The equational theory of the weak order on finite symmetric groups - Laboratoire d'informatique fondamentale de Marseille Access content directly
Journal Articles Journal of the European Mathematical Society Year : 2018

The equational theory of the weak order on finite symmetric groups

Abstract

It is well-known that the weak Bruhat order on the symmetric group on a finite number n of letters is a lattice, denoted by P(n) and often called the permutohedron on n letters, of which the Tamari lattice A(n) is a lattice retract. The equational theory of a class of lattices is the set of all lattice identities satisfied by all members of that class. We know from earlier work that the equational theory of all P(n) is properly contained in the one of all A(n). We prove the following results. Theorem I. The equational theory of all P(n) and the one of all A(n) are both decidable. Theorem II. There exists a lattice identity that holds in all P(n), but that fails in a certain 3338-element lattice. Theorem III. The equational theory of all extended permutohedra, on arbitrary (possibly infinite) posets, is trivial. In order to prove Theorems I and II, we reduce the satisfaction of a given lattice identity in a Cambrian lattice of type A to a certain tiling problem on a finite chain. Theorem I then follows from Büchi's decidability theorem for the monadic second-order theory MSO of the successor function on the natural numbers. It can be extended to any class of Cambrian lattices of type A with MSO-definable set of orientations.
Fichier principal
Vignette du fichier
N5B32.pdf (1.05 Mo) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-00986148 , version 1 (05-05-2014)
hal-00986148 , version 2 (24-09-2014)

Identifiers

Cite

Luigi Santocanale, Friedrich Wehrung. The equational theory of the weak order on finite symmetric groups. Journal of the European Mathematical Society, 2018, 20 (8), pp.1959--2003. ⟨10.4171/JEMS/804⟩. ⟨hal-00986148v2⟩
551 View
270 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More