The half space property for cmc 1/2 graphs in $\mathbb E(-1,\tau)$ - CV des membres de LAMA UMR 8050 Access content directly
Journal Articles Calculus of Variations and Partial Differential Equations Year : 2015

The half space property for cmc 1/2 graphs in $\mathbb E(-1,\tau)$

Abstract

In this paper, we prove a half-space theorem with respect to constant mean curvature 1/2 entire graphs in E(-1,\tau). If \Sigma is such an entire graph and \Sigma' is a properly immersed constant mean curvature 1/2 surface included in the mean convex side of \Sigma then \Sigma' is a vertical translate of \Sigma. We also have an equivalent statement for the non mean convex side of \Sigma.
Fichier principal
Vignette du fichier
pslhalf.pdf (369.11 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-00802642 , version 1 (02-02-2023)

Identifiers

Cite

Laurent Mazet. The half space property for cmc 1/2 graphs in $\mathbb E(-1,\tau)$. Calculus of Variations and Partial Differential Equations, 2015, 52 (3-4), pp.661-680. ⟨10.1007/s00526-014-0728-7⟩. ⟨hal-00802642⟩
60 View
18 Download

Altmetric

Share

Gmail Facebook X LinkedIn More