

In vitro and computational analysis of the putative furin cleavage site (RRARS) in the divergent spike protein of the rodent coronavirus AcCoV-JC34 (sub-genus luchacovirus)

Annette Choi, Deanndria Singleton, Alison Stout, Jean K. Millet, Gary Whittaker

▶ To cite this version:

Annette Choi, Deanndria Singleton, Alison Stout, Jean K. Millet, Gary Whittaker. In vitro and computational analysis of the putative furin cleavage site (RRARS) in the divergent spike protein of the rodent coronavirus AcCoV-JC34 (sub-genus luchacovirus). 2024. hal-04494649

HAL Id: hal-04494649 https://hal.uvsq.fr/hal-04494649

Preprint submitted on 7 Mar 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

In vitro and computational analysis of the putative furin cleavage site (RRARS) in the divergent spike protein of the rodent coronavirus AcCoV-JC34 (sub-genus luchacovirus)

Annette Choi ^{1*}, Deanndria T. Singleton ^{1*}, Alison E. Stout ¹, Jean K. Millet ² and Gary R. Whittaker ^{1, 3#}

Departments of Microbiology & Immunology ¹ and Public & Ecosystem Health ³, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.

Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, Jouyen-Josas, France²

- corresponding author grw7@cornell.edu

Abstract

The *Coronaviridae* is a highly diverse virus family, with reservoir hosts in a variety of wildlife species that encompass bats, birds and small mammals, including rodents. Within the taxonomic group alphacoronavirus, certain sub-genera (including the luchacoviruses) have phylogenetically distinct spike proteins, which remain essentially uncharacterized. Using in vitro and computational techniques, we analyzed the spike protein of the rodent coronavirus AcCoV-JC34 from the sub-genus luchacovirus, previously identified in *Apodemus chevrieri* (Chevrier's field mouse). We show that AcCoV-JC34—unlike the other luchacoviruses—has a putative furin cleavage site (FCS) within its spike S1 domain, close to the S1/S2 interface. The pattern of basic amino acids within the AcCoV-JC34 FCS (-RR-R-) is identical to that found in "pre-variant" SARS-CoV-2—which is in itself atypical for an FCS, and suboptimal for furin cleavage. Our analysis shows that, while containing an -RR-R- motif, the AcCoV-JC34 spike "FCS" is not cleaved by furin (unlike for SARS-CoV-2), suggesting the possible presence of a progenitor sequence for viral emergence from a distinct wildlife host.

Introduction

The animal reservoirs for pandemic potential viruses (including coronaviruses) are focused on the breadth of bat species (order Chiroptera) that exist around the world [1-3]. However certain coronaviruses, notably the sub-genus embecovirus (genus betacoronavirus) currently have no bat-origin examples and have a putative reservoir in animal species within the order Rodentia, which is the most diverse mammalian order on the planet and is well-documented as an important reservoir host for human diseases [4, 5].

While rodents are generally appreciated as an important reservoir for RNA viruses, surveillance and detection of coronaviruses is currently relatively limited. Following the initial discovery of what is now the prototype luchacovirus (Lucheng Rn rat coronavirus, or LRNV), along with two *Betacoronavirus* species [6], a study from Ge *et al.* examined 177 intestinal samples from three species of rodents in Yunnan Province, China and detected both alphacoronaviruses and betacoronviruses in three animal species (*Apodemus chevrieri, Eothenomys fidelis* and *Apodemis ilex*) [7]. Their study reported the full-length genome of a coronavirus (AcCoV-JC34) from *A. chevrieri* (Chevrier's field mouse) that was designated an alphacoronavirus (sub-genus luchacovirus) based on its genome structure and multiple sequence alignments, which included analysis of the whole genome and the ORF1a/b genes. However, Ge *et al.* noted that both AcCoV-JC34 and LRNV may represent a novel alphacoronavirus species. In particular, they noted that the luchacovirus S gene formed a distinct genetic lineage with low sequence identity (<25%) compared to other well characterized coronaviruses. Ge *at al.* also noted that AcCoV-JC34 S contained two predicted

proteolytic cleavage sites, one at residue 508 at the S1/S2 interface, and the other at residue 674 (the fusion peptide-proximal S2' position).

More recently, a more comprehensive sampling of rodents and other small mammals has identified a diverse range of coronaviruses in such animal reservoirs [8]. To determine the evolutionary history of rodent alphacoronaviruses in more detail, Tsoleridis *et al.* also reported sequence data from viruses sampled from European rodents, to define a single common ancestor for all rodent alphacoronaviruses with a shared recombinant betacoronavirus spike gene—also shared with batCoV HKU2, swine acute diarrhea syndrome (SADS) coronavirus and two shrew coronaviruses [9]. According to Tsoleridis *et al.*, the luchacoviruses (including AcCoV-JC34) comprised a distinct lineage within the "recombinant" viruses. In summary, it can be argued that coronaviruses of small mammals, including rodents, are still poorly understood.

We have previously reported that rodent coronavirus AcCoV-JC34 has a weakly predicted furin cleavage site (FCS) is its spike protein [10]. Here, we further analyze the AcCoV-JC34 spike and its "FCS" along with the other luchacoviruses, taking an in vitro and computational perspective.

Results

Phylogenetic analysis of luchacoviruses

To understand the relationship of ACoV-JC34 and the other known luchacoviruses, we first constructed a phylogenetic tree of these viruses in comparison to representatives of the diverse coronavirus family, based on spike protein sequences (Figure 1). In agreement with Ge *at al.*,

luchacoviruses formed a monophyletic group with 100% bootstrap support, indicating a common ancestor origin outside of the established alphacoronavirus branch. Luchacoviruses clustered with rhinacoviruses, which include swine acute diarrhea syndrome coronavirus, Rhinolophus bat coronavirus HKU2, and porcine enteric alpha coronavirus (Figure 1).

Geographical distribution of sampled luchacoviruses

The geographical location, dates and rodent species sampled for the currently identified luchacoviruses are summarized in Figure 2 and Table 1. The luchacoviruses sampled to date are from a range of rodent hosts and are from the United Kingdom and several provinces in China (Figure 2), indicating a widespread distribution. Despite being sampled in these distinct locations, as mentioned above, luchacoviruses form a monophyletic group suggesting they have been associated with rodents for an extended period of time.

Multiple sequence alignment and structural analysis of AcCoV-JC34 spike

A multiple sequence alignment of spike proteins was performed on AcCoV-JC34 spike in comparison to the prototype luchacovirus Lucheng Rn rat CoV (LRNV), as well as SARS-CoV-2, SARS-CoV, HCoV-HKU1, HCoV-OC43 and MERS-CoV. This alignment revealed that the -RR-R- motif present in AcCoV-JC34 does not align precisely with the S1/S2 motif of most coronavirus spikes (Figure 3). However, it aligned with a potential secondary MERS-CoV furin cleavage site (RSTRS).

To investigate the structural location of AcCoV-JC34 furin cleavage site, the AcCoV-JC34 spike protein structure was structurally modeled (Figure 4). We used SADS-CoV spike for our modeling due to its available structure in the RCSB protein data bank and relatively high

identity with JC34 (41.5%). In our JC34 model, the potential furin cleavage site (-RR-R-) is located in an exposed loop of the protein which is predicted to increases its accessibility to proteases. However, the potential AcCoV-JC34 furin cleavage site was within a loop upstream of the typical S1/S2 furin cleavage site found in other CoVs (see Figure 3). In SARS-CoV-2, this upstream region aligned with a DQLTP sequence upstream of the expected S1/S2 cleavage site.

Bioinformatic and biochemical analysis of potential AcCoV-JC34 spike cleavage site

To determine whether furin processes the -RR-R- motif in AcCoV-JC34, we first utilized the PiTou and ProP furin cleavage prediction tools (Figure 5). A positive score for Pitou or a score above 0.5 for ProP indicates the likelihood of furin cleavage. AcCoV-JC34 has a weakly predicted furin cleavage site based on the PiTou score (see also [10]). Although bioinformatic tools are useful for prediction, these may not represent biologically relevant cleavage events, which need to be addressed experimentally.

To directly test whether furin cleaves this site *in vitro*, we performed peptide cleavage assays using furin, along with trypsin as a control. The peptide sequences used were TFMTKARARTTF (Lucheng Rn rat CoV, LRNV), TFSRRARARTL (AcCoV-JC34), and TNSPRRARSVA(SARS-CoV-2). Trypsin cleaved all three peptides with varying efficiency. Furin, as expected from previous studies, cleaved the SARS-CoV-2 peptide; however, it did not cleave the LRNV or JC34 peptides (Figure 6). These data indicate that although AcCoV-JC34 has a minimal furin cleavage sequence (R-X-X-R) it is not able to be cleaved by furin when tested experimentally.

Discussion

The "furin cleavage site" or FCS of SARS-CoV-2 has been at the center of the many discussions on the origin of the COVID-19 pandemic; see [11] for a recent summary. Despite being interpreted as "highly unusual", an FCS is—to the contrary—very common among the *Coronaviridae* [12], with sarbecoviruses and most alphacoronaviruses being the exception rather than the rule in lacking this important regulatory sequence. In fact, many zoonotic coronaviruses and those in reservoir hosts appear to contain sequences and structural loops at the S1/S2 interface that are sub-threshold for furin-mediated cleavage [13-16] and may be "poised" for spillover events. Examples include "pre-variant" SARS-CoV-2, as well as the sarbecoviruses RmYN02, RacCS203, BANAL-20-116, BANAL-20-246 that have potential phylogenetic homology to the SARS-CoV-2 FCS [17]—and may include the luchacovirus AcCoV-JC34 analyzed here. It is noteworthy that AcCoV-JC34 is the only luchacovirus containing this -R-RR- motif.

While containing an -RR-R- motif, as found in SARS-CoV-2, the data presented here show that this AcCoV-JC34 sequence is not cleaved by furin. The reasons for this are currently unclear. One possibility is that the upstream proline found in SARS-CoV-2, as well as in other spike cleavage site sequences, may promote cleavage by creating a structural turn beneficial for furin activity. It is also possible that the additional downstream arginine residue in AcCoV-JC34 spike may be inhibitory for the tight active site binding pocket present in furin [18]. Alternatively, the structural loop present in AcCoV-JC34 spike may be cleaved by other proprotein convertases of the furin family that have less stringent cleavage requirements, or

by trypsin-like enzymes or cathepsins. Notably, the -RR-R- motif is rare in furin substrates, and only other known example of this sequence motif in FurinDB (a database of furin substrates) is found in proaerolysin, a bacterial toxin [19].

One notable aspect of the -RR-R- motif in AcCoV-JC34 is that is does not align precisely with the S1/S2 motif of most coronavirus spikes (see Figure 3) and is a structurally exposed location above the typical S1/S2 loop (see Figure 4). Analysis of the MERS-CoV spike also shows an addition putative FCS in the MERS-CoV spike (SRSTRS); while this contains a minimal furin motif this sequence shows low scores for furin cleavage with both Pitou and ProP, and FRETbased peptides were not cleaved by furin in biochemical cleavage assays—in contrast to the PRSVRS motif at the expected S1/S2 junction (J. K. Millet, unpublished results). Nevertheless, it is possible that, as with AcCoV-Jc34, this "secondary" MERS-CoV sequence comprises a "blocked" FCS due to flanking hydrophobic and charges residues in the downstream Cterminal positions (i.e., SRSTRSMLKRRDS). This putative secondary cleavage site also lacks an upstream proline/proline-rich region, as with many other S1/S2 regions that are known to be cleaved by furin.

For SARS-CoV-2, it is clear that selection is occurring to up-regulate the spike FCS, as seen with several of the highly transmissible variants that have emerged [20-24]. The FCS can also be readily down regulated upon Vero cell adaptation; for examples see refs [25, 26]. Likewise, some coronaviruses in animal reservoirs may be "poised" for proteolytic cleavage-activation at S1/S2, with selection occurring along with modifications to their receptor binding domain. One interesting example of this may exemplified by the MERS-like bat-CoVs HKU-4 and

HKU-5, with HKU-4 binding human DPP4, but having no identifiable FCS, and with HKU-5 not able to bind hDPP4 and having a robust FCS [27].

Our studies highlight the possible presence of a distinct proteolytic cleavage loop in the coronavirus spike protein and the specific features of the luchacovirus spike—which along with that found in the rhinacoviruses (e.g., SADS-CoV) appears to represent an evolutionary disparate spike protein with apparent similarities to a betacoronavirus spike protein (see Figure 1), despite the taxonomic designation of these viruses as alphacoronaviruses.

References

- 1. Ruiz-Aravena, M., et al., Ecology, evolution and spillover of coronaviruses from bats. Nature Reviews Microbiology, 2021.
- 2. Plowright, R.K., et al., Pathways to zoonotic spillover. Nat Rev Microbiol, 2017. 15(8): p. 502-510.
- 3. Stout, A.E., et al., Viral and Host Attributes Underlying the Origins of Zoonotic Coronaviruses in Bats. Comparative Medicine, 2021. 71: p. 442-450.
- 4. Luis, A.D., et al., A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special? Proc Biol Sci, 2013. 280(1756): p. 20122753.
- 5. Keeling, M.J. and C.A. Gilligan, Metapopulation dynamics of bubonic plague. Nature, 2000. 407(6806): p. 903-906.
- 6. Wang, W., et al., Discovery, diversity and evolution of novel coronaviruses sampled from rodents in China. Virology, 2015. 474: p. 19-27.
- 7. Ge, X.Y., et al., Detection of alpha- and betacoronaviruses in rodents from Yunnan, China. Virol J, 2017. 14(1): p. 98.
- 8. Wu, Z., et al., Comparative analysis of rodent and small mammal viromes to better understand the wildlife origin of emerging infectious diseases. Microbiome, 2018. 6(1): p. 178.
- 9. Tsoleridis, T., et al., Shared Common Ancestry of Rodent Alphacoronaviruses Sampled Globally. Viruses, 2019. 11(2).
- 10. Stout, A.E., et al., Furin cleavage sites in the spike proteins of bat and rodent coronaviruses: Implications for virus evolution and zoonotic transfer from rodent species. One Health, 2021. 13: p. 100282.
- 11. Chan, Y.A. and S.H. Zhan, The emergence of the spike furin cleavage site in SARS-CoV-2. Molecular Biology and Evolution, 2021.
- 12. Whittaker, G.R., SARS-CoV-2 spike and its adaptable furin cleavage site. Lancet Microbe, 2021. 2(10): p. e488-e489.
- Jaimes, J.A., et al., Phylogenetic Analysis and Structural Modeling of SARS-CoV-2 Spike Protein Reveals an Evolutionary Distinct and Proteolytically Sensitive Activation Loop. J Mol Biol, 2020. 432(10): p. 3309-3325.
- 14. Jaimes, J.A., J.K. Millet, and G.R. Whittaker, Proteolytic Cleavage of the SARS-CoV-2 Spike Protein and the Role of the Novel S1/S2 Site. iScience, 2020. 23(6): p. 101212.
- 15. Tang, T., et al., Proteolytic Activation of SARS-CoV-2 Spike at the S1/S2 Boundary: Potential Role of Proteases beyond Furin. ACS Infect Dis, 2021. 7(2): p. 264-272.
- 16. Millet, J.K. and G.R. Whittaker, Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. Proc Natl Acad Sci U S A, 2014. 111(42): p. 15214-9.

- 17. Lytras, S. https://virological.org/t/the-sarbecovirus-origin-of-sars-cov-2-s-furincleavage-site/536.
- 18. Henrich, S., et al., The crystal structure of the proprotein processing proteinase furin explains its stringent specificity. Nat Struct Biol, 2003. 10(7): p. 520-6.
- 19. Abrami, L., et al., The pore-forming toxin proaerolysin is activated by furin. J Biol Chem, 1998. 273(49): p. 32656-61.
- 20. Bushman, M., et al., Population impact of SARS-CoV-2 variants with enhanced transmissibility and/or partial immune escape. Cell, 2021.
- 21. Lubinski, B., et al., Spike protein cleavage-activation mediated by the SARS-CoV-2 P681R mutation: a case-study from its first appearance in variant of interest (VOI) A.23.1 identified in Uganda. bioRxiv, 2021: p. 2021.06.30.450632.
- 22. Lubinski, B., et al., Functional evaluation of the P681H mutation on the proteolytic activation the SARS-CoV-2 variant B.1.1.7 (Alpha) spike. iScience 2021 https://doi.org/10.1016/j.isci.2021.103589
- 23. Grubaugh, N.D., et al., Public health actions to control new SARS-CoV-2 variants. Cell, 2021. 184(5): p. 1127-1132.
- 24. Lauring, A.S. and E.B. Hodcroft, Genetic Variants of SARS-CoV-2-What Do They Mean? JAMA, 2021. 325(6): p. 529-531.
- Sasaki, M., et al., SARS-CoV-2 variants with mutations at the S1/S2 cleavage site are generated in vitro during propagation in TMPRSS2-deficient cells. PLoS Pathog, 2021. 17(1): p. e1009233.
- 26. Lamers, M.M., et al., Human airway cells prevent SARS-CoV-2 multibasic cleavage site cell culture adaptation. Elife, 2021. 10.
- Yang, Y., et al., Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus. Proc Natl Acad Sci U S A, 2014. 111(34): p. 12516-21.

Methods

Furin prediction calculations. Prop: CoV sequences were analyzed using the ProP 1.0 Server hosted at: cbs.dtu.dk/services/ProP/. PiTou: CoV sequences were analyzed using the PiTou V3 software hosted at: http://www.nuolan.net/reference.html.

Amino acid alignments and phylogenetic trees

Multiple sequence alignment was performed on coronavirus spike protein using Geneious Prime ® (v.2019.2.3. Biomatters Ltd.). A maximum likelihood phylogenetic tree was constructed using MegaX(, 100 boot strap replicates based on the spike protein. Amino acid sequences of S were obtained from NCBI GenBank. Accession numbers are: AcCoV-Jc34 (YP_009380521), Asian leopard cat CoV (EF584908.1),Bat_Hp/Zhejiang2013(YP_009072440),Bat-Rm/Yunnan/YN02/2019

(QPD89843.1), Bat-SL-CoV_ZC45 (AVP78031.1), BCoV (P15777), Bottlenose dolphin CoV-HKU22 (AHB63508), BtRf-AlphaCoV/YN2012 (YP_009200735), CCoV (AY436637.1), ECoV-NC99 (AAQ67205.1), FCoV-Black (EU186072.1), Ferret-CoV (NC_030292.1), FIPV 79-1146 (DQ010921.1),HCoV-229E(NC_002645.1),HCoV-HKU1(NC_006577),HCoV-

NL63(NC 005831.2),HCoVOC43(NC 006213.1),HeCoV(MK679660.1),HKU4(YP 001039953),H KU5(YP 001039962), HKU23(QEY10673), HKU24(QOE77327), IBV(NC 001451.1), Longquan Rl rat CoV (QOE77336.1), Lucheng Rn rat CoV(QOE77268.1), MERS-CoV(AFS88936.1), MHV-1 (ACN89742), PDCoV (MN942260.1), PEDV(NC 003436.1), PHEV(QTF73995.1), Porcine enteric alphacoronavirus GDS04 (ASK51717.1), Rabbit CoV-HKU14(AFE48827), RaTG13(QHR63300), Rhinolophus bat coronavirus HKU2 (YP_001552236.1), Rhinolophus bat CoV-BTKY72 (APO40579.1), Rhinolophus bat CoV-HKU32 (QCX35178), Rhinolophusbat CoV-HKU2 (YP 001552236.1), Rousett bat CoV-229E related(QHA24665), Rousettus bat CoV-GCCDC1(QKF94914), RtClan-CoV/GZ2015 (), RtMurf-CoV-1/JL 2014 (ATP66738), RtRl-CoV/F J2015 (KY370050), SARS-CoV (AAT74874.1), SARS-CoV-2 Wuhan-Hu-1 (YP_009724390.1), Sc-

BatCoV-512 (ABG47078), Swine acute diarrhea syndrome coronavirus(AVM41569.1), Swine acute diarrhea syndrome related coronavirus (AVM80500.1), TGEV(P07946), Turkey-CoV (QRR19172), UkMa1(QBG64648), UKRn3(QBG64657).

Spike structural modelling

Pairwise amino acid alignment between AcCoV-Jc34 (YP_009380521) and SADS-CoV (AVM80500) was performed using Geneious Prime ® (v.2019.2.3. Biomatters Ltd.). S protein models were built based on the SADS-CoV structure obtained from RCSB (PDB: 6M39), using UCSF Chimera (v.1.14, University of California) through the modeler homology tool of the Modeller extension (v.9.23, University of California).

Fluorogenic peptide cleavage assays

Fluorogenic peptide cleavage assays were performed as described previously [14]. Each reaction was performed in a 100 μ L volume consisting of buffer, protease, and AcCoV-Jc34 (TFSRRARARTL) or Lucheng Rn rat CoV (TFMTKARARTTF) or SARS-CoV-2 S1/S2 WT (TNSPRRARSVA) fluorogenic peptide in an opaque 96-well plate. For trypsin catalyzed reactions, 0.8 nM/well TPCK trypsin was diluted in PBS buffer. For furin catalyzed reactions, 1 U/well recombinant furin was diluted in buffer consisting of 20 mM HEPES, 0.2 mM CaCl2, and 0.2 mM β -mercaptoethanol, at pH 7.0. Fluorescence emission was measured once per minute for 60 minutes using a SpectraMax fluorometer (Molecular Devices) at 30 °C with an excitation wavelength of 330 nm and an emission wavelength of 390 nm. Vmax was calculated by fitting the linear rise in fluorescence to the equation of a line.

Figure 1. Phylogenetic tree of spike protein sequences.

The maximum likelihood phylogenetic tree was constructed using MegaX, 100 bootstraps, from a multiple sequence alignment of the spike sequences. Betacoronavirus spikes are shaded green, alphacoronavirus spikes are shaded blue, deltacoronavirus spikes are shaded yellow and gammacoronavirus spikes are shaded pink

Figure 2. Geographical distribution of currently identified luchacoviruses.

Luchacoviruses have been identified from surveillance studies in United Kingdom (East Midlands region) and China (Yuanna, Zhejiang, Fujian, Jilin, and Guizhou provinces).

	Rodent		Time period
Luchacovirus	species	Location	
			2011.8
AcCoV-JC34	Apodemus chevrieri	China (Yuanna)	
			2011-2013
Lucheng Rn rat CoV	Rattus norvegicus	China (Lucheng)	
			2015.5
RtRl-CoV/FJ2015	Rattus losea	China (Fujian)	
			2014.8
RtMruf-CoV-1/JL2014	Myodes rufocanus	China (Jilin)	
			2015.12
RtClan-CoV/GZ2015	Eothenomys melanogaster	China (Guizhou)	
			2008-2015
	D	United	
UKKno	Kattus norvegicus	Kingdom	2009 2015
		United	2008-2015
UKMa1	Microtus agrestis	Kingdom	

Table 1. Rodent luchacoviruses identified from surveillance studies.

Figure 3	
AcCoV-JC34MALIFVLMLITLYRCPFVLCNFQVCTDQLRQQEVYL-P	NAVS 41
Lucheng Rn rat CoVMYFFLLLLFVSADAAIQTCPAPGNVNLDISKLYYG-T	QASI 40
SARS-CoV-2MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYP-D	KVFR 44
SARS-CoVMAIFLLFLTLTSGSDLDRCTTFDDVQAPNYTQHTSSMRGVYYP-D	EIFR 48
HKU 1MLLIIFILPTTLAVIGDFNCTNFAINDLNTTVPRISEYVVDVSYGLGTYYILD	RVYL 57
0C43MFLILLISLPTAFAVIGDLNCTLDPRLKGSFNNRDTGPPSISIDTVDVTNGLGTYYVLD	RVYL 63
MERS-CoV MIHSVFLLMFLLTPTESYVDVGPDSVKSACIEVDIQQTFFDKTWPRPIDVSKADGIIYPQG	RTYS 65
AcCoV-JC34 NATYIATAVFPTRHWHCGSSSNSTPGDNKFNGIGVFVHRFNHPNW	86
Lucheng Rn rat Cov NATFQVVQVLPQPWKCNSYSNGPSNKFNGIGVFVDLASAQHS	83
SARS-COV-2 SSVLHSIQDLFLPFFSNVWFHAIHVSGINGIKRFDNPVLPFNDGVYFASIEKSNI	100
SARS-COV SDILYLIQUELEPFYSNVIGHTINHIVIPENUGIYAAIEKSNV	9/
TRU I NITILFIGTFPKSGANFRUESLKGTTLSTLWEVQKPFLSDFNNGFSKVKNIKLVN	KILY 118
UC43 NITEFENG-TTFTSUSTEMUMALNGTDELSTEWERFFFLSDFTNGTAKVKNTKKNTK	
	1111 132
AcCoV-1C34ATOAST	
Lucheng Rn rat CoV	YVOT 120
SARS-CoV-2)IRGWIFGTTI DSKTOSI I TVNNATNVVIKVC	FFOF 135
SARS-CoVSTNVV-IRAC	NFEL 132
HKU 1 SERSTIVIGSVFINNSYTIVVQPHNGVLEITAC	QYTM 155
0C43 SEFPAITIGSTFVNTSYSVVV0PRTINST0DGVNKL0GLLEVSVC	QYNM 173
MERS-CoV SPSTSATIRKIYPAFMLGSSVGNFSDGKMGRFFNHTLVLLPDGCGTLLRA	FYCI 186
AcCoV-JC34 CKY00PAVDVLTSGFRCEAPTNPPCSAIVNMAIECLINSTFRPTT	FSF- 166
Lucheng Rn rat CoV CKYPSNVVTDITNGNGCHTNMAGPGATTCDVILSSPLECVLNRTYS00Y	AGV- 172
SARS-COV-2 CNDPFLGVYYHKNNKSWMESEFRVYS-SANNCTF-EYVSQPFLMDLEGKQGNFKNLREFVFKNID	G 199
SARS-CoV CDNPFFAVSKPMGTQTHTMIFD-NAFNCTF-EYISDAFSLDVSEKSGNFKHLREFVFKNKD	GFL- 194
HKU 1 CEYPHTICKSK-GSSRNESWHFDKSEPLCLFKKNFTYNVST	DWL- 198
OC43 CEYPHTICHPNLGNHFKELWHYDTGVVSCLYKRNFTYDVNA	TYL- 217
MERS-CoV LE-PRSGNHCPAGNSYTSFATYHTPATDCSDGNYNRNASLNSFKEYFNLRNCTFMYTYNITE	DEIL 251
AcCoV-JC34 SYVTWYNSEINAVIHGQRFSFVYEGFLWSNASAFCYDA	NGCI 208
Lucheng Rn rat CoV SYITWYNDHIIASIQGEVFTF-DIGEVLQWSNFSAFCGTG	NKCG 215
SARS-CoV-2 -YFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAG	AAAY 265
SARS-CoV -YVYKGYQPIDVVRDLPSGFNTLKPIFKLPLGINITNFRAILTAFSPAQDTWGTS	AAAY 252
HKU 1 -YFHFYQERGTFYAYYADSGMPTTFLF-SLYLGTLLSHYYVLPLTCNAISSNTDNE	TLQY 256
OC43 -YFHFYQEGGTFYAYFTDTGFVTKFLF-NVYLGMALSHYYVMPLTCIRRPKDGF	SLEY 273
MERS-COV EWFGITQTAQGVHLFSSRYVDLYGGNMFQFATLPVYDTIKYYSIIPHSIRSIQSDRKAW	A-AF 313
ACCOV-JC34 FNITNIIJUMEV3IDJ3GAIINNFVDCGFDFESQLACANEVFELEFAVINGAALFIEJSVIVA	
LUCHENG NI TAL COV ESTATLESEMEUNDING VIDTVICUTUTELEVENTELEANTSUSAVELQ - SALTVS	DNELF 202
	DNTT 220
JAKS-COV FVGTERFTTPHERTDENGETTDAVDCSQNFEALERCSVRSFLIDNGT(GISNFRVFJGDVV-SGDVV-DT	
NCCA3 WYTE SKRUTELKI DRAGTTENAVDCMSDEMSET KCKTOSTAPPTGVYEL NGYTVOPVADVYRK	PDLP 347
MERS-CoV YVYKLQPLTFLLDFSVDGYIRRAIDCGFNDLSQLHCSYESFDVESGVYSVSSFEAKPSGSVVEQA	EGVE 382
AcCoV-JC34 D-CAFSFADIFSDGTGNYGGLRRHVFTNCWVNYTSWFLCDDGLACIIFNAIFSEV	'V 330
Lucheng Rn rat CoV D-CDFSFADMFMDGTGNFEGLRRHVFSNCWVNYTAWFACADDYSCIIFNAIFAEV	'R 337
SARS-CoV-2 NLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNV	YADS 399
SARS-CoV NLCPFGEVFNATKFPSVYAWERKKISNCVADYSVLYNSTFFSTFKCYGVSATKLNDLCFSNV	YADS 386
HKU 1 D-CDIDKWLNNFNVPSPLNWERKIFSNCNFNLSTLLRLVHTDSFSCNNFDESKIYGSCFKSI	VLDK 390
OC43 N-CNIEAWLNDKSVPSPLNWERKTFSNCNFNMSSLMSFIQADSFTCNNIDAAKIYGMCFSSI	TIDK 407
MERS-COVCDFSPLLSGTP-PQVYNFKRLVFTNCNYNLTKLLSLFSVNDFTCSQISPAAIASNCYSSL	ILDY 445
	רדר
Luchang Rn rat Coll	3/2
	3/9
	459
	440 /5/
0C43 FATPNRRKVDI OLGNI GYLOSSNYRTDTTATSCOLYVNI PAANVSVSRENPSTWNKREGETEDSV	/FVP0 476
MERS-CoV FSYPLSMKSDLSVSSAGPISQFNYKQSFSNPTCLILATVPHNLTTITKPLKYSYINKC-	503

AcCoV-JC34 Lucheng Rn SARS-CoV-2 SARS-CoV HKU 1 OC43 MERS-CoV	rat	CoV	QFNPDAYTPDYMECSFDVNSYTPDYMEC	386 393 480 467 519 531 528
AcCoV-JC34 Lucheng Rn SARS-CoV-2 SARS-CoV HKU 1 OC43 MERS-CoV	rat	CoV	DRSYIVYNAKFIT FGYFQIDRSYIVYNAKFIT YNGYVIYNAKFVS NGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLS TPPALNCYWPLNDYGFYTTTGIGYQPYRVVVLS CLPDPITAYDPRSCSQKKSLVGVGEHCAGFGVDEEKCGVLDGSYNVSCLCSTDAFLGWSYDTCVSNNRC PITLKAPDTYKCPQSKSLVGIGEHCSGLAVKSDYCGNNSCTCQPQAFLGWSADSCLQGDKC IVPSTVWEDGDYYRKQLSPLEGGGWLVASGSTVAMTEQLQMG	405 412 514 500 588 592 570
AcCoV-JC34 Lucheng Rn SARS-CoV-2 SARS-CoV HKU 1 OC43 MERS-CoV	rat	CoV	EGLTVCVLQPVEPELGVCKQYTIDGVTFQGILHTSNAN-ITTFHNLLYYG KGLTVCVVQPVEPELDVCKSYTIDGVTFQGILRNTTHQ-IDSFHNILYYG FELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKK-FLPFQQFGRDIAD FELLNAPATVCGPKLSTDLIKNQCVNFNFNGLTGTGVLTPSSKR-FQPFQQFGRDVSD NIFSNFILNGINSGTTCSNDLLQPNTEVFTDVCVDYDLYGITGQGIFKEVSAVYYNSWQNLLYDSNG NIFANFILHDVNNGLTCSTDLQKANTEI-ELGVCVNYDLYGISGQGIFVEVNATYYNSWQNLLYDSNG FGITVQYGTDTNSVCPKLEFANDTKIASQLGNCVEYSLYGVSGRGVFQNCTAV-GVRQQRFVYDAYQ	454 461 571 557 655 659 636
AcCoV-JC34 Lucheng Rn SARS-CoV-2 SARS-CoV HKU 1 OC43 MERS-CoV	rat	CoV	(JC34 -RR-R- motif) DMVSH VRIKGIVYSVEPCNSFYYSV LKTRSEVGYLYSGANCNSSDVVT FSRARARTLTDS DMVSY VRIRGVVAVESCNRFYYSV FKTLSAIGYLYSGATCDSTDVTT FMTKAKATTFVDS TTDAVRDPQTLEI - LDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAI HADQLTPTWRVYS FTDSVRDPKTSEI - LDISPCSFGGVSVITPGTNASSEVAVLYQDVNCTDVSTAI HADQLTPAWRIYS NIIGFKDFVTNKT - YNIFPCYAGRVSAAF HQNASSLALLYRNLKCSYVLNNI SLTTQPYFDS NLYGFRDYITNRT - FMIHSCYSGRVSAAY HANSSEPALLFRNIKCNYVFNNS - LTRQLQPINYSFD NLVGY YSDDGNYYCLRACVSVPVSVIY DKETKTHATLFGSVACEHISSTMSQYSRSTRSMLKRRD	515 522 637 623 716 723 701
AcCoV-JC34 Lucheng Rn SARS-CoV-2 SARS-CoV HKU 1 OC43 MERS-CoV	rat	CoV	S1 / S2 SLGCLVDVQLTNNN-YTTCSYPIGNGLCADVNVTGMPVVGNIYIQPH SLGCFIDVSVTDGN-YTDCLNPIGNGFCVDVNVTGQPVVGNIFIQTH TGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQT-NSPRRARSVASQSIIAYTMSLGAEN TGNNVFQTQAGCLIGAEHVDTSYECDIPIGAGICASYHTVSLLRSTSQKSIVAYTMSLGADS YLGCVFNADNLTDYSVSSCALRMGSGFCVDYNSPSSSSSRRKRSISASYRFVTFEPF SYLGCVVNAYNSTAISVQTCDLTVGSGYCVDYFKNRRSRRAITTGYRFTNFEPF STYGPLQTPVGCVLGLVNSSLF-VEDCKLPLGQSLCALPDTPSTLTPRSVRSVPGEMRLASIAFNHPI-	561 568 703 685 774 777 768
AcCoV-JC34 Lucheng Rn SARS-CoV-2 SARS-CoV HKU 1 OC43 MERS-CoV	rat	CoV	DTDYARPILSPQIVSLPLDHVINVKEQFVQTSAPKFDVDCERYICDVSVQCKELLAKYGGYCPKI DTDYARPILTAQQIELPIDHYVSVKEQFIQTSTPKFDVDCERYICDVSSDCRELLVKYGGYCSKI SVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLQYGSFCTQL SIAYSNNTIAIPTNFSISITTEVMPVSMAKTSVDCNMYICGDSTECANLLQYGSFCTQL NVSFVNDSIESVGGLYEIKIPTNFTIVGQEEFIQTNSPKVTIDCSLFVCSNYAACHDLLSEYGFFCDNI TVNSVNDSLEPVGGLYEIQIPSEFTIGNMEEFIQTSSPKVTIDCAAFVCGDYAACKLQLVEYGSFCDNI QVDQLNSSYFKLSIPTNFSFGVTQEYIQTTIQKVTVDCKQYVCNGFQKCEQLLREYGQFCSKI	626 633 763 745 843 846 831
AcCoV-JC34 Lucheng Rn SARS-CoV-2 SARS-CoV HKU 1 OC43 MERS-CoV	rat	CoV	S2' (FP) VSDIKSSSLQLDYQVQGIYKTLNVDVKVPDV-DFG-AFNFSMFESEPNGRSFIEDIL LADIKSSSIQLDYQILGLYKTLAVDFKVPDI-DFG-DFNFSMYMSEANGRSFIEDLL NRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFG-GFNFSQILPDPSKPSKRSFIEDLL NRALSGIAAEQDRNTREVFAQVKQMYKTPTLKYFG-GFNFSQILPDPLKPTKRSFIEDLL NSILDEVNGLLDTTQLHVADTLMQGVTLSSNLNTNLHFDVDNINFKSLVGCLGPHCGS-SSRSFFEDLL NAILTEVNELLDTTQLQVANSLMNGVTLSTKLKDGVNFNVDDINFSPVLGCLGSECSKASSRSAIEDLL NQALHGANLRQDDSVRNLFASVKSSQSSPIIPGFGGDFNLTLLEPVSISTGSRSARSAIEDLL	681 688 822 804 911 915 894

			fusion peptide (FP)	
AcCoV-JC34 Lucheng Rn SARS-CoV-2 SARS-CoV HKU 1 0C43 MERS-CoV	rat	CoV	FDKIVTTGPGFYQDYYDCKKMNLEDITCKQYYNGIMVIPPVMDDTLITFWSSA-VAGSMTAGLFGG FDKIVTTGPGFYQDYYDCKKMNLQDLTCKQYYNGIMVIPPVMDDTLITFWSSA-VAGSMTAGLFGG FNKVTLADAGFIKQYGDCLGDIAARDLICAQK FNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFG FNKVTLADAGFMKQYGECLGDINARDLICAQK FNGLTVLPPLLTDDMIAAYTAALVSGTATAGWTFG FDKVKLSDVGFVEAYNNCTGGSEIRDLLCVQSFNGIKVLPPILSESQISGYTTAATVAAMFPPWS FDKVKLSDVGFVEAYNNCTGGAEIRDLICVQSYKGIKVLPPLLSENQISGYTLAATSASLFPPWT FDKVTIADPGYMQGYDDCMQQGPASARDLICAQYVAGYKVLPPLMDVNMEAAYTSSLLGSIAGVGWTAG	746 753 889 871 976 980 963
AcCoV-JC34 Lucheng Rn SARS-CoV-2 SARS-CoV HKU 1 OC43 MERS-CoV	rat	CoV	QAGMVSWSIAVAGRLNALGVMQDALVNDVNKLANGFNNLTQYVADGFKTTSQALSAIQSVVNNNAQQ QAGMVSWTVALAGRLNALGVMQDALVEDVNKLANGFNNLTQYVSDGFKTTSQALSTIQAVVNNNAQQ AGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQA AGAALQIPFAMQMAYRFNGIGVTQNVLYENQKQIANQFNKAISQIQESLTTTSTALGKLQDVVNQNAQA AAAGIPFSLNVQYRINGLGVTMDVLNKNQKLIATAFNNALLSIQNGFSATNSALAKIQSVVNSNAQA AAAGVPFYLNVQYRINGLGVTMDVLSQNQKLIANAFNNALHAIQQGFDATNSALVKIQAVVNANAEA LSSFAAIPFAQSIFYRLNGVGITQQVLSENQKLIANKFNQALGAMQTGFTTTNEAFQKVQDAVNNNAQA	813 820 958 940 1043 1047 1032
AcCoV-JC34 Lucheng Rn SARS-CoV-2 SARS-CoV HKU 1 OC43 MERS-CoV	rat	CoV	ISQLVQGLSENFGAISNNFLVIAERLERLEAQMQMDRLINGRMNILQNFVTNYKLSISELKSQQILAQS VSQLVQGLSENFGAISNNFALIAERLERIEAAMQMDRLINGRMNILQNFVTNYKLSISELKSQQALAQS LNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAAT LNTLVKQLSSNFGAISSVLNDVLSRLDKVEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAAT LNSLLQQLFNKFGAISSSLQEILSRLDALEAQVQIDRLINGRLTALNAYVSQQLSDISLVKFGAALAME LNNLLQQLSNRFGAISASLQEILSRLDALEAAQIDRLINGRLTALNAYVSQQLSDSTLVKFSAAQAME LSKLASELSNTFGAISASIGDIIQRLDVLEQDAQIDRLINGRLTTLNAFVAQQLVRSESAALSAQLAKD	882 889 1027 1009 1112 1116 1101
AcCoV-JC34 Lucheng Rn SARS-CoV-2 SARS-CoV HKU 1 OC43 MERS-CoV	rat	CoV	LVNECVYAQSNRNGFCGDGLHLFSLMQRAPDGIMFFHYTLVPNNTIDVETTPGLCLGNNVCIAPRDG LINECVYAQSSRNGFCGDGLHLFSLMQRAPDGIMFFHYTLKPNNTIIVETTPGLCLSNDVCIAPKDG KMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREG KMSECVLGQSKRVDFCGKGYHLMSFPQAAPHGVVFLHVTYVPSQERNFTTAPAICHEGKAYFPREG KVNECVKSQSPRINFCGNGNHILSLVQNAPYGLLFMHFSYKPISFKTVLVSPGLCISGDVGIAPKQG KVNECVKSQSSRINFCGNGNHIISLVQNAPYGLYFIHFNYVPTKYVTAKVSPGLCIAGNRGIAPKSG KVNECVKAQSKRSGFCGQGTHIVSFVVNAPNGLYFMHVGYYPSNHIEVVSAYGLCDAANPTNCIAPVNG	949 956 1093 1075 1179 1183 1170
AcCoV-JC34 Lucheng Rn SARS-CoV-2 SARS-CoV HKU 1 OC43 MERS-CoV	rat	CoV	LFVKTNIRSDVWHFTTRNLYNPQAITVNNSVIVNG-GVNFTSLNQTIEGIEPPTIPSFDEEFEDL LFVRLSTARDTD-WHFTTRNRYSPEPITVNNTLTISG-GVNFTVVNSTIDGIEPPANPSFDEEFAEL VFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKY VFVFNGTSWFITQRNFFSPQIITTDNTFVSGNCDVVIGIINNTVYDPLQPELDSFKEELDKY YFIKHNDHWMFTGSSYYYPEPISDKNVVFMNTCSVNFTKAPLVYLNHSVPKLSDFESELSHW YFVNVNNTWMYTGSGYYYPEPITENNVVVMSTCAVNYTKAPYVMLNTSIPNLPDFKEELDQW YFIKTNNTRIVDEWSYTGSSFYAPEPITSLNTKYVAP-QVTYQNISTNLPPPLLGNSTGIDFQDELDEF	1013 1021 1155 1137 1241 1245 1238
AcCoV-JC34 Lucheng Rn SARS-CoV-2 SARS-CoV HKU 1 OC43 MERS-CoV	rat	CoV	YKNITLELEQLK-NIT-FDPELLNLTYYIDRLDELSTNVSQLHVDISEFNKYVQYIKWPWYVWLAIFLV YKNVTLELEQLK-NIS-FDPEMLNLTYYIDRLDELATNVSQLHVDVSEFNKFVQYIKWPWYVWLAIFLV FKNHTSPDVDLG-DISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLGFIAG FKNHTSPDVDLG-DISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYVWLGFIAG FKNQTSIAPNLTLNLHTINATFLDLYYEMNLIQESIKSLNNSYINLKDIGTYEMYVKWPWYVWLLISFS FKNQTSVAPDL-SLDYINVTFLDLQVEMNRLQEAIKVLNHSYINLKDIGTYEYVVKWPWYVWLLICLA FKNVSTSIPNFG-SLTQINTTLLDLTYEMLSLQQVVKALNESYIDLKELGNYTYYNKWPWYIWLGFIAG	1080 1088 1223 1205 1310 1312 1306
AcCoV-JC34 Lucheng Rn SARS-CoV-2 SARS-CoV HKU 1 OC43 MERS-CoV	rat	CoV	LVLFSFMLLWCCCATGCCGCCGMLGSACNGCCTKPQTVEFEKVHVQ LVLFSFLMLWCCCATGCCGCCGLCGAACNGCCTKPQPIEFEKVHVQ*- LIAIVMVTIMLCCMTSCCSCLKGC-CSCGSCCKFDEDDSEPVLKGVKLHYT LIAIVMVTILLCCMTSCCSCLKGA-CSCGSCCKFDEDDSEPVLKGVKLHYT FIIFLVLLFFICCCTGCGSACFSKCHNCCDEYGGHHDFVIKTSHDD GVAMLVLLFFICCCTGCGTSCFKKCGGCCDDYTGYQELVIKTSHDD LVALALCVFFILCCTGCGTNCMGK-LKCNRCCDRYEEY-DLEPHKVHVH	1126 1135 1273 1255 1356 1358 1353

Figure 4. Predicted structure of AcCoV-JC34 spike protein.

The AcCoV-JC34 spike protein was modelled based on SADS-CoV spike. In SARS-CoV-2, the pink highlight indicates where the furin cleavage sequence (PRRAR) is located. The red highlight is the location that aligns with AcCoV-JC34 potential furin cleavage site. In the AcCoV-JC34 structural model, the pink highlight indicates location of the potential furin cleavage site (SRRAR).

Virus	Predicted S1/S2 sequence	PiTou	ProP
AcCoV-JC34	495 - CNSSDVVTFSRRAR ARTLTD - 514	+0.15	0.279
Lucheng Rn rat CoV	502 - CDSTDVTTFMTKAR ATTFVD - 521	-4.577	0.132
MERS-CoV	681 - HISSTMSQYSRSTR SMLKRR - 699	-2.662	0.497
SARS-CoV-2	672 - ASYQTQTNSPRRAR SVASQS - 691	+9.196	0.62
SARS-CoV-1	654 - AGICASYHTVSLLR STSQKS - 673	-5.167	0.123
HCoV - HKU1	747 - YNSPSSSSS <mark>RRKRR</mark> SISASY - 766	+14.634	0.88
OC43 (clinical)	750 - GYCVDYFKNRRSRR AITTGY - 769	+10.1	0.753

Figure 5. Furin cleavage analysis of CoV S1/S2 cleavage site

CoV S sequences were analyzed using the ProP 1.0 and PiTou 3.0 furin prediction algorithm, generating a score with bold numbers indicating predicted furin cleavage. (|) denotes the position of the predicted S1/S2 cleavage site. Basic resides, arginine (R) and lysine (K), are highlighted in blue.

Figure 6. Fluorogenic peptide cleavage assays of the predicted AcCoV-JC34 furin cleavage site.

Peptides mimicking the S1/S2 site of the SARS-CoV-2 WT, AcCoV-JC34, and Lucheng Rn rat CoV (LRNV) were evaluated for in vitro cleavage with A) trypsin and B) furin proteases under pH 7.4 (trypsin), and 7.5 (furin) conditions. Trypsin cleaved all three peptides, while furin only cleaved SARS-CoV-2.

Acknowlegements:

DTS is supported by the Howard Hughes Medical Institute-Cornell University Transfer (HHMI-CURT) program

AES was supported by NIH Comparative Medicine Training Program T32OD011000.

Work in the author's lab is funded in part by the National Institute of Health research grant R01AI35270 (to GW).

We thank the members of the Whittaker Lab, past and present, for their helpful discussions during the preparation of this manuscript.