.3277

Second, the comparison of a simulated distribution resid-
uals from a NIG and Normal compared with the actual
distribution of residuals confirms this result even more.
Therefore, both the Q-Qplot and histogram show that
the NIG outperforms the Normal.

Fig. 7. Distribution the oil residuals

Fig. 8. Histogram of oil residuals
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6 Conclusion

6.1 Summary of Main Results

The goal of this paper is to assess to review the intro-
duction of the carbon tax and to model energy prices.
The procedures employed to define the theoretical car-
bon price are energy-switching and fuel-switching. Fur-
thermore, this article focused on oil, coal and natural
gas separately. Three stochastic processes are considered
to model prices: Lévy NIG, Lévy Normal and Heston
model.

The recent changes in the coal and natural gas prices
have made fuel-switching an obsolete method to price
carbon. Indeed, the fuel-switching price appears to be
negative for several periods. Energy-switching, on the
other hand, relies on the use of renewable energies, such
as wind. This approach is hard to implement due to
the lack of existing infrastructure, which does not allow
to switch from one energy to the other. Nonetheless,
as the use of renewable increases, a policy maker could
define a carbon price based on this approach. However,
it should also consider alternative sources of energies,
such as hydro and solar energies. Our approach is best
suited for the Albertan case but might not be adequate
for other provinces such as Québec, which relies mostly
on hydro energy. We find that an appropriate way to tax
carbon emissions, would be to tax the use of natural gas
between 60 to 100 $/MWh.

The three types of stochastic procedures yield different
results. Overall, the Lévy NIG outperforms both, the
Lévy Normal and Heston model. Moreover, it seems that
the Heston model is not suitable for energy prices. Addi-
tionally, different frequencies could be used such as daily
or even high-frequency data. We chose weekly data due
to the difficulties to switch from one energy to another
on a daily basis.

6.2 Discussion

This section proposes a discussion of the methodology
used and the topics, which should drive further research.
First, the shortcomings of the models and solutions are
presented. Second, an alternative to model stochastic
prices is presented. Finally, the results found are com-
pared with the ones in the literature.

As mentioned in the previous section, the goodness of fit
test of our data suffers from inflated p-values resulting
from the estimation technique of our parameters. An-
other common approach to assess the goodness of fit is
the Cramer-von Mises criterion. The idea is to compare
whether the empirical distribution with the assumed dis-
tribution. The value of the test is calculated under a min-
imum distance estimation procedure (Anderson, 1962).

Additionally, we discovered that the choice of the risk-
free rate impacted greatly the outcome of the Heston
model simulation. Since energy prices depend a lot on in-
ternational political decisions, it might be wrong to use
the average of a 3-month t-bill interest rate issued by the
federal government of the United States. Consequently,
we chose to set the risk-free as zero. Further research
could focus on the correct estimation of the risk-free in a
world where countries have proven to default and where
some countries, such as Switzerland and Denmark expe-
rience even negative interest rates on their government
bonds.

In terms of renewables, future research could investigate
a carbon tax based on switching from natural gas to so-
lar or hydro energy. Our approach to use wind is best
suited for the case of Alberta but might not adequate for
a province such as Québec, which produces electricity
using hydro power. Therefore, an optimal federal car-
bon price method has to take into account the different
characteristics of provinces.

Another alternative could have been used to model en-
ergy prices. A Markov switching Lévy-driven Ornstein-
Uhlenbeck approach, where the parameter σ can be
changed under different states of a Markov chain and
different state represents different economic status like
inflation or a crisis, would be a potential candidate to
obtain better results. Hence, future research should try
and implement this type of process.

The findings of this paper are similar to the results of
Goutte and Chevalier (2015), who investigated the fuel-
switching price on the European market from 2007 to
2010. At that time, the price of coal was relatively cheap
in comparison to the price of natural gas. Their main re-
sults indicate that the Lévy NIG outperforms the Nor-
mal by far. Moreover, they considered the case of a Pois-
son process and showed it was not suitable to model en-
ergy prices.
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